Examining Mathematics Coaching (EMC)

John Sutton, Clare Heidema, and Arlene Mitchell
Association of State Supervisors of Mathematics
San Diego, CA
April 18, 2010

Research Partners

Funding By The National Science Foundation
Discovery Research K-12 Program (DR K-12), Award No. 0918326
Session Outline

- Project Description
- Research design to examine mathematics coaching
- Professional Development Topics
- Defining coaching knowledge
- Instruments to measure coaching effectiveness
Personnel

Montana State University
- David Yopp, PI
- Beth Burroughs, Co-PI
- Jennifer Luebeck
- Mark Greenwood

RMC Research
- John Sutton, Co-PI
- Clare Heidema
- Arlene Mitchell
- Lyn Swackhamer

Project Director: James Burroughs
Description

EMC is a 5-year research and development project examining the effects of a coach’s “knowledge for coaching” on a diverse population of K-8 teachers.

It addresses the DR K-12 challenge: *How can the ability of teachers to provide Science, Technology, Engineering, and Mathematics (STEM) education be enhanced?*
The Examining Mathematics Coaching Project (EMC)

- Investigating knowledge that contributes to successful coaching in two domains
  - Coaching Knowledge
  - Mathematics Content Knowledge

- The influence of these knowledge domains is examined in two ways:
  - investigating correlations between assessments of coach and teacher knowledge and practice in each domain
  - by investigating causal effects of targeted professional development for coaches
Knowledge Domains

- Mathematics Content Knowledge
- Coaching Knowledge
- Knowledge of Teacher Learning
- Knowledge of Student Learning
Why Study This?

- Coaching is a promising model for enhancing K-8 mathematics teachers’ abilities to provide quality mathematics education.
- Coaching can be implemented at any point in a teacher’s career (as opposed to mentoring).
Why Study This?

- Schools across the nation are using mathematics specialists (including mathematics coaches) yet there is limited research proving what makes it effective.

- A comprehensive understanding of the effectiveness of coaching does not exist.
Why Study This?

- Moreover, no studies have demonstrated what types and depths of knowledge effective coaches hold.
- At the same time, implementing coaching involves considerable cost and logistical effort for schools.
EMC Goals

Determine the degree to which:

- Coaching knowledge contributes to coaching effectiveness.
- Mathematics content knowledge contributes to coaching effectiveness.

Contribute to research:

- Coaching knowledge
- Impacts on teachers’ knowledge, attitudes, and classroom practices.
EMC Research Hypothesis

- Mathematics classroom coach effectiveness is linked to several domains of knowledge.
- Coaching knowledge contributes significantly to a coach’s effectiveness measured by the positive impact on teacher practice, attitudes, and beliefs.
Logic Model

Inputs

- Mathematics Content Knowledge
- Implementation of Coaching Model
- Coaching Knowledge

Measured variable

- Coaching Effectiveness
- Teacher Beliefs
- Coaching Impact
- Use of Reformed Practice

Mathematics Content Knowledge

Coaching Knowledge
Research Design and Questions

Non-experimental design:
- Does coaching knowledge and mathematics content knowledge influence coaching effectiveness?

Experimental design:
- Does professional development for coaches improve their coaching effectiveness?
- Are effects of targeted professional development explained by increases in coaching knowledge and mathematics content knowledge?
## Research Design

<table>
<thead>
<tr>
<th>Year</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Year 1</strong></td>
<td>Provide orientation to EMC coaching model.</td>
<td></td>
</tr>
<tr>
<td>2009-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Year 2</strong></td>
<td>Provide PD on Mathematics Content Knowledge.</td>
<td>Web-based PD School Year 2010-11</td>
</tr>
<tr>
<td>2010-11</td>
<td>Provide PD on Mathematics Content Knowledge.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web-based PD School Year</td>
<td></td>
</tr>
<tr>
<td><strong>Year 3</strong></td>
<td>Web-based PD School Year 2011-12</td>
<td>Provide PD on Coaching Knowledge.</td>
</tr>
<tr>
<td>2011-12</td>
<td></td>
<td>Summer 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Web-based PD School Year</td>
</tr>
<tr>
<td><strong>Year 4</strong></td>
<td>Provide PD on Coaching Knowledge.</td>
<td>Web-based PD School year 2012-13</td>
</tr>
<tr>
<td>2012-13</td>
<td>Provide PD on Coaching Knowledge.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web-based PD School Year</td>
<td></td>
</tr>
<tr>
<td><strong>Year 5</strong></td>
<td>Web-based PD School Year 2013-14</td>
<td>Provide PD on Mathematics Content Knowledge.</td>
</tr>
<tr>
<td>2013-14</td>
<td></td>
<td>Summer 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Web-based PD School Year</td>
</tr>
</tbody>
</table>
# Mathematics Professional Development Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Types and uses of numbers</td>
<td>Methods and contexts for addition and subtraction</td>
<td>Representations</td>
<td>Representations</td>
<td>Mental methods with fractions, decimals, and percents</td>
</tr>
<tr>
<td>Set/subset and part/whole relationships</td>
<td>Methods and contexts for multiplication and division</td>
<td>Area model</td>
<td>Computational patterns and properties with percents and decimals</td>
<td>Ratios/rates</td>
</tr>
<tr>
<td>Number displays and relationships</td>
<td>Mental arithmetic</td>
<td>Set model</td>
<td>Applications</td>
<td>Solving proportions</td>
</tr>
<tr>
<td>Counting</td>
<td>Number line model</td>
<td>Number line model</td>
<td>Fraction, decimal, and percent equivalences</td>
<td>Scale drawings</td>
</tr>
<tr>
<td></td>
<td>Computational patterns and properties with fractions</td>
<td></td>
<td></td>
<td>Applications</td>
</tr>
</tbody>
</table>
## Coaching Professional Development Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• The coach’s role</td>
<td>• Adult learning</td>
<td>• Content-focused conversations</td>
<td>• Standards-based practices</td>
<td>• Cooperative learning</td>
</tr>
<tr>
<td>• Conference set-up and scheduling</td>
<td>• The teacher development process</td>
<td>• Reflective questioning and active listening</td>
<td>for skill proficiency, concept development, and problem solving</td>
<td>• Formative assessment</td>
</tr>
<tr>
<td>• Making relational connections</td>
<td>• Creating a partnership mindset</td>
<td>• Observing and modeling instruction</td>
<td>• Mathematical processes</td>
<td>• Classroom discourse strategies</td>
</tr>
<tr>
<td>• Goal-setting with teachers</td>
<td>• Keys to effective professional development</td>
<td>• Providing feedback</td>
<td>• Activity/inquiry-based instruction</td>
<td>• Nonlinguistic representations</td>
</tr>
</tbody>
</table>
EMC Participants

59 coach participants and 177 teacher participants located in Montana, Idaho, Colorado, North Dakota, Washington, and Wisconsin.
EMC Participants

- At least three K-8 teachers/coach.
- At least eight coaching sessions/year.
- Follow the EMC Coaching Model.
- Complete various research tools at the end or beginning of each school year.
- Teachers observed each spring.
- Access to student achievement data.
### EMC Coaching Model

<table>
<thead>
<tr>
<th>Coaching Model</th>
</tr>
</thead>
</table>
| • **Pre-conference** of at least 15 minutes focused on planning for upcoming lesson with emphasis on teacher’s stated goals, objectives, and needs  
| • **Observation** or model of a lesson  
| • **Post-conference** of at least 30 minutes reflecting on planned teacher actions  
| Coaching will focus on aspects of standards-based teaching as defined by NCTM process and content standards, not on generic pedagogy such as classroom management |  

<table>
<thead>
<tr>
<th>Content Focus</th>
<th>Number and Operation; ratio and proportion</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Three teachers per coach provide data points for research. Teachers are coached at least 8 times per academic year and at least four times within the content focus</th>
</tr>
</thead>
</table>

| Quality Assurances | Coach and teacher reflection instruments, coach skill inventory, and teacher needs inventory ensure consistent implementation of coaching across schools  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self-identified teacher needs are used in planning and goal setting, and progress toward these goals is monitored and reflected on by coaches</td>
</tr>
</tbody>
</table>

A mathematics coach is

- on-site professional developer
- focusing on research-based, reform-based, and standards-based instructional strategies and mathematics content
- includes the why, what, and how of teaching mathematics.
Delphi Study

- An iterative process where experts identify and refine the constructs being studied
- Three phase process:
  - *Phase I*: Identification – Identify knowledge areas;
  - *Phase II*: Definition – Define knowledge areas; and
  - *Phase III*: Validation – Validate the knowledge areas and definitions
Defining Coaching Knowledge

- Engaged national experts and practitioners (including Mark Driscoll, Diana Erchick, Terry Goodman, Loretta Heuer, Ted Hull, Jim Knight, Maggie McGatha, Amy Morse, and Liz Sweeney);
- Identified 8 components of coaching knowledge; and
- Collectively defined each knowledge area.
Coaching Knowledge

- Communication
- Leadership
- Student Learning
- Assessment
- Teacher Practice
- Teacher Development
- Teacher Learning
Table Activity

At your table, examine the working definitions of coaching knowledge.

- In a small group, examine at least one definition and answer two questions.

- One person should be prepared to share responses with the whole group for each definition discussed.
Table Activity

- What aspects or features of the definition are surprising or unexpected for you?
- How might these definitions influence and/or inform your work?
# Coach & Teacher Instruments

<table>
<thead>
<tr>
<th>Tool</th>
<th>Who</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics Knowledge for Teaching (MKT)</td>
<td>Coach, Teacher</td>
<td>Document changes in mathematics content knowledge needed for teaching.</td>
</tr>
<tr>
<td>Coach and Teacher Reflections (CTRI)</td>
<td>Coach, Teacher</td>
<td>Document the quality, content, and details of coaching sessions. Examine perception of coaching impact on instruction.</td>
</tr>
</tbody>
</table>
Mathematics Knowledge for Teaching

Study of Instructional Improvement / Learning Mathematics for Teaching Project at the University of Michigan

Instrument to assess mathematics content knowledge for teaching

Subject Matter Knowledge
- Common content knowledge
- Specialized content knowledge

Pedagogical Content Knowledge
- Knowledge of content and students
- Knowledge of content and teaching
Design questions (e.g., quiz)

Which of these lists would be best for assessing whether students understand ordering decimal numbers.

a. 0.5  7  0.01  11.4
b. 0.60  2.53  3.12  0.45
c. 0.6  4.25  0.565  2.5
d. These lists are all equally good for assessing whether students understand how to order decimal numbers.
Coach and Teacher
Reflections

Coach
- Time spent and type of interaction
  - Pre-lesson conference
  - Lesson observation
  - Post-lesson conference
- Reflection on coaching sessions
  - Coaching relationship
  - Topics discussed
  - Impact

Teacher
- Number of visits
- Reflection on coaching sessions
  - Coaching relationship
  - Topics discussed
  - Impact
Coach and Teacher Reflections

My coach and I discussed significant and worthwhile mathematical content.

Not at all
1
2
3
4
To a great extent
5
## Coach & Teacher Instruments

<table>
<thead>
<tr>
<th>Tool</th>
<th>Who</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coaching Knowledge Survey (CKS)</td>
<td>Coach</td>
<td>Assess coaching knowledge.</td>
</tr>
<tr>
<td>Coaching Skills Inventory (CSI)</td>
<td>Coach</td>
<td>Self-assess coaching skills.</td>
</tr>
</tbody>
</table>
## Coaching Knowledge Survey

<table>
<thead>
<tr>
<th>I coach newer teachers more than the experienced teachers.</th>
<th>Reflective of my coaching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not at all</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Coaching Skills Inventory

How confident do you feel coaching teachers on encouraging student participation?

Not at all confident

1  2  3  4  5

Very confident
# Teacher Research Tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Who</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher Needs Inventory (TNI)</td>
<td>Teacher</td>
<td>Planning tool to provide focus for coaching sessions.</td>
</tr>
<tr>
<td>Teacher Survey (TS)</td>
<td>Teacher</td>
<td>Examine teacher attitudes, beliefs, and perceptions about mathematics teaching.</td>
</tr>
<tr>
<td>Classroom Observation</td>
<td>Teacher</td>
<td>Document classroom practice</td>
</tr>
</tbody>
</table>
**Teacher Needs Inventory**

How confident do you feel using cooperative learning?

<table>
<thead>
<tr>
<th>Not at all confident</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Very confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>I would not like to partner with coach on this topic.</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td></td>
</tr>
<tr>
<td>Not sure if I would like to partner with coach on this topic.</td>
<td>[ ]</td>
<td></td>
<td>[ ]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I would like to partner with coach on this topic.</td>
<td></td>
<td></td>
<td></td>
<td>[ ]</td>
<td>[ ]</td>
<td></td>
</tr>
</tbody>
</table>
Teacher Survey

During the last 12 months, how often did you engage in each of the following activities related specifically to the teaching and learning of mathematics?

e. Observed demonstrations of teaching techniques.

Not at all  Once or twice  Once or twice  Once or twice  Almost
daily       per year      per month    per week
Observation

Observation includes a brief description of the day’s lesson, the classroom setting in which the lesson took place (space, seating arrangement, etc.), and relevant details about the students and teacher. Using the Inside the Classroom Observation Protocol, the observation focuses on:

- Lesson Design and Implementation
- Content
- Classroom Culture
EMC Instruments

- Handouts - Sampler
  - Coaching Skills Inventory
  - Teacher Needs Inventory
  - Coach and Teacher Reflections
- Permission to use if requested
  - Provides EMC opportunity to monitor applications outside project
Examining Mathematics Coaching

- Questions
- Insights
- Ideas
- Comments

THANK YOU!
Contact Us:
John Sutton, Co-PI, sutton@rmcdenver.com
Clare Heidema, heidema@rmcdenver.com
Arlene Mitchell, mitchell@rmcdenver.com
Phone: (800) 922-3636
Web: www.math.montana.edu/~emc/