New Undergraduate Course Approval Cover Form
Montana State University

This four-page form collects basic information about the proposed new course, provides information on the approval process, and includes all required approvals. Additional information (see INFO sheet) is also required as part of the New Course Packet.

Proposed New Course Information

Requested Rubric, Course Number, Core Designation (if needed): EMAT 360

Course Title: Biomedical Materials Engineering
Abbreviated Course Title (≤ 30 chars): Biomedical Materials Eng.
First Semester to be Offered: Fall 2014
Submitted by: Ron June (MIE) & Jim Wilking (ChBE)
Submitter's Contact Info: Phone, Email:
Instructor: Ron June & Jim Wilking
Department: MIE & ChBE
College: COE

New Course Review Process

Instructor completes the New Course Packet, with Core information if a Core designation is requested.

Instructor checks for "equivalent" course in the MUS system and recommends a common or unique course number.

Department Head's signature indicates that course has been approved by the process used within the Department.

The Chair of the College Curriculum Committee signs to indicate College academic approval.

The College Dean signs to indicate that adequate resources are available to offer the course. Supporting information (Dean's Statement) is typically required.

The New Course Packet (in PDF) is uploaded to the Provost's Office server for distribution to other committees.

Course requests are sent to Curriculum and Program Committee (CPC). Core reviews are sent to appropriate Core subcommittee. Committees work in parallel when possible to speed approval process. Special topics courses (291, 491) skip the CPC review (limited to two years.)

Provost's Office reviews the new course request. New courses are submitted to MUS for Common Course Number (CCN) review. Dean and Department informed upon approval.

Approved new course sent to Registrar for inclusion in the Catalog and Schedule of Classes.

Note: This diagram illustrates the typical flow path, but at any review step there can be a request for additional information or modifications. Careful review in early steps is the best way to speed the overall process. * Special topics courses (x91) require fewer signatures, but cannot be offered more than two times without committee review.

APPROVALS

Submitter *

Department Head *

Chair, College Curriculum Comm.

Christine M. Foreman
Dean *

Chair, Core Subcommittee (if app.)

Chair, CPC

Assoc. Provost *

Date 1/17/2014

Date 01/17/14

Date 11/27/14

Digitally signing Christine M. Foreman
Dean of Christine M. Foreman, University of Montana, on 2014.01.17 11:56:37 -0700

Date 2014.01.17 11:56:37 -0700

Date 2014.01.17 11:56:37 -0700

Date 2014.01.17 11:56:37 -0700
INFORMATION NEEDED FOR COMMON COURSE NUMBERING

The process for identifying a common course number for a new course is as follows:

1. Course learning outcomes are prepared for the new course.
2. The person submitting the new course request looks at the CCN website to see if a course with similar outcomes already exists in the MUS system.

 www.mus.edu/Qttools/CCN/ccn_default.asp

 • If a course exists with at least 80% of the same outcomes, the course is considered "equivalent" to the proposed new course, and the new course should use the existing rubric and course number.

 • If no "equivalent" course is found, the person submitting the new course request should identify a unique course number that has not been used by any other course in the MUS system.

3. The requested rubric and course number are submitted as part of the new course packet.
4. The Provost’s Office submits the learning outcomes and the requested rubric and course number to the MUS to have a course number assigned to the course. (This will typically be the requested course number, but it could be changed.)
5. The assigned common course number is reported back to the person submitting the new course request.

Requested Rubric, Course Number, Core Designation (if needed):

Course Title: EMAT 360
Biomedical Materials Engineering

Abbrev. Course Title (≤30 char): Biomedical Materials Eng.

Credits: 3

Department Offering Course: MIE & ChBE

College: COE

Is this course "equivalent" to a course in the MUS System?:

☐ Yes ☐ No

Learning Outcomes for the Course:

Students should be able to:

Identify the microstructural features that are characteristic of hard and soft biomaterials.

Describe how the micro- and macro-structure of a hard or soft biomaterial relates to the physical properties and function of that material.

Choose a synthetic biomaterial with appropriate properties for a given biomedical application.

Recognize the primary obstacles that must be overcome when synthetic biomaterials are used in biomedical applications.

Understand the process of fabricating and manufacturing synthetic biomaterials, from initial testing through regulatory approval.
INFORMATION REQUIRED BY THE REGISTRAR

The data needed to enter the new course into the MSU Catalog and Schedule of Classes is collected on this page. Once the new course has been approved, this page is automatically forwarded to the Registrar for data entry.

Assigned Rubric, Course Number, Core Designation (if needed):
Course Title (for Catalog):
Course Title (for Schedule of Classes, 30 characters max.):
First Semester to be Offered:
Restricted Entry/Consent of Instructor Required:
Instructor's GID (last 4 digits only):
Department Offering Course:
College:
EMAT 360
Biomedical Materials Engineering
Biomedical Materials Eng.
Fall 2014
5259
MIE & ChBE
COE

Is the requested course number available? (x4155 to check):
Yes ☐ No ☐
Frequency of course offering:
☐ Annually
☐ Alternate Years, starting ______
Semester(s) offered (check all that apply):
☐ Summer
☐ Fall
☐ Spring
Summer Options (check all that apply):
☐ First 6 weeks
☐ Second 6 weeks
☐ 12 weeks

Credits by mode of instruction:
Lecture: 3
Seminar:
Independent Study:
Lab/Studio:
Recitation/Discussion:
TOTAL CREDITS: 3

Primary Mode(s) of Delivery:
☐ Face-to-face
☐ Web-Enhanced (small on-line comp.)
☐ On-Line Only
☐ Blended (significant on-line portion)

Time and Location — Call the Registrar’s Office at x4155 to find a time and location for the course.
Assigned Day(s):
M ☒ Tu ☐ W ☐ Th ☐ F ☐ Sa ☐ Su
Assigned Time(s):
Assigned Building:
Assigned Room:
Capacity (room capacity, or enrollment "cap"):

Co- and Pre-Requisites — Courses numbered 200 and above are normally expected to have prerequisites. When listing multiple prerequisites, please separate courses with "and" if both are required, or "or" if only one is required.
Prerequisite(s):
Co-Requisite(s):
EGEN331 OR EGEN335 OR ECHM321 (i.e., fluid dynamics)

Course Description — Provide a course description of 40 words or less for the MSU Catalog.
This course will cover materials engineering as related to the selection, fabrication, and design of biomaterials, largely for medical applications. Topics will include soft and hard materials, regulatory testing and approval. Emphasis will be placed on material mechanics, such as viscoelasticity.
DEAN'S STATEMENT

The reviewing committees are being asked to take a closer look at the resources required for each proposed new course. In many cases new courses will replace existing courses and the new course request is effectively resource neutral, however that is not always the case. For example, a new elective course that would result in distributing an existing student population across a larger number of courses would represent a significant increase in expenditures for the new course, and no increase in total student credit hours. A funding mechanism for such a course would need to be identified. The Dean’s Statement is the place to document how the costs of the proposed new course will be covered.

The proposed course, EMAT 360, is an excellent example of what new faculty members can bring to our students. Biomedical Materials Engineering is interdisciplinary in nature, being taught by new tenure track faculty from both the Mechanical Engineering and Chemical and Biological Engineering Departments within the College of Engineering. The course is timely and meets the demands of growing enrollment in both departments.

In order to become ABET accredited the Bioengineering program needs fundamental course work. A biomaterials course will allow us to compete with other bioengineering programs across the country and offer options to our students. There will be no increase in student program fees associated with this course and the course teaching will alternate between the two new faculty members. Enrollment will determine if this course is offered once or twice per year. The expected student credit hour production for the course is 225 SCHs per year, if taught in both fall and spring.
New Undergraduate Course Narrative
Montana State University
Updated August 23, 2012

Please provide the following information in narrative format. Substantive responses to all criteria are required. Although not required, a draft syllabus can also be helpful to the committee in understanding the details of the proposed course.

General Course Information
1. Requested Rubric, Course Number, and Core Designation (if any)
 EMAT 360
2. Course Title
 Biomedical Materials Engineering
3. Provide a general description of the course explaining the need for the course, its goals, and its overall structure. This is the most important part of the application and should offer a good sense of what students will experience by taking this class.

A course in either biomedical materials or biomaterials is standard at other research universities. MSU has established a Bioengineering program with both BS and ME degrees, and approximately 200 students are currently in these programs. A biomedical materials course is necessary for these programs to be consistent with other bioengineering programs, and we believe it is necessary for ABET accreditation of the bioengineering program. Further, a course in biomedical materials is a highly sought after elective for the other engineering programs, including mechanical engineering and chemical engineering. In order to offer the course as efficiently as possible, the MIE and ChBE departments are planning to jointly develop and jointly offer a biomedical materials course. The current plan is for an MIE instructor to teach the course in the fall semester each year and a ChBE instructor to teach the course in the spring semester. In summary, as more engineers work professionally with biomaterials, it is critical that MSU offer a course in this area so that its students will be highly recruited, highly valued by their employers, and not behind the curve on technological progress.

4. Based on what types of student work (e.g., tests, homework assignments, papers, performances, etc.) will grades be determined?

Grades will be determined based on tests (approximately 2 midterm exams each semester), homework assignments, quizzes and one final project.
5. Provide a course content outline containing all major topics plus a brief description of the material to be covered under each major topic heading.

6. List required texts or other required references.

7. What are the estimated enrollment and student credit hour (SCH) production? [SCH = (enrollment * credits)]

It is anticipated that the course will be a requirement in the bioengineering program by AY 2015-16, and there are expected to be 30-40 students per year from that program taking the course. Further, it is expected that 30-40 additional students per year will take course as an elective. The estimate is supported by the fact that Dr. June had 30 students in a similar elective course this past fall. Overall SCH production is expected to be 75*3 = 225 SCH.

*Please note that we anticipate only offering the course in the fall for AY 2014-15. If enrollment is below expectations, the course may only be offered on semester per year until student demand reaches the point where offering the course each semester is necessary.

8. Will there be an enrollment cap that restricts enrollment below the level of student demand? If so, what is the enrollment cap and why is it necessary?

The course is only a lecture so enrollment will only be limited by room size and availability.

9. Will course be a “restricted enrollment” course? If so, why is restricted enrollment necessary?

No.

10. Describe how the success of the course will be evaluated? (“End-of-semester student evaluations” is not the answer to this question. How will the instructor determine if the learning outcomes are being met, and how will the department determine if the course is fulfilling its intended purpose?)

The learning outcomes will be assessed through the homework, quizzes, exams, and project. Further, the course will be evaluated as part of the MIE and ChBE departments ABET accreditation process. This means that the course content will be evaluated once every 3 years by other faculty, alumni surveys will be conducted to determine if the necessary material and topics are being covered for professional work, and the department’s external advisory committees will be given information about the course for review.
11. Is the instructor a member of the regular faculty (i.e., tenured or tenure-track)? If no, please describe the instructor's qualifications, attach a Vita, and provide a separate letter of support, signed by the department head (or appropriate unit director), addressing the instructor's qualifications to teach this course.

Both instructors are tenure-track members of the COE faculty.

Level of Offering
12. Has the course been offered previously under 280/291 or 480/491? If so, when? Under what number? What was the enrollment? What level of students took the course?

This course has not been offered previously.

13. Justify the level of course offering.

The course material requires that the students have a working knowledge of calculus and fluid dynamics. These foundational courses are taken by second-year students so a third- or fourth-year course offering is logical. Further, we anticipate students using this material for their senior capstone projects so offering it at the third-year level is desirable.

Relationship to other Courses, Curricula, and Departments
14. Does this course build on or interrelate with other courses in your curriculum or related curricula? If so, which ones?

For the various engineering programs, this course builds on the basic material science course (EMAT 251) and fluid dynamics course. However, it offers a level of specialization in the biological and human health area that is beyond those courses.

15. Do the topics in the proposed course duplicate or reiterate those in other courses in this or any other department? If so, how do the coverage and educational experience differ and how is this duplication or reiteration justified? Also, what liaison (which is expected in cases of apparent overlap) has been conducted with other departments? Report reactions, both favorable and unfavorable.

MSU does not currently offer a similar biomedical materials course.

16. What programs (departments, colleges) will be impacted by the SCH production of this course? That is, where do you think the SCH in the proposed course are likely to come from? If the expected SCH production of the proposed course is greater than 1000, and the SCH are expected to come from other colleges, what steps have been taken to make the other units aware of the potential loss of SCH? Report reactions, both favorable and unfavorable.

The biggest impact will be the Bioengineering program, which is expected to provide about half the students in the course. The other half of the students are expected to come from the other engineering programs include mechanical engineering, chemical engineering, and others.
17. If this proposed course has a significant interdisciplinary component, please explain briefly. Otherwise, indicate n/a.

This course will interdisciplinary in that it will include students from both the Mechanical & Industrial Engineering and Chemical & Biological Engineering Departments. In addition, the course will be developed jointly by Assistant Professors Ron June (MIE) and James Wilking (ChBE), whose research expertise in the interdisciplinary fields of structural biomaterials and soft biomaterials, respectively, will inform the course material.

Students Served
18. Does the proposed course serve majors only? Non-majors only? Both majors and non-majors? What other majors might be interested in this course? State areas or disciplines to be served and indicate the specific efforts that will be made to make the course material relevant to all disciplines served.

Both majors and non-majors. It is assumed that most students will be from the College of Engineering, but others, outside the COE may also be served.

Resources
19. What additional resources (e.g., additional instructional FTE, required technologies), if any, will be required to offer this course? Are there any resource issues for the students who will take the course (e.g., required technologies, travel, on-line access requirements)? Will there be an additional fee charged to students taking this course? Please explain.

No additional resources will be required. We do not foresee any resource issues for the students. No additional fee will be charged to the students.

20. What existing information resources -- print (books, journals, documents), audiovisual (videos, DVDs, CDs or other), and/or electronic (e-books, databases, electronic journals and web sites) -- provided by the MSU Libraries will be used by students in this course? Provide examples as well as descriptive information. If additional information resources are necessary, please discuss those acquisitions with the library (x6549 Collection Development) at least three months prior to the beginning of the semester in which this course will be taught.

The students will use existing e-resources at the MSU library for this course. These e-resources include several e-books on Biomaterials that are currently available, as well as current peer-reviewed scientific publications which are available through the MSU library.

Other Supporting Material
21. Include any additional information you feel is needed to support this request.

None
EMAT 360: Biomedical Materials Engineering (Fall 2014)

Time & Place: **TBD**

Instructors: James Wilking & Ronald June
Office: EPS314 & & Roberts Hall 201F, respectively
Office hours: **TBD**
Email: james.wilking@coe.montana.edu & rjune@me.montana.edu

Prerequisite or Co-requisite: EGEN331 OR EGEN335 OR ECHM321 (i.e., fluid dynamics)

Course Objective:
This course will cover materials engineering as related to the selection, fabrication, and design of biomaterials, largely for medical applications. Topics will include soft and hard materials, regulatory testing and approval. Emphasis will be placed on material mechanics, such as viscoelasticity.

Students should be able to:
- Identify the microstructural features that are characteristic of hard and soft biomaterials.
- Describe how the micro- and macro-structure of a hard or soft biomaterial relates to the physical properties and function of that material.
- Choose a synthetic biomaterial with appropriate properties for a given biomedical application.
- Recognize the primary obstacles that must be overcome when synthetic biomaterials are used in biomedical applications.
- Understand the process of fabricating and manufacturing synthetic biomaterials, from initial testing through regulatory approval.
Course Web Page http://ecat.montana.edu (Homework assignments, solutions to homework problems, solutions to exam problems, and lecture slides will be posted here). Your Desire2Learn username and password are the same as your My Portal Username and Password. To find your Desire2Learn/MyPortal username:

1) From the MSU home page http://www.montana.edu click on "MYINFO" in the menu on the left hand side of the page.
2) Click on "Enter Secure Area".
3) On the User Login page, enter your Student ID number and PIN number.
4) Once in the MyInfo secure area, select the "Personal Information" tab then click on "View Desire2Learn ID".

Grading:

- In-class quizzes: 20%
- Homework: 20%
- Midterm exams: 30% (2 total, 15% each)
- Final exam: 15%
- Design project: 15%

Midterm Exams: Scheduled for class time on the following dates: TBD

Homework: TBD

In-class quizzes: TBD

Final Exam: TBD

Group project: Details will be provided soon.
Schedule of Topics, Reading Assignments & Exams:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Textbook reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to biomaterials</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Mechanical properties of biomaterials</td>
<td>Section I.1</td>
</tr>
<tr>
<td>3</td>
<td>Polymers: basic principles & applications</td>
<td>Section I.2.2</td>
</tr>
<tr>
<td>4</td>
<td>Hydrogels: basic principles & applications</td>
<td>Section 1.2.5</td>
</tr>
<tr>
<td>5</td>
<td>Musculoskeletal biomaterials: bone</td>
<td>Section II.6.7</td>
</tr>
<tr>
<td>6</td>
<td>Musculoskeletal biomaterials: tissue</td>
<td>Section II.1.5</td>
</tr>
<tr>
<td>7</td>
<td>Interface between synthetic and natural biomaterials</td>
<td>Section II.1</td>
</tr>
<tr>
<td>8</td>
<td>Host response to synthetic biomaterials</td>
<td>Section II.2</td>
</tr>
<tr>
<td>10</td>
<td>Degradation of materials in biological environment</td>
<td>Section II.4</td>
</tr>
<tr>
<td>11</td>
<td>Infections & biofilms</td>
<td>Section II.2.8</td>
</tr>
<tr>
<td>12</td>
<td>Functional tissue engineering</td>
<td>Section II.6</td>
</tr>
<tr>
<td>13</td>
<td>Testing of clinical biomaterials</td>
<td>Section II.3</td>
</tr>
<tr>
<td>14</td>
<td>Path to regulatory approval</td>
<td>Section III.2.1</td>
</tr>
<tr>
<td>15</td>
<td>Final project presentations</td>
<td></td>
</tr>
<tr>
<td>Exam week</td>
<td>Final exam</td>
<td></td>
</tr>
</tbody>
</table>
University Policies of Note:
Students must:
• be prompt and regular in attending classes;
• be well prepared for classes;
• submit required assignments in a timely manner;
• take exams when scheduled;
• act in a respectful manner toward other students and the instructor and in a way that does not detract from
the learning experience; and
• make and keep appointments when necessary to meet with the instructor.

The integrity of the academic process requires that credit be given where credit is due. Accordingly, it is academic
misconduct to present the ideas or works of another as one's own work, or to present an example of work
without customary and proper acknowledgment of ownership. Students may collaborate with other students
only as expressly permitted by the instructor. Students are responsible for the honest completion and
representation of their work, the appropriate citation of sources and the respect and recognition of others'
academic endeavors. The administration, faculty and students of Montana State University believe that academic
honesty and integrity are fundamental to the mission of higher education. The University has a responsibility to
promote academic honesty and integrity and to assure the highest ethical and professional standards and behavior
in the classroom. Accordingly, the University has developed procedures that address instances of academic
dishonesty. Students who violate these standards commit academic misconduct and will be subject to academic
and/or disciplinary sanctions.

Under University policy the instructors may impose one or more of five (5) sanctions including (1) an oral
reprimand; (2) a written reprimand; (3) an assignment to repeat or a lower or alternate assignment or test; (4)
a lower or failing grade on the particular assignment or test; and, (5) a lower or failing grade in the course.

Students with disabilities:
MSU-Bozeman has established documentation guidelines/requirements for the following categories of disability:
Learning Disability, Attention Deficit Hyperactivity Disorder, Physical, Psychological, and Disability Resulting from a
Traumatic Brain Injury-Related Cognitive Impairment. Documentation of disability submitted to the DSS Office will
be reviewed by appropriate staff. In the case of LD and ADHD documentation, independent licensed professionals
may be asked to review the documentation submitted to determine if it meets MSU-Bozeman's requirements for
these disability categories.

Once disability status has been established, a student will be asked to complete a "Declaration of
Disability and Request for Accommodations and Adjustments" form. The student will meet with a DSS staff
member to review accommodation requests and to explore other disability-related needs. Each accommodation
request will be given serious consideration, and reasonable accommodation requests, or appropriate alternative
accommodations, that are supported by documentation will be approved and listed on an accommodations
approval form. The student is then issued a DSS Certification Card, which is presented to instructors when
accommodations (e.g., note-taking assistance or extended time on exams) are requested.

The listed accommodations are intended to eliminate, as far as possible, the effect of the disability on
academic performance. The card is usually valid for one year only; however, there are some exceptions, so
instructors are encouraged to check the expiration date on the card.

Students who require classroom or exam accommodations must inform instructors of their needs. When an
accommodation is requested, the instructor should ask to see the student’s validated DSS Certification Card.
Accommodations for which the student has been certified are listed inside the card. Though an instructor may
grant academic accommodations to a student whose accommodation needs have not been certified by DSS, there
is no obligation to do so. Any student who requests accommodations but has no card should be referred to DSS for
assistance.

As long as accommodations have been requested in a timely fashion and need has been verified by DSS,
accommodations may not be denied. To do so would be a probable violation of the student’s rights under both
section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act. We will accommodate any
student with a valid DSS Certification Card in every way possible, but it is your responsibility to present this
information to us at the beginning of the semester or as soon as you become eligible for special accommodations.
To: COE Curriculum Committee
From: Jeff Heys, Interim Head, Chemical & Biological Engineering
Chris Jenkins, Head, Mechanical & Industrial Engineering
Re: Sustainability of the proposed Biomedical Materials course
Date: January 19, 2013

Mechanical & Industrial Engineering and Chemical & Biological Engineering departments are two of the fastest growing departments on campus as both departments have more than doubled in size in the past 4 years. As a result of this growth, both departments have been able to hire a few new faculty members, and it is two of these new faculty that will initially teach the proposed course. One of those new faculty, Ron June, is already teaching a bio-materials course (EMEC444, F13) that is likely to be discontinued in favor of the proposed course. Hence there is no added cost for Dr. June's participation.

There are two driving factors for the proposed new course, both of which will drive the sustainability of offering the course: (1) a more robust bioengineering program that is more likely to be accredited, and (2) better elective options for other engineering students – especially those in mechanical engineering and chemical engineering. Each of these factors is described in more detail below.

When the bioengineering program was initiated at MSU, it was designed so that it heavily relied on existing Chemical Engineering courses. In fact, there are only 4 courses unique to the bioengineering program – EBIO 216, 324, 439, and 443. Now that ABET accreditation is being explored for the bioengineering program, it seems unlikely that accreditation would be granted for a program that has only 4 unique courses. We need to add at least a couple more fundamental courses in bioengineering for accreditation. Looking at other accredited bioengineering programs, we observed that over 80% of those programs included a ‘biomaterials’-like course. Thus, adding a course in the biomaterials area is critical for consistency with other bioengineering programs.

In planning this course, we have debated whether we should focus all new teaching resources on additional sections of existing classes. This does sound logical. However, it could also be argued that students will benefit more if we add sections of new elective courses rather than additional sections of existing elective courses. That is our goal with the proposed course – to give students more choices rather than more repetition.
Chemical and Biological Engineering
2014 Departmental Advisory Committee Meeting

Agenda

Thursday, February 27, 2014
6:00 pm Welcome Dinner at Open Range at 6pm.
Address: 241 E Main St, Bozeman, Mt 59715
Phone:(406) 404-1940

Friday, February 28, 2014
8:00 am Light Breakfast w/ Faculty and Welcome
8:30 am Update on the Department, Jeff Heys
 New Faculty
 Undergraduate Education
 Graduate Education
 Budget Overview
9:30 am Discussion: How do we balance quality with quantity and accessibility
10:00 am Break
10:30 am Discussion with Dean Gunnink
11:45 am Lunch with Students

1:15 pm ABET Assessment, Jeff Heys
 Alumni Survey Results
 Faculty Summative Assessments
 Bioengineering Accreditation Update
2:00 pm Brief research presentations by new faculty
2:30 pm Discussion: Best practices for mentoring of new faculty
3:00 pm DAC Work Session and Discussion
3:30 pm DAC Report to Faculty

Signature
ChBE Faculty Meeting Agenda
Monday, Jan. 27, 2014, 2:10pm-3:00pm, COBL 330 (Berg Conf. Room)

1. **Reminder:** Graduate applications for assistantships due Feb. 1
 Please email me with the names of current graduate students needing GTA support next academic year.

2. **Reminder:** Scholarship applications due Feb. 7

3. **Reminder:** Department Advisory Committee (DAC) Meeting – Friday, Feb. 28

4. **Reminder:** Student banquet is Wednesday, April 9.

5. **Reminder:** ABET retreat is Tuesday, May 6.

6. **Presentation:** Activity Insight demo (www.digitalmeasures.com/login/montana/faculty)
 I would like to complete annual reviews by March 31. Please schedule a meeting time with me at your convenience. My calendar may be found at http://www.coe.montana.edu/jeffrey.heys/ and you may pick any open time that works for you and schedule the meeting through Alyssa, Shelley, or myself. Note that you need to complete the requested Activity Insight information before the review.

7. **Information:** CFAC and EFAC requests

8. **Information:** BP Student Success Center

9. **Discussion:** Environmental Engineering program

10. **Discussion:** DAC Agenda (time permitting, draft attached)

11. **Other**

12. **Future – peer review of teaching, teaching schedule for AY14-15**
Max Concurrent Usage
Shows the max concurrent usage over a given interval. (daily)

Freshman Orientation

CH8E-COBL326

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 computers</td>
<td>72 hrs</td>
</tr>
<tr>
<td>26</td>
<td>41 hrs</td>
</tr>
<tr>
<td>29</td>
<td>17 hrs</td>
</tr>
<tr>
<td>30</td>
<td>11 hrs</td>
</tr>
<tr>
<td>32</td>
<td>5 hrs</td>
</tr>
<tr>
<td>34</td>
<td>1 hr</td>
</tr>
<tr>
<td>37</td>
<td>0</td>
</tr>
</tbody>
</table>

Current
52 computers + Podium