New Undergraduate Course Approval Cover Form
Montana State University

This four-page form collects basic information about the proposed new course, provides information on the approval process, and includes all required approvals. Additional information (see INFO sheet) is also required as part of the New Course Packet.

Proposed New Course Information

Requested Rubric, Course Number, Core Designation (if needed): STAT 425
Example: PHL 361 RH

Course Title: Biostatistics
Abbreviated Course Title (≤ 30 chars): Biostatistics
First Semester to be Offered: Fall 2014 Spring 2015
Submitted by: Steve Cherry
Submitter's Contact Info: Phone, Email: x5367 cherry@ms
Instructor: Steve Cherry
Department: Mathematical Sciences
College: College of Letters and Science

New Course Review Process

Instructor completes the New Course Packet, with Core information if a Core designation is requested.
Instructor checks for "equivalent" course in the MUS system and recommends a common or unique course number.
Department Head's signature indicates that course has been approved by the process used within the Department.
The Chair of the College Curriculum Committee signs to indicate College academic approval.
The College Dean signs to indicate that adequate resources are available to offer the course. Supporting information (Dean's Statement) is typically required.
The New Course Packet (as PDF) is uploaded to the Provost's Office server for distribution to other committees.
Course requests are sent to Curriculum and Program Committee (CPC). Core reviews are sent to appropriate Core subcommittee. Committees work in parallel when possible to speed approval process. Special topics courses (291,491) skip the CPC review (limited to two years.)
Provost's Office reviews the new course request. New courses are submitted to MUS for Common Course Number (CCN) review. Dean and Department informed upon approval.
Approved new course sent to Registrar for inclusion in the Catalog and Schedule of Classes

APPROVALS

Submitter * Date
Department Head * Date
Chair, College Curriculum Comm. Date
Dean * Date
Chair, Core Subcommittee (if app.) Date
Chair, CPC Date
Assoc. Provost * Date

Note: This diagram illustrates the typical flow path, but at any review step there can be a request for additional information or modifications. Careful review in early steps is the best way to speed the overall process. * Special topics courses (x91) require fewer signatures, but cannot be offered more than two times without committee review.
INFORMATION NEEDED FOR COMMON COURSE NUMBERING

The process for identifying a common course number for a new course is as follows:

1. Course learning outcomes are prepared for the new course.
2. The person submitting the new course request looks at the CCN website to see if a course with similar outcomes already exists in the MUS system.

 www.mus.edu/Qtools/CCN/ccn_default.asp

 - If a course exists with at least 80% of the same outcomes, the course is considered “equivalent” to the proposed new course, and the new course should use the existing rubric and course number.
 - If no “equivalent” course is found, the person submitting the new course request should identify a unique course number that has not been used by any other course in the MUS system.
3. The requested rubric and course number are submitted as part of the new course packet.
4. The Provost’s Office submits the learning outcomes and the requested rubric and course number to the MUS to have a course number assigned to the course. (This will typically be the requested course number, but it could be changed.)
5. The assigned common course number is reported back to the person submitting the new course request.

Requested Rubric, Course Number, Core Designation (if needed):

- Course Title: Biostatistics
- Abbrev. Course Title (≤ 30 char): Biostatistics
- Credits: 3
- Department Offering Course: Mathematical Sciences
- College: Letters and Science

Is this course “equivalent” to a course in the MUS System?: Yes [] No []

Learning Outcomes for the Course:

- To understand how epidemiology is used for public health improvements and disease prevention.
- To know how to compute and interpret relative risk and odds ratios.
- To build and interpret logistic regression models for odds ratios.
- To build and interpret survival models.
- To understand the tradeoffs in sensitivity and specificity of medical tests.
- To interpret measures of association between exposure and disease.
INFORMATION REQUIRED BY THE REGISTRAR

The data needed to enter the new course into the MSU Catalog and Schedule of Classes is collected on this page. Once the new course has been approved, this page is automatically forwarded to the Registrar for data entry.

Assigned Rubric, Course Number, Core Designation (if needed): STAT 425
Course Title (for Catalog): Biostatistics
Course Title (for Schedule of Classes, 30 characters, max.): Biostatistics
First Semester to be Offered: Spring 2015
Restricted Entry/Consent of Instructor Required: ☐ Yes ☑ No
Instructor’s GID (last 4 digits only): 8590
Department Offering Course: Mathematical Sciences
College: Letters and Science

Is the requested course number available? (x4155 to check): ☑ Yes ☐ No
Frequency of course offering: ☑ Annual ☐ Alternate Years, starting 2015
Semester(s) offered (check all that apply): ☑ Summer ☑ Fall ☐ Spring
Summer Options (check all that apply): ☐ First 6 weeks ☐ Second 6 weeks ☐ 12 weeks
First 6 weeks 1st Semester, Spring 2015
Alternate Years, starting Fall Semesters 2015
Falls 2016, 2018 ...

Credits by mode of instruction:
- Lecture: 3
- Seminar: 0
- Independent Study: 0
- Lab/Studio: 0
- Recitation/Discussion: 0
TOTAL CREDITS: 3

Primary Mode(s) of Delivery:
- Face-to-face ☑
- Web-Enhanced (small on-line comp.) ☐
- On-Line Only ☐
- Blended (significant on-line portion) ☐

Time and Location — Call the Registrar’s Office at x4155 to find a time and location for the course.

Assigned Day(s): ☑ M ☑ Tu ☑ W ☑ Th ☑ F ☐ Sa ☐ Su
Assigned Time(s): 1:10 -2:00 PM
Assigned Building: TBD
Assigned Room: TBD
Capacity (room capacity, or enrollment “cap”): 20

Co- and Pre-Requisites — Courses numbered 200 and above are normally expected to have prerequisites. When listing multiple prerequisites, please separate courses with “and” if both are required, or “or” if only one is required.

Prerequisite(s): STAT 411
Co-Requisite(s):

Course Description — Provide a course description of 40 words or less for the MSU Catalog.

Statistical methodology applicable to vital statistics, life tables and survival curves, clinical trials, epidemiologic investigations, and cause-effect studies.
DEAN'S STATEMENT

The reviewing committees are being asked to take a closer look at the resources required for each proposed new course. In many cases new courses will replace existing courses and the new course request is effectively resource neutral, however that is not always the case. For example, a new elective course that would result in distributing an existing student population across a larger number of courses would represent a significant increase in expenditures for the new course, and no increase in total student credit hours. A funding mechanism for such a course would need to be identified. The Dean's Statement is the place to document how the costs of the proposed new course will be covered.

\[\text{Signed by current faculty in load.} \quad \text{May 4/7/11}\]
Please provide the following information in narrative format. Substantive responses to all criteria are required. Although not required, a draft syllabus can also be helpful to the committee in understanding the details of the proposed course.

General Course Information

1. Requested Rubric, Course Number, and Core Designation (if any)

> STAT 425/525

2. Course Title

> Biostatistics

3. Provide a general description of the course explaining the need for the course, its goals, and its overall structure. This is the most important part of the application and should offer a good sense of what students will experience by taking this class.

> The course is not a new course per se. We have long had a graduate level course in Biostatistics (STAT 524) and wish to offer this course at a level undergraduates can take. We have done this previously with several of our courses including STAT 411/511, STAT 412/512, STAT 436/536, and STAT 441/541. The new co-convened Biostatistics course will be STAT 425/525 (STAT 424 was used for another course up until the Common Course Numbering system was instituted).

The forms request a date for the effectiveness of the change. Currently STAT 524 is offered in Fall semesters of even numbered years. We have no plans to change that long-term although next year (2014/2015) it will be taught in the Spring. We have had to move several courses around due to a sabbatical and several buy-outs.

A separate form changing STAT 524 to STAT 525 is being sent through the Graduate School.
The catalog description of the course is:

Statistical methodology applicable to vital statistics, life tables and survival curves, clinical trials, epidemiologic investigations, and cause-effect studies.

Learning outcomes for the course are:

- To understand how epidemiology is used for public health improvements and disease prevention.
- To know how to compute and interpret relative risk and odds ratio.
- To build and interpret logistic regression models for odds ratios.
- To build and interpret survival models.
- To understand the tradeoffs in sensitivity and specificity of medical tests.
- To interpret measures of association between exposure and disease.

Students taking the course at the undergraduate level will be held to a different standard than those taking it for graduate credit. All students will receive the same lecture. Graduate students will have a project required (possibly with class presentation depending on class size).

Graduate students will also be held to a higher standard in terms of homework and exam performance. Graduate students in statistics being required to answer questions related to the mathematical statistical theory underlying the various methods.

4. Based on what types of student work (e.g., tests, homework assignments, papers, performances, etc.) will grades be determined?

> A syllabus is attached with a tentative grading scheme. The percentages may vary but students will be graded on exams (2), homeworks, and a class project (for graduate students).

5. Provide a course content outline containing all major topics plus a brief description of the material to be covered under each major topic heading.

> Learning outcomes for the course are:

- To understand how epidemiology is used for public health improvements and
disease prevention.

- To know how to compute and interpret relative risk and odds ratio.
- To build and interpret logistic regression models for odds ratios.
- To build and interpret survival models.
- To understand the tradeoffs in sensitivity and specificity of medical tests.
- To interpret measures of association between exposure and disease.

The last time the course was taught the following material was covered in the text (see below)

Aug 27 Epidemiology begins with **John Snow**

- Aug 29 Gapminder and life expectancy. See [CDC](https://www.cdc.gov) and SSA.gov sites.
- Aug 31 Read [these notes about life tables](https://example.com). We’ll look at [population pyramids](https://example.com).
- Sept 3 Labor Day Holiday
- Sept 5 [Notes on Jewell Chapters 1 and 2](https://example.com) – Introduction and Measures of Disease Occurrence
- Sept 7 [Notes on Jewell Chapter 3](https://example.com) – Probability in Observational Studies
- Sept 10 [Notes on Jewell Chapter 4](https://example.com) – Measures of Disease – Exposure Association
- Sept 12 Chapter 4-5
- Sept 14 Chapter 5 – Study Design
- Sept 17 Disease Prevention, Number Needed to Treat (NNT), [Risk of Antibiotics](https://example.com)
- Sept 19 Chapter 6 – Contingency Table Analysis
- Sept 21
- Sept 24 X^2 and exact tests
- Sept 26 CI’s for Odds Ratios, Relative Risk, ER, AR
- Sept 28 More AR CI [CI for NNT Table of NNT’s](https://example.com)
- Oct 1 Simex and measurement error.
- Oct 3 [Elisa tests](https://example.com), [ELISA computation](https://example.com), ROC curves
- Oct 5
- Oct 8 Review [Old sample exam](https://example.com)
- Oct 10 Midterm
- Oct 12 Chapter 8 Causal Inference and Extraneous Factors.
- Oct 15
- Oct 17 Chapter 9 Control of Extraneous Factors
- Oct 19
- Oct 22 Chapter 10 – Interactions
- Oct 24 Counterfactuals
- Oct 26
6. List required texts or other required references.

> Previously the textbook used has been Statistics for Epidemiology by Nicholas Jewell, Chapman and Hall/CRC Press. This is subject to change but something very similar would be substituted. Clinical trials will be handled with supplemental material.

7. What are the estimated enrollment and student credit hour (SCH) production?

 \[\text{SCH} = (\text{enrollment} \times \text{credits}) \]

> The course has had 10 to 15 students in the past. We would anticipate this increasing a bit as more of our undergraduates take it. It is a 3 credit hour course.

8. Will there be an enrollment cap that restricts enrollment below the level of student demand? If so, what is the enrollment cap and why is it necessary?

> The room the course is typically taught in holds 28 students so that is a hard upper cap on enrollment if we stay in that room. Finding a comparable room with additional seating would be difficult.
9. Will course be a “restricted enrollment” course? If so, why is restricted enrollment necessary?

> It will not be restricted enrollment aside from the fact that if we near the cap we will give preference to our own students.

10. Describe how the success of the course will be evaluated? (“End-of-semester student evaluations” is not the answer to this question. How will the instructor determine if the learning outcomes are being met, and how will the department determine if the course is fulfilling its intended purpose?)

> As indicated above the course is not really new, having been taught solely as STAT 524 for several years. Demand has always been high enough to justify running the course. In this case “success” will be met if STAT 425 becomes popular with our undergraduate statistics majors. It will be even more successful if students from other departments take STAT 425.

11. Is the instructor a member of the regular faculty (i.e., tenured or tenure-track)? If no, please describe the instructor’s qualifications, attach a Vita, and provide a separate letter of support, signed by the department head (or appropriate unit director), addressing the instructor’s qualifications to teach this course.

> Tenure-track faculty have taught and will continue to teach the course.

Level of Offering

12. Has the course been offered previously under 280/291 or 480/491? If so, when? Under what number? What was the enrollment? What level of students took the course?

> It has never been offered as 280/291 or 480/491.

13. Justify the level of course offering.

> We wish to offer STAT 425/525 as a co-convened course to provide our undergraduate students with another upper division (400 level) statistics course. We require 15 hours of Math/Stat electives for our undergraduate degree and currently only have 5 Statistics courses available. This will provide another option.
Relationship to other Courses, Curricula, and Departments

14. Does this course build on or interrelate with other courses in your curriculum or related curricula? If so, which ones?

> STAT 425 will be co-convened with STAT 525.

15. Do the topics in the proposed course duplicate or reiterate those in other courses in this or any other department? If so, how do the coverage and educational experience differ and how is this duplication or reiteration justified? Also, what liaison (which is expected in cases of apparent overlap) has been conducted with other departments? Report reactions, both favorable and unfavorable.

> We are not aware of any duplication with courses in other departments. There is some duplication in course content with regards to methodology. We teach linear modeling and generalized linear modeling in several of our 400-500 level statistics courses. Students would encounter survival analysis in other contexts in Industrial and Management Engineering and Ecology.

16. What programs (departments, colleges) will be impacted by the SCH production of this course? That is, where do you think the SCH in the proposed course are likely to come from? If the expected SCH production of the proposed course is greater than 1000, and the SCH are expected to come from other colleges, what steps have been taken to make the other units aware of the potential loss of SCH? Report reactions, both favorable and unfavorable.

> The SCH for STAT 524 has come primarily from our department and we anticipate that will continue.

17. If this proposed course has a significant interdisciplinary component, please explain briefly. Otherwise, indicate n/a.

> N/A

Students Served

18. Does the proposed course serve majors only? Non-majors only? Both majors and non-majors? What other majors might be interested in this course? State areas or disciplines to be served and indicate the specific efforts that will be made to make the course material relevant to all disciplines served.
The course will primarily serve majors in Statistics. However, we would welcome students from other departments who have the necessary background.

Resources

19. What additional resources (e.g., additional instructional FTE, required technologies), if any, will be required to offer this course? Are there any resource issues for the students who will take the course (e.g., required technologies, travel, on-line access requirements)? Will there be an additional fee charged to students taking this course? Please explain.

> No additional resources are required.

20. What existing information resources – print (books, journals, documents), audiovisual (videos, DVDs, CDs or other), and/or electronic (e-books, databases, electronic journals and web sites) – provided by the MSU Libraries will be used by students in this course? Provide examples as well as descriptive information. If additional information resources are necessary, please discuss those acquisitions with the library (x6549 Collection Development) at least three months prior to the beginning of the semester in which this course will be taught.

> Readings in the epidemiological and clinical trials literature will be assigned as needed. In the past all such material has been available online. There should be little if any special needs as far as the library is concerned.

Other Supporting Material

21. Include any additional information you feel is needed to support this request.

> The key thing to consider is that STAT 524 has existed for years and has been popular with our own graduate students. We have discussed the need for additional 400 level courses for our undergraduate majors. We now have 4 co-convened courses taught at both the undergraduate and graduate level: STAT 411/511 and 412/512 (Methods of Data Analysis I and II), STAT 436/536 (Time Series), and STAT 441/541 (Experimental Design). This model has worked well for us providing new opportunities for both our graduate and undergraduate majors as well as students in other departments.
STAT 425 Information for Review

The course is not a new course per se. We have long had a graduate level course in Biostatistics (STAT 524) and wish to offer this course at a level undergraduates can take. We have done this previously with several of our courses including STAT 411/511, STAT 412/512, STAT 436/536, and STAT 441/541. The new co-convened Biostatistics course will be STAT 425/525 (STAT 424 was used for another course up until the Common Course Numbering system was instituted).

The forms request a date for the effectiveness of the change. Currently STAT 524 is offered in Fall semesters of even numbered years. We have no plans to change that long-term although next year (2014/2015) it will be taught in the Spring. We have had to move several courses around due to a sabbatical and several buy-outs.

A separate form changing STAT 524 to STAT 525 is being sent through the Graduate School.

The catalog description of the course is:

Statistical methodology applicable to vital statistics, life tables and survival curves, clinical trials, epidemiologic investigations, and cause-effect studies.

Learning outcomes for the course are:

- To understand how epidemiology is used for public health improvements and disease prevention.
- To know how to compute and interpret relative risk and odds ratio.
- To build and interpret logistic regression models for odds ratios.
- To build and interpret survival models.
- To understand the tradeoffs in sensitivity and specificity of medical tests.
- To interpret measures of association between exposure and disease

Students taking the course at the undergraduate level will be held to a different standard than those taking it for graduate credit. All students will receive the same lecture. Graduate students will have a project with class presentation required (depending on class size). Graduate students will also be held to a higher standard in terms of homework and exam performance. Homeworks and exams will be different for the two groups with, for example, graduate students in statistics being required to answer questions related to the mathematical statistical theory underlying the various methods.
Syllabus STAT 425/525

Instructor: Steve Cherry
Office: 2-196 Wilson Hall
Phone: 994-5367
Email: cherry@math.montana.edu

Office Hours: To be determined or by appointment. If my door is open, even if it is just barely cracked, I am available for questions. If my door is closed completely I am not available for questions.

Topics: The course is designed for people who have already taken several stat classes (Stat 410 or 412 is prerequisite) and want to learn how statistics are applied in medical/pharmaceutical areas. The course will cover two broad areas in what is typically called Biostatistics - epidemiology and clinical trials.

Epidemiology: (the first 14 chapters in Jewell's book with added material.

- History, public health, disease prevention
- Population dynamics, life tables
- Survival and hazard functions
- Measuring association between exposure and disease
- Types of studies
 - 2 by 2 tables, 2 by k tables
- Logistic regression
- Evaluating articles in medical journals

Clinical Trials

Assessment: A midterm exam, a final exam, and weekly homework assignments. STAT 525 students must do a project. More details will be given in class but projects can include data
analyses or surveys of topics either not covered in class or covered only briefly.

<table>
<thead>
<tr>
<th></th>
<th>STAT 425</th>
<th>STAT 525</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Homeworks</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Project</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Homework is due in class on the day assigned. I will accept it up to 4 pm with no penalty, after that, I’ll deduct 10% per day. Homework average will be penalized for poor attendance and or repeated tardiness. Working with others on the homework and discussing problems with others are encouraged, but you must understand everything you write down and turn in. Statistics graduate students may be asked additional questions on underlying theory.
Hi All,

Here is the reply from Steve Cherry to the concerns we raised in the curriculum meeting on Tuesday in regard to STAT 425. He addresses everything we requested, and it seems ok to me, but please let me know your thoughts.

Thanks,

Peter

------ Forwarded Message
From: Steve Cherry <cherry@math.montana.edu>
Date: Wed, 30 Apr 2014 09:27:26 -0600
To: Peter Tillack <tillack@montana.edu>
Subject: Re: STAT 425

Peter,

Please see attached material and comments in all caps below. This model of co-convening courses at the 400/500 level has been working well for us. Generally speaking those taking the course for graduate credit have to do a fairly major project and writing is a big component of that. I, for one, also tend to hold graduate students to a higher standard (especially our own students). For example, a statistics grad student who stumbles interpreting a p-value is going to be treated differently from an undergraduate with only a couple of stat courses under their belt. And when it comes to our own statistics graduate students (who will have a strong background in the theory) I will not hesitate to ask them questions related to that background that I would not ask other students. I talk about this a bit more below.

I hope the information on the attachments and presented below answer your questions but let me know if you need additional information. I would be happy to meet with the committee if that would help.

Steve

On 04/29/2014 11:38 AM, Peter Tillack wrote:
> Dear Professor Cherry,
> > The College Curriculum Committee met today to discuss your course
> > proposal for STAT 425. We all agreed that this sounds like a
> > much-needed course for a variety of majors on campus. However, your
> > proposal raised several questions that the committee feels ought to be
> > addressed before we send it up to the next level. Here are the questions that concern us:
> > > * In STAT 425 Information for Review, you state, students taking
> > the course at the undergraduate level will be held to a different
> standard than those taking it for graduate credit. However, given
> the advanced nature of the material, we wondered if you could spell
> out more clearly how this standard will differ. We think the
> inclusion of a course syllabus might help to make the distinction in
> assignment content and course expectations between 425 and 525 more clear.

THE MATERIAL IS NOT REALLY ALL THAT ADVANCED FROM A TECHNICAL STANDPOINT. THIS IS THE ONLY GRADUATE
LEVEL STATISTICS COURSE THAT DOES NOT REQUIRE A CALCULUS PREREQ FOR EXAMPLE. BUT IT IS ADVANCED
CONCEPTUALLY.

WE HAVE SEVERAL OTHER CO-CONVENE COURSES THAT SERVE AS A MODEL FOR THIS ONE. STUDENTS TAKING 525
WILL BE REQUIRED TO DO A PROJECT WHILE STAT 425 STUDENTS WILL NOT. DEPENDING ON TIME AND ENROLLMENT
525 STUDENTS MAY BE REQUIRED TO GIVE A CLASS PRESENTATION. WHEN I TEACH OTHER CO-CONVENE COURSES I
TEND TO GRADE GRAD STUDENTS AT A DIFFERENT LEVEL THAN UNDERGRADS - I EXPECT MORE FROM THEM IN TERMS
OF WRITING SKILLS (AND WRITING STATISTICAL REPORTS IS A BIG PART OF THESE CO-CONVENE COURSES).
I CERTAINLY EXPECT MORE FROM OUR OWN GRADUATE STUDENTS IN TERMS OF UNDERSTANDING THE THEORETICAL
BACKGROUND. I EVEN ASK OUR GRADUATE STUDENTS ADDITIONAL THEORETICAL QUESTIONS.

I HAVE ATTACHED A PRELIMINARY COURSE SYLLABUS.
> * We wondered what the rational is for a student cap of 20, as opposed
> to any other number.
TWENTY to 24 IS KIND OF A DEFAULT CAP FOR MANY OF OUR STATISTICS COURSES. WE HAVE AVERAGED AROUND 10
OR SO IN THIS COURSE IN THE PAST. WE WOULD CERTAINLY ACCEPT MORE THAN 20 INTO THE COURSE. ONE PROBLEM
IS THAT THE ROOM WE WILL MOST LIKELY BE TEACHING IN HOLDS ONLY 28 STUDENTS. WE GENERALLY CAP COURSES IN
THAT ROOM AT 24 ALLOWING SOME SLACK FOR OUR OWN STUDENTS REGISTERING LATE. IN THE PAST THE COURSE
HAS RARELY REACHED THE 20 LEVEL.

SO THERE IS NOTHING MAGICAL ABOUT THE 20 AND WE CAN CERTAINLY GO OVER THAT IF THE COURSE BECOMES
POPULAR ENOUGH.

> * Will this course be open as an elective to students in other majors
> who may need it?
YES - ALL OF OUR COURSES ARE OPEN TO STUDENTS IN OTHER DEPARTMENTS WHO HAVE THE PREREQS. FOR EXAMPLE
THE TYPICAL STUDENT IN STAT 411/511 AND
412/512 IS A GRADUATE STUDENT IN ANOTHER DISCIPLINE.

WE HAVE HAD, AND ANTICIPATE THAT WE WILL CONTINUE TO HAVE, STUDENTS FROM OTHER DEPARTMENTS TAKE ALL
OUR 400/500 LEVEL COURSES AND SUSPECT THAT
425/525 WILL BE NO DIFFERENT IN THAT REGARD.

> * There are discrepancies regarding when the course is to be offered.
> The cover sheet states Fall 2014, but 3Information Required by the
> Registrar4 states Spring 2015.
THE SHORT STORY IS THAT THE COURSE IS OFFICIALLY TAUGHT EVERY OTHER FALL IN EVEN NUMBERED YEARS AND WE
HAVE NO PLANS TO CHANGE THIS OVER THE LONG RUN. WE HAVE A FACULTY MEMBER ON SABBATICAL THIS COMING
FALL AND SOME OTHER CONFLICTS THAT HAVE REQUIRED US TO MOVE SOME COURSES AROUND - STAT
524 (425/525 AFTER THE RENUMBERING) AMONG THEM. SO WE WILL TEACH THE COURSE IN SPRING 2015 BUT RETURN
TO THE NORMAL SCHEDULE IN FALL 2016.

> * Finally, we would like you to fill out a 3New Undergraduate Course
> Narrative,2 which I’ve attached to this message. In filling it out,
> you will come across several of the questions asked above.
>

>
THIS IS ATTACHED.
> I'm sorry for the inconvenience this imposes on you at such a busy
> point in the semester. Addressing the questions above at this point
> though should help prevent problems in the approval process further up the line.
>
> Thanks in advance for your understanding, and please don’t hesitate to
> contact me with any questions.
>
> Best regards,
>
> Peter Tillack
> Chair, College Curriculum Committee
>
> ----- End of Forwarded Message