New Graduate Course Approval Cover Form
Montana State University

This four-page form collects basic information about the proposed new course, provides information on the approval process, and includes all required approvals. Additional information (see INFO sheet) is also required as part of the New Course Packet.

Proposed New Course Information

Requested Rubric, Course Number, Core Designation (if needed): BioB 525

Course Title: Advanced Cell & Molecular Biology
First Semester to be Offered: Spring 2015
Submitted by: Dr. Susy Kohout
Submitter’s Contact Info: Phone, Email: x7334 skohout@montana.edu
Instructor: Dr. Susy Kohout
Department: Cell Biology and Neuroscience
College: Letters and Science

New Graduate Course Review Process

Instructor completes the New Course Packet.

Department Head’s signature indicates that course has been approved by the process used within the Department.

The Chair of the College Curriculum Committee signs to indicate College academic approval (if required).

The College Dean signs to indicate that adequate resources are available to offer the course. Supporting information (Dean’s Statement) is typically required.

The New Course Packet (as PDF) is submitted to the Graduate School for approval by the Dean.

Provost’s Office reviews the new course request.

Approved new course sent to Registrar for inclusion in the Catalog and Schedule of Classes

Note: This diagram illustrates the typical flow path, but at any review step there can be a request for additional information or modifications. Careful review in early steps is the best way to speed the overall process. * Special topics courses (x91) do not require review by the College Curriculum Committee, but cannot be offered more than two times without committee review.

APPROVALS

Submitter: 8/26/14
Department Head: 8/26/14
Chair, College Curriculum Comm: 9/18/14
Graduate School Dean: 10/22/14
Assoc. Provost: Date
New Graduate Course Approval Cover Form
Montana State University

This four-page form collects basic information about the proposed new course, provides information on the approval process, and includes all required approvals. Additional information (see INFO sheet) is also required as part of the New Course Packet.

Proposed New Course Information

Requested Rubric, Course Number, Core Designation (if needed): BioB 525

Course Title: Advanced Cell & Molecular Biology
First Semester to be Offered: Spring 2015
Submitted by: Dr. Susy Kohout
Submitter’s Contact Info: Phone, Email: x7334 skohout@montana.edu
Instructor: Dr. Susy Kohout
Department: Cell Biology and Neuroscience
College: Letters and Science

New Graduate Course Review Process

Instructor completes the New Course Packet.

Department Head’s signature indicates that course has been approved by the process used within the Department.

The Chair of the College Curriculum Committee signs to indicate College academic approval (if required).

The College Dean signs to indicate that adequate resources are available to offer the course. Supporting information (Dean’s Statement) is typically required.

The New Course Packet (as PDF) is submitted to the Graduate School for approval by the Dean.

Provost’s Office reviews the new course request.

Approved new course sent to Registrar for inclusion in the Catalog and Schedule of Classes.

Note: This diagram illustrates the typical flow path, but at any review step there can be a request for additional information or modifications. Careful review in early steps is the best way to speed the overall process. * Special topics courses (≤91) do not require review by the College Curriculum Committee, but cannot be offered more than two times without committee review.
INFORMATION NEEDED FOR COMMON COURSE NUMBERING

The process for identifying a common course number for a new course is as follows:

1. Course learning outcomes are prepared for the new course.
2. The person submitting the new course request looks at the CCN website to see if a course with similar outcomes already exists in the MUS system.

 www.mus.edu/Qtools/CCN/ccn_default.asp

 • If a course exists with at least 80% of the same outcomes, the course is considered "equivalent" to the proposed new course, and the new course should use the existing rubric and course number.
 • If no "equivalent" course is found, the person submitting the new course request should identify a unique course number that has not been used by any other course in the MUS system.
3. The requested rubric and course number are submitted as part of the new course packet.
4. The Provost's Office submits the learning outcomes and the requested rubric and course number to the MUS to have a course number assigned to the course. (This will typically be the requested course number, but it could be changed.)
5. The assigned common course number is reported back to the person submitting the new course request.

Requested Rubric, Course Number, Core Designation (if needed):

<table>
<thead>
<tr>
<th>BioB 525</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Cell & Molecular Biology</td>
</tr>
<tr>
<td>Credits: 3</td>
</tr>
<tr>
<td>Department Offering Course: Cell Biology and Neuroscience</td>
</tr>
<tr>
<td>College: Letters and Science</td>
</tr>
</tbody>
</table>

Is this course "equivalent" to a course in the MUS System?: ☑ No

Learning Outcomes for the Course:

Read original peer reviewed scientific papers in cell or molecular biology, interpret the results and suggest the next logical experiments.

Present the introduction, results and future directions from a peer reviewed scientific paper in both written and oral formats.

Understand the role of the cytoskeleton in the cell and how it pertains to cellular processes such as chemotaxis and migration.

Describe vesicular trafficking as it relates to synapses, protein and cell cargo delivery.

Understand the role of motor proteins, how they function and their contribution to cell signaling.

Understand and be able to draw out cell signaling pathways such as G protein coupled receptor pathways and receptor tyrosine kinase pathways.

Describe the major proteins and their roles in promoting cell-cell adhesion and cell-extracellular matrix adhesion.
INFORMATION REQUIRED BY THE REGISTRAR

The data needed to enter the new course into the MSU Catalog and Schedule of Classes is collected on this page. Once the new course has been approved, this page is automatically forwarded to the Registrar for data entry.

Assigned Rubric, Course Number, Core Designation (if needed):

BioB 525
Advanced Cell & Molecular Biology
Advanced Cell & Molecular Biology
Spring 2015
4638
Cell Biology and Neuroscience
Letters and Science

Assigned Course Title (for Catalog): BioB 525

Course Title (for Schedule of Classes, 30 characters, max.):

Advanced Cell & Molecular Biology

First Semester to be Offered:

Restricted Entry/Consent of Instructor Required:

Course's GID (last 4 digits only):

Department Offering Course:

College:

Is the requested course number available? (x4155 to check):

Frequency of course offering:

Semester(s) offered (check all that apply):

Summer Options (check all that apply):

Credits by mode of instruction:

Lecture: 2
Seminar:
Independent Study:
Lab/Studio:
Recitation/Discussion: 1

TOTAL CREDITS: 3

Primary Mode(s) of Delivery:

Face-to-face
Web-Enhanced (small on-line comp.)
On-Line Only
Blended (significant on-line portion)

Time and Location — Call the Registrar’s Office at x4155 to find a time and location for the course.

Assigned Day(s):

M
Tu
W
Th
F
Sa
Su

Assigned Time(s):

Assigned Building:

Assigned Room:

Capacity (room capacity, or enrollment “cap”):

Co- and Pre-Requisites — Courses numbered 200 and above are normally expected to have prerequisites. When listing multiple prerequisites, please separate courses with “and” if both are required, or “or” if only one is required.

Prerequisite(s):

Co-Requisite(s):

Course Description — Provide a course description of 40 words or less for the MSU Catalog.

In-depth study of cell signaling, structure and function.
DEAN’S STATEMENT

The reviewing committees are being asked to take a closer look at the resources required for each proposed new course. In many cases new courses will replace existing courses and the new course request is effectively resource neutral, however that is not always the case. For example, a new elective course that would result in distributing an existing student population across a larger number of courses would represent a significant increase in expenditures for the new course, and no increase in total student credit hours. A funding mechanism for such a course would need to be identified. The Dean’s Statement is the place to document how the costs of the proposed new course will be covered.

No additional costs are expected.
NEW GRADUATE COURSE NARRATIVE
Updated: 12/31/2013

REQUIRED DOCUMENTATION FOR REVIEW OF NEW GRADUATE COURSES

1. Course Description:
 a. What are the special goals or purposes of the course that support a "graduate" level of the course? The special goals are a higher level of synthesis of all the information learned within the class. Cell and molecular biology are constantly changing fields and it requires an advanced knowledge of the material to be able to not only keep up with current literature but also be able to design experiments testing complicated systems. At a graduate level, students should develop their ability to take disparate pieces of information along with a knowledge of the basics behind cell and molecular biology and bring them together into coherent experimental design.
 b. Is this course intended to be a required part of a new degree curriculum option, major, or minor? No.
 c. Provide a course syllabus containing all major topics to be covered. See attached.
 d. List required texts or other required references. Text: Molecular Biology of the Cell by Alberts, Johnson, Lewis, Raff, Roberts and Walter. The peer-reviewed articles will be provided by the professor.

2. Level of Offering:
 a. Has the course been offered previously as a 591? No.
 i. If so, when?
 ii. What was the enrollment?
 iii. What level of students took the course?
 iv. What were the evaluations?
 b. Does the course represent an upgraded version of an undergraduate level course? Yes
 i. If so, how has the course been changed to justify offering it at the graduate level? (Be specific) The reading of peer-reviewed articles and understanding their content is required of the undergrad. The grad will be required to present an article to the rest of the class as well as write up papers not only describing the papers in question but taking the papers one step further and suggesting a series of experiments that lead directly from the paper in question thus demonstrating the ability to synthesize the material being learned.
 c. What are the prerequisites for this graduate course? (List exact MSU courses - e.g. ESCI XXX or equivalent) BioB 260 and BCH 380 or BCH 441, and BioB 375 or BioH 320
 d. What performance requirements are placed on students which make this a graduate course?
 i. Specifically state the written requirements or products of this course. The graduate students will be required to write up reports on the peer-reviewed articles read by the whole class where the articles are not only described, but also future directions are clearly stated demonstrating a clear understanding by
the student of the scientific progress made in the paper as well as the next logical experiments needed to further the field.

ii. How will the students learning be assessed and graded? The student's papers will be graded according to the accuracy with which they describe the article they read along with the feasibility and experimental design of the future directions they suggest to move the research forward. They will also be required to make an oral presentation to the class on one of the peer-reviewed articles and answer the questions of any of the other students in the class.

3. Relationship to other courses, curricula, and Departments:
 a. Does this course build on or interrelate with other courses in your curriculum or related curricula? If so, which one(s)? No.
 b. Does this course replace one or more courses that will not be offered? If so, which one(s)? No.
 c. Will this course be co-convened with an undergraduate course? If so, what additional requirements will students enrolled in the graduate course be expected to fulfill? Yes. The graduate student will be required to present a peer-reviewed article in front of the class and answer any questions about it. They will also write up reports on the different peer-reviewed articles covered in class where the future directions are the main thrust of the report to demonstrate their ability to synthesize the information they are learning.
 d. Do the topics in the proposed course duplicate or reiterate those in other courses in this or any other department? If so, how do the coverages and education experiences differ, and how are these duplications or reiterations justified? No.
 e. When the course is to be co-sponsored, taught by faculty from more than one department, or when content overlaps areas of common concern, the concurrence of all department heads and deans involved must be indicated. What liaison has been conducted with other departments? State reactions, both favorable and unfavorable. No overlap exists.

4. Students Served:
 a. Does the proposed course serve:
 i. Majors only? Yes.
 ii. Non-majors only? State area(s) or discipline(s) to be served. No.
 iii. Both majors and non-majors? Indicate what specific efforts will be made to make the course materials relevant to all disciplines served. How are faculty and students in the other areas to be served being made aware of this course?

5. What is the anticipated course enrollment? 1-2 students

6. Resources (including instructor):
 a. Are department financial resources sufficient for offering this course? Yes.
 b. Does the instructor have the requisite academic training to offer this course? Yes.
 i. Describe these qualifications briefly and include a vita (if the instructor is non-tenured). Dr Kohout has taught the undergraduate version of this class (BioB425) the Spring of 2014 and she has been teaching a graduate level journal
club style class as well. Both experiences are sufficient training to teach a graduate version.

c. Are the library holdings adequate to support this course? Yes.

7. Course Evaluation:
 a. How will the students evaluate the course and instructor? The students will complete end of the semester evaluations.
 b. How will the department evaluate the course and instructor? The department will have other professors sit in on the class to evaluate it.

8. Other Supporting Material: Include any additional information you feel is needed to support this request.

Note: When using the December 2013 New Graduate Course form, it is not necessary to also submit a Graduate Course Change form, as required in the past.
SYLLABUS
BIOB 525- ADVANCED CELL & MOLECULAR BIOLOGY

Course Instructors
Dr. Susy Kohout
2B Lewis Hall
994-7334
kohout.sc@gmail.com
Office hours: MTW 11-12 or by appt.

Dr. Roger Bradley
520 Leon Johnson Hall
994-7680
rbradley@montana.edu
MTWR 11-12 or by appt.

Dr. Kohout has a smoke/perfume allergy. If you smoke or wear perfume, please let her know and she can arrange to meet you in a more well ventilated space than her office. Thank you!

Learning Outcomes:
Read original peer reviewed scientific papers in cell or molecular biology, interpret the results and suggest the next logical experiments.

Present the introduction, results and future directions from a peer reviewed scientific paper in both written and oral formats.

Understand the role of the cytoskeleton in the cell and how it pertains to cellular processes such as chemotaxis and migration.

Describe vesicular trafficking as it relates to synapses, protein and cell cargo delivery.

Understand the role of motor proteins, how they function and their contribution to cell signaling.

Understand and be able to draw out cell signaling pathways such as G protein coupled receptor pathways and receptor tyrosine kinase pathways.

Describe the major proteins and their roles in promoting cell-cell adhesion and cell-extracellular matrix adhesion.

Format:

M W 10:00-10:50 am,
F 10:00-10:50 am, recitation
F 12:00-1:00 pm, recitation

Lectures will be given on Mondays and Wednesdays. Fridays we will break up into smaller groups (~25) to go over a research paper assigned the week before or earlier.
in the week. All students will be responsible for being able to present each figure in the paper and the group as a whole will go over the premise, techniques, results and conclusions of the paper.

Required Text: Molecular Biology of the Cell by Alberts, Johnson, Lewis, Raff, Roberts and Walter. Hardback is available in the bookstore. Ebook copies are also available online through Amazon.

Course Prerequisites: BIOB 260 and BioB375 or BioH 320, BCH 380 or BCH 441. If you are unsure of your biochemistry background, chapters 2 and 3 provide some useful review.

Course Website: D2L

Grading: There are 910 points possible in the course. There are 11 quizzes on D2L (10 points each, with the lowest score dropped), an in class midterm (100 points) and a cumulative final (100 points).

There are 4 4-page papers due during the course (100 points each). Each paper will consist of a synopsis of one of the Friday discussion papers as well as suggested future directions based on what is learned from the paper and topics learned during lecture. You may choose any paper we use for Friday discussions, or if you prefer, and with prior approval of the instructors, you can choose your own research paper from the recent literature. You must identify the hypothesis of the paper, briefly describe the methods they used to test the hypothesis, the major results of their experiments, the conclusion of the paper and propose additional experiments and direction you would like to see done to further the research. Papers must be written in complete sentences, spell checked and proof-read. If the writing is not understandable, then points will be taken off. Lines should be double spaced.

Attendance and participation at Friday discussion times is mandatory and is worth 10 points each Friday, with a maximum of 110 points (one can be missed). If you get called on and cannot participate, no points will be awarded for that day. During one of the Friday recitation, you will be responsible for presenting that days paper to the rest of the class and be able to answer questions from the class (100 points).

There is no extra credit available in this course, so keeping up with course material throughout the semester is important. There will be no make ups for either missed quizzes or for missed Friday discussions. Make-up exams will only be given in unusual circumstances, confirmed by written documentation regarding health issues or issues dealt with by the office of the Dean of Students. Unless the circumstances make it impossible, advanced permission must be obtained before a make-up exam will be allowed. Make-up exams are historically harder than the original exam.
GRADING SCALE

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93 %</td>
</tr>
<tr>
<td>A-</td>
<td>90</td>
</tr>
<tr>
<td>B+</td>
<td>87</td>
</tr>
<tr>
<td>B</td>
<td>83</td>
</tr>
<tr>
<td>B-</td>
<td>80</td>
</tr>
<tr>
<td>C+</td>
<td>77</td>
</tr>
<tr>
<td>C</td>
<td>73</td>
</tr>
<tr>
<td>C-</td>
<td>70</td>
</tr>
<tr>
<td>D+</td>
<td>67</td>
</tr>
<tr>
<td>D</td>
<td>63</td>
</tr>
<tr>
<td>D-</td>
<td>60</td>
</tr>
<tr>
<td>F</td>
<td>Below 60%</td>
</tr>
</tbody>
</table>

ADA Compliance
Reasonable accommodation will be provided for all persons with disabilities to ensure equal participation in the course. Please contact an instructor if you require assistance.

Student Conduct Policies
This course adheres to the MSU Student Conduct Guidelines, Course Expectations and Instructor Responsibilities as described on the MSU website at http://www2.montana.edu/policy/student_conduct/.

As defined in the MSU Student Academic and Conduct Guidelines and Grievance Procedures, there are specific procedures to be followed in case of suspected cheating or academic misconduct. Any cheating on any exam or assignment will lead to a grade of zero for that examination or assignment, and consideration of a grade of F for the course.
<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Date</th>
<th>Lecture Topic</th>
<th>Reading (Ch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>Jan 14</td>
<td>What do cells do?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>Jan 16</td>
<td>How to read a paper, together</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>Jan 19</td>
<td>Dr. Martin Luther King Holiday</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>Jan 21</td>
<td>Techniques</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>Jan 23</td>
<td>Protein Sorting paper introduction</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>Jan 26</td>
<td>Membrane Transport</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>Jan 28</td>
<td>Protein Sorting, Nucleus/Mitrochondria</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>Jan 30</td>
<td>Protein Sorting paper</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>Feb 2</td>
<td>Protein Sorting/ ER</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>Feb 4</td>
<td>Microscopy</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>Feb 6</td>
<td>Endocytosis paper introduction</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>Feb 9</td>
<td>Endocytosis</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>W</td>
<td>Feb 10</td>
<td>Endo/exocytosis</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>Feb 13</td>
<td>Endocytosis paper figures</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>Feb 16</td>
<td>President’s Day Holiday</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>W</td>
<td>Feb 18</td>
<td>Exocytosis</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>Feb 20</td>
<td>RTK paper introduction</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>Feb 23</td>
<td>Introduction to Signaling/ RTKs</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>W</td>
<td>Feb 25</td>
<td>RTKs</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>Mar 2</td>
<td>GPCRs</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>Mar 6</td>
<td>Signaling crosstalk, Cytokines</td>
<td>15</td>
</tr>
</tbody>
</table>

BIOB 525 Syllabus – Spring 2015

Page 4 of 5
<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Lecture/Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 9-13</td>
<td></td>
<td>SPRING BREAK</td>
</tr>
<tr>
<td>22 M</td>
<td>Mar 16</td>
<td>Actin</td>
</tr>
<tr>
<td>23 W</td>
<td>Mar 18</td>
<td>Myosin</td>
</tr>
<tr>
<td>24 F</td>
<td>Mar 20</td>
<td>GPCR paper</td>
</tr>
<tr>
<td>25 M</td>
<td>Mar 23</td>
<td>Microtubules</td>
</tr>
<tr>
<td>26 W</td>
<td>Mar 25</td>
<td>Kinesins</td>
</tr>
<tr>
<td>27 F</td>
<td>Mar 27</td>
<td>Kinesin paper</td>
</tr>
<tr>
<td>28 M</td>
<td>Mar 30</td>
<td>Cell polarity/migration</td>
</tr>
<tr>
<td>29 W</td>
<td>Apr 1</td>
<td>Cell locomotion</td>
</tr>
<tr>
<td>F</td>
<td>Apr 3</td>
<td>University Day Holiday</td>
</tr>
<tr>
<td>30 M</td>
<td>Apr 6</td>
<td>Cell cycle</td>
</tr>
<tr>
<td>31 W</td>
<td>Apr 8</td>
<td>Mitosis/Cytokines</td>
</tr>
<tr>
<td>32 F</td>
<td>Apr 10</td>
<td>Cell locomotion paper</td>
</tr>
<tr>
<td>33 M</td>
<td>Apr 13</td>
<td>Adhesion</td>
</tr>
<tr>
<td>34 W</td>
<td>Apr 15</td>
<td>Adhesion</td>
</tr>
<tr>
<td>35 F</td>
<td>Apr 17</td>
<td>Cell cycle paper</td>
</tr>
<tr>
<td>36 M</td>
<td>Apr 20</td>
<td>ECM/integrins</td>
</tr>
<tr>
<td>37 W</td>
<td>Apr 22</td>
<td>Apoptosis</td>
</tr>
<tr>
<td>38 F</td>
<td>Apr 24</td>
<td>Cadherin paper</td>
</tr>
<tr>
<td>39 M</td>
<td>Apr 27</td>
<td>Cancer</td>
</tr>
<tr>
<td>40 W</td>
<td>Apr 29</td>
<td>Cancer</td>
</tr>
<tr>
<td>41 F</td>
<td>May 1</td>
<td>Cancer paper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CUMULATIVE FINAL</td>
</tr>
</tbody>
</table>
Storment, Jennifer

From: Peter Tillack <tillack@montana.edu>
Sent: Monday, September 08, 2014 10:39 PM
To: Gregory Francis; Zajdel, Melody; Storment, Jennifer; Warner, Cody; Halonen, Sandra
Subject: FW: BioB 525

Hi all,

Here is the information we requested for BioB 525. I think we should probably be able to sign off on this.

Thanks,

Peter

----- Forwarded Message
From: Susy Kohout <kohout.sc@gmail.com>
Date: Mon, 8 Sep 2014 21:27:29 -0600
To: Peter Tillack <tillack@montana.edu>
Subject: Re: BioB 525

Dear Dr. Tillack,

Thank you for your comments! I apologize for my incomplete answers.

Yes, the enrollment should have read 5 students.

For the assessment, that will be based on how the student does on their graduate exams. I will pass on the key concepts the student should have learned to the student's committee. They will bring them up during their exam and determine whether the learning outcomes were met. My department is also now doing yearly assessments of our graduate program and will report on the progress of the student.

Please let me know if you need more information from me or if this is sufficient.

Thank you,

Best,

Susy

Susy C. Kohout, PhD
Assistant Professor
Montana State University
Dept of Cell Biology & Neuroscience
2B Lewis Hall
Bozeman, MT 59717
Ph: (406) 994-7334
skohout@montana.edu
kohout.sc@gmail.com

On Sep 8, 2014, at 3:36 PM, Peter Tillack <tillack@montana.edu> wrote:

Dear Professor Kohout,

The College Curriculum Committee recently discussed your course proposal for BioB 525. We all felt that the application basically looks pretty good, however, there were a couple of issues we felt should be addressed before we sign off on the application to send it up to the next level of approval.

These were:

- "anticipated enrollment" in the course narrative states, "1-2 students." We are wondering whether this is the number you intended to put here. Graduate-level courses need to have at least five students in them to be taught. Fewer than that would mean that the only way the course could be taught is if it is not considered part of the instructor's course load.

The section on how courses will be evaluated says "student evaluations." What we need to know is how the instructor will determine whether learning outcomes are being met, and how the department will determine whether the course is fulfilling its intended purpose.

I'm sorry about the inconvenience, but if you could send me an email addressing these questions we will be able to sign off on BioB at the next meeting.

Please let me know if you have any questions.

Best regards,

Peter Tillack
Chair, College Curriculum Committee

----- End of Forwarded Message
INFORMATION: New Graduate Course Review Process
Updated: December 31, 2013

CONTENTS of the New Course Packet
The following information is required in order to review a new course proposal:

1. Cover Form
 - Student learning outcomes are required for every proposed course.
 - The Registrar needs certain information to get the new course into the MSU Catalog and Schedule of Classes, and to assign a room and time for the course.
 - Information on how the new course will be supported is required. The Academic Dean’s Statement is a description of how another course will be eliminated, or new funds provided to support the requested course.
 - Approvals are indicated by signatures (ideally digital signatures) on the cover form.

2. Course Narrative
 - The review committees and administrators need to know what the course is designed to do, the target audience, and how grading will be handled.
 - Reviewing administrators need to know what resources will be needed to accommodate the new course.

3. CV of Instructor – required only if the instructor is not a tenure-track faculty member
 - If the instructor is not a tenure-track faculty member at MSU the instructor’s CV must be included in the New Course Packet.

4. Department Head’s Statement – required only if the instructor is not a tenure-track faculty member
 - If the instructor is not a tenure-track faculty member at MSU a statement of support for the instructor is required from the Head of the department offering the course.
New Graduate Course Approval Cover Form
Montana State University

This four-page form collects basic information about the proposed new course, provides information on the approval process, and includes all required approvals. Additional information (see INFO sheet) is also required as part of the New Course Packet.

Proposed New Course Information

Requested Rubric, Course Number, Core Designation (if needed):

Example: PMT 561

Course Title:
Abbreviated Course Title (≤ 30 chars):
First Semester to be Offered:
Submitted by:
Submitter’s Contact Info: Phone, Email:
Instructor:
Department:
College:

New Graduate Course Review Process

Instructor completes the New Course Packet.

Department Head’s signature indicates that course has been approved by the process used within the Department.

The Chair of the College Curriculum Committee signs to indicate College academic approval (if required).

The College Dean signs to indicate that adequate resources are available to offer the course. Supporting information (Dean’s Statement) is typically required.

The New Course Packet (as PDF) is submitted to the Graduate School for approval by the Dean.

Provost’s Office reviews the new course request.

Approved new course sent to Registrar for inclusion in the Catalog and Schedule of Classes

APPROVALS

Submitter *

Department Head *

Chair, College Curriculum Comm.

Graduate School Dean *

Assoc. Provost *

Note: This diagram illustrates the typical flow path, but at any review step there can be a request for additional information or modifications. Careful review in early steps is the best way to speed the overall process. * Special topics courses (x91) do not require review by the College Curriculum Committee, but cannot be offered more than two times without committee review.
INFORMATION REQUIRED BY THE REGISTRAR

The data needed to enter the new course into the MSU Catalog and Schedule of Classes is collected on this page. Once the new course has been approved, this page is automatically forwarded to the Registrar for data entry.

Assigned Rubric, Course Number, Core Designation (if needed):
Course Title (for Catalog):
Course Title (for Schedule of Classes, 30 characters, max.):
First Semester to be Offered:
Restricted Entry/Consent of Instructor Required: □ Yes □ No
Instructor’s GID (last 4 digits only):
Department Offering Course:
College:

Is the requested course number available? (x4155 to check): □ Yes □ No
Frequency of course offering: □ Annually □ Alternate Years, starting ________
Semester(s) offered (check all that apply): □ Summer □ Fall □ Spring
Summer Options (check all that apply): □ First 6 weeks □ Second 6 weeks □ 12 weeks

Credits by mode of instruction:
Lecture:
Seminar:
Independent Study:
Lab/Studio:
Recitation/Discussion:
TOTAL CREDITS: 0

Primary Mode(s) of Delivery: □ Face-to-face □ Web-Enhanced (small on-line comp.) □ On-Line Only □ Blended (significant on-line portion)

Time and Location – Call the Registrar’s Office at x4155 to find a time and location for the course.
Assigned Day(s): □ M □ Tu □ W □ Th □ F □ Sa □ Su
Assigned Time(s):
Assigned Building:
Assigned Room:
Capacity (room capacity, or enrollment “cap”):

Co- and Pre-Requisites – Courses numbered 200 and above are normally expected to have prerequisites. When listing multiple prerequisites, please separate courses with “and” if both are required, or “or” if only one is required.

Prerequisite(s):
Co-Requisite(s):

Course Description – Provide a course description of 40 words or less for the MSU Catalog.
Subject: Re: BioB 525
Date: Monday, September 8, 2014 9:27 PM
From: Susy Kohout <kohout.sc@gmail.com>
To: Peter Tillack <tillack@montana.edu>
Conversation: BioB 525

Dear Dr. Tillack,

Thank you for your comments! I apologize for my incomplete answers.

Yes, the enrollment should have read 5 students.

For the assessment, that will be based on how the student does on their graduate exams. I will pass on the key concepts the student should have learn to the student’s committee. They will bring them up during their exam and determine whether the learning outcomes were met. My department is also now doing yearly assessments of our graduate program and will report on the progress of the student.

Please let me know if you need more information from me or if this sufficient.

Thank you.
Best,
Susy

Susy C. Kohout, PhD
Assistant Professor
Montana State University
Dept of Cell Biology & Neuroscience
2B Lewis Hall
Bozeman, MT 59717
Ph: (406) 994-7334
skohout@montana.edu
kohout.sc@gmail.com

On Sep 8, 2014, at 3:36 PM, Peter Tillack <tillack@montana.edu> wrote:

Dear Professor Kohout,

The College Curriculum Committee recently discussed your course proposal for BioB 525. We all felt that the application basically looks pretty good, however, there were a couple of issues we felt should be addressed before we sign off on the application to send it up to the next level of approval. These were:
"anticipated enrollment" in the course narrative states, "1-2 students." We are wondering whether this is the number you intended to put here. Graduate-level courses need to have at least five students in them to be taught. Fewer than that would mean that the only way the course could be taught is if it is not considered part of the instructor's course load.

The section on how courses will be evaluated says "student evaluations." What we need to know is how the instructor will determine whether learning outcomes are being met, and how the department will determine whether the course is fulfilling its intended purpose.

I'm sorry about the inconvenience, but if you could send me an email addressing these questions we will be able to sign off on BioB at the next meeting.

Please let me know if you have any questions.

Best regards,

Peter Tillack
Chair, College Curriculum Committee

Peter Tillack, Ph.D.
Assistant Professor of Japanese
Japanese Coordinator
Department of Modern Languages and Literatures
Montana State University
Gaines Hall 118D, P.O. Box 172980
Bozeman, MT 59715-2980
Tel. (406) 994-6441
Fax (406) 994-6199
tillack@montana.edu