Energy as a Framework for Prioritizing Conservation Vulnerabilities and Management Strategies

Andrew Hansen Montana State University

Ecology Department Seminar, MSU September 2011

Advancement in Conservation Biology and Landscape Ecology

- great progress in identifying the many ways that ecological systems may be vulnerable to human activities.

Headache for Managers?

-difficult for managers to crystallize key conservation priorities for their particular place.

- habitat fragmentation
- anatural disturbance
- sensitive species
- invasive species
- disease
- Ioss of top predators
- connectivity
- metapopulation dynamics
- dangerous wildlife
- protected areas
- other issues?

Advancement in Management?

-difficult for manager to crystallize key conservation priorities for their particular place.

70 Largest US National Parks

- habitat fragmentation
- anatural disturbance
- sensitive species
- invasive species
- disease
- exurban development
- backcountry recreation
- protected areas
- other issues?

We know that place matters.

Advancement in Management?

-difficult for manager to crystallize key conservation priorities for their particular place.

70 Largest US National Parks

- habitat fragmentation
- natural disturbance
- sensitive species
- invasive species
- disease
- exurban development
- backcountry recreation
- protected areas
- other issues?

In different places, the interactions among abiotic variables, ecological processes, species, and humans are known to play out differently.

Advancement in Management?

-difficult for manager to crystallize key conservation priorities for their particular place.

70 Largest US National Parks

- habitat fragmentation
- anatural disturbance
- sensitive species
- invasive species
- disease
- exurban development
- backcountry recreation
- protected areas
- other issues?

Are there general properties of ecosystems that, if recognized, could be used to set conservation goals more effectively?

Theoretical Roots of Conservation Biology

Hutchinson (1959), "What factors limit the number of species in a place"?

- habitat heterogeneity
- habitat area
- trophic structure
- evolutionary processes
- available energy.

Theoretical Roots of Conservation Biology

Hutchinson (1959), "What factors limit the number of species in a place"?

- habitat heterogeneity
- habitat area
- trophic structure
- evolutionary processes
- available energy

Topics

- A framework to grouping ecological systems based on ecosystem energy and habitat heterogeneity;
- Management strategies for each group;
- Illustrative case studies

Can we group ecosystems to better set conservation priorities?

Earth's Terrestrial Biomes

Generalizations on Traits of Ecosystems

	Traits					
High geomorphic complexity and/or high natural seral diversity	Low population growth rates, small population sizes, higher extinction rates Large home ranges Migratory mammal populations Spatially explicit population dynamics S _k relatively low but increases with energy High stress following disturbance	Very strong spatially explicit population dynamics S _K Increased by higher habitat heterogeneity	Moderate population growth rates, population sizes, extinction rates Some migratory mammal populations S _k is relatively high, but not strongly related to energy within the interval Moderate response to vegetation structure or	S _k Increased bγ higher habitat heterogeneitγ	Higher population growth rates, larger population sizes, lower extinction rates except where limited by poor soils Few migratory mammal populations S _K moderate to high and may decrease at the highest energy levels Rapid recovery following disturbance except where limited by	S _K Increased by higher habitat heterogeneity <i>Very high</i> invasiveness
Low geomorphic complexity and/or low natural seral diversity	Weak competitive exclusion Weak response to vegetation structure or patch edge Possibly low invasive species Top down effects possibly more likely Low human density Lower land use intensity but concentrated in local hotspots	Very low S _K due to low energy and low habitat heterogeneity Possibly very low invasive species richness due to lack of disturbance	Very high human density High land use intensity (esp. agriculture) widely distributed throughout landscape Top predators may be extripated allowing expanded mesocarnivore populations Possibly high invasive species	S _K decreased by lower habitat heterogeneity	soils Strong competitive exclusion High forest biomass and strong response to vegetation structure or to patch edge <i>Bottom up effects</i> <i>possibly more likely</i> Possibly high invasive species Human density and land use intensity moderate except where soils are fertile	S _K decreased by lower habitat heterogeneity <i>Possibly moderate</i> <i>invasive species</i> <i>richness</i> Very high forest biomass and strong response to vegetation structure or to patch edge

Low, Variable

Intermediate

High

Primary Productivity

Habitat Heterogeneity

Lον geomo comple and/or natural diver

Framework for Prioritizing Management

Conservation Category	Ecosystem Energy Level			
	Low Energy	Medium Energy	High Energy	
Individual species				
Sensitive Species				
Invasive Species				
Ecological processes				
Disturbance				
Productivity				
Landscape composition				
Biophysical gradients				
Source and sink habitats				
Seral Stages				
Within-stand structure				
Landscape cofiguration				
Connectivity				
Patch size/edge				
Biotic interactions				
Trophic cascades				
Competitive exclusion				
Land Use				
Protected areas				
Matrix				
Restoration				
Public education				
Overarching conservation priorities				

Low-Energy Ecoregions: Greater Yellowstone

Conservation Category	Low Energy
Sensitive Species	Focus on species at risk due to low population sizes, large home requirements, migratory habits, source/sink dynamics
Disturbance	Manage to reduce disturbance in settings where high post-disturbance stress puts native species at risk
Landscape Pattern	Manage for large areas of habitat and well connected habitat for species with small populations and large home ranges, and/or migratory habits
Protected Areas	Should be larger and include representative biophysical gradients
Land Use	Focus conservation easements on high energy places and migration corridors Discourage development in hotspots
Overarching Priorities	Maintain large, well connected natural landscapes that include the full gradient of biophysical conditions and provide for wildland species needing large areas

High-Energy Ecoregions: Pacific Northwest

richness.

			s	
Conservation High Energy Category			Richnes	/
Sensitive Species	Focus on seral stage, vegetation structure, and patch edge or interior specialist species			·
Disturbance	 relatively high rates in some locations to break competitive dominance and favor early seral species; relatively low rates in some locations to maintain late seral species. Maintain high levels of structural complexity in all seral stages. Reduce erosion and leaching associated with disturbance. 			
Landscape Pattern	Manage for diverse range of patch sizes and spatial configurations	-		
Protected Areas	Can be smaller but should include disturbance initiation and runout zones.			3
Land Use	 Focus conservation easements on: Low energy hotspots places with high natural disturbance. 			
Overarching Priorities	Manage disturbance and vegetation pattern to maintain the large number of microhabitat specialists and high potential species		10 m	

Mid-Energy Ecoregions: Mid-Atlantic

Conservation Category	Medium Energy
Sensitive Species	Focus on species sensitive to human impacts
Invasive Species	Manage to reduce the high level of introductions of exotics due to intense land use
Disturbance	Similar to High Energy
Landscape Pattern	Similar to High Energy
Protected Areas	Manage to buffer protected areas from surrounding human influence.
Land Use	 Focus conservation easements on remaining natural areas and discourage development in remaining natural areas. Emphasize restoration of degraded places Educate citizens on "backyard" conservation
Overarching Priorities	Mitigate the heavy human influence in these systems which have the potential to be global hotspots for biodiversity.

Framework for Prioritizing Management

Conservation Category	Ecosystem Energy Level			
	Low Energy	Medium Energy	High Energy	
Individual species				
Sensitive Species				
Invasive Species				
Ecological processes				
Disturbance				
Productivity				
Landscape composition				
Biophysical gradients				
Source and sink habitats				
Seral Stages				
Within-stand structure				
Landscape cofiguration				
Connectivity				
Patch size/edge				
Biotic interactions				
Trophic cascades				
Competitive exclusion				
Land Use				
Protected areas				
Matrix				
Restoration				
Public education				
Overarching conservation priorities				

Global Distribution of Ecosystem Types

Low Productivity

Intermediate Productivity

High Productivity

High Topographic Complexity

Conclusions

- Can conservation biology become a more predictive science and help managers to identify up front the biggest problems in their place?
- Are there general properties of ecosystems that, if recognized, could be used to set conservation goals more effectively?
- Ecosystem productivity (the forgotten factor) and habitat heterogeneity are candidates.
- Will we get to the point that each conservation biology text book opens with a table of ecosystems grouped by vulnerabilities?