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Near-Complete Extinction of Native
Small Mammal Fauna 25 Years
After Forest Fragmentation
Luke Gibson,1* Antony J. Lynam,2 Corey J. A. Bradshaw,3 Fangliang He,4,5* David P. Bickford,1*
David S. Woodruff,6 Sara Bumrungsri,7 William F. Laurance8

Tropical forests continue to be felled and fragmented around the world. A key question is how rapidly
species disappear from forest fragments and how quickly humans must restore forest connectivity to
minimize extinctions. We surveyed small mammals on forest islands in Chiew Larn Reservoir in
Thailand 5 to 7 and 25 to 26 years after isolation and observed the near-total loss of native small
mammals within 5 years from <10-hectare (ha) fragments and within 25 years from 10- to 56-ha
fragments. Based on our results, we developed an island biogeographic model and estimated mean
extinction half-life (50% of resident species disappearing) to be 13.9 years. These catastrophic
extinctions were probably partly driven by an invasive rat species; such biotic invasions are becoming
increasingly common in human-modified landscapes. Our results are thus particularly relevant to
other fragmented forest landscapes and suggest that small fragments are potentially even more
vulnerable to biodiversity loss than previously thought.

Rapid deforestation poses a major threat
to one of the planet’s greatest bastions
of biodiversity, tropical forests (1–4).

Whether by chance or design, small fragments
of forest typically persist in the aftermath of
deforestation, effectively islands within a sea
of agriculture, urbanization, or other modified
lands that are unsuitable for most forest spe-
cies (5, 6). Many of the species that originally
occupied the forest will disappear from these
isolated fragments, but this loss occurs over a
relaxation period until a new, more depauper-
ate equilibrium community is reached (7). The
number of species that will ultimately disap-
pear from a forest fragment—its “extinction
debt” (8)—will vary based on the size of the frag-
ment, its surrounding habitat, the vagility of its
constituent and neighboring species, and its dis-
tance from source populations (9).

Extinctions can be averted by reducing de-
forestation rates and reforesting fragmented for-
est landscapes (10). However, it remains uncertain
how quickly such actions must be taken and what
minimum fragment size is required to maintain
functioning biotic communities. For 1000-ha for-
est fragments in Kenya, half of the total bird ex-
tinctions are projected to occur within 50 years,
giving conservationists some time to mitigate
conditions in large fragments (11). However, for
smaller fragments, relaxation times are generally
much more rapid (12, 13), and for ≤100-ha frag-
ments, half of their original species can disappear
within 15years (14).Most studies of extinctions from
forest fragments have focused on birds (11–14), and
little is known about the sensitivity of other tax-
onomic groups.

We surveyed small mammals on forest islands
in a reservoir five separate times after isolation to

assess the rate of species loss from forest frag-
ments. Reservoirs can form useful natural labora-
tories to estimate extinction rates from isolated
forest patches (15, 16). Chiew Larn Reservoir in
southern Thailand was formed in 1986–1987
when 165 km2 of forest was flooded, creating
over 100 islands in the process (Fig. 1) (17).
We selected 16 islands in the reservoir ranging
from 0.3 to 56.3 ha in area and surveyed small
mammal communities 5 to 7 years (for 12 of the
16 islands) and 25 to 26 years after isolation.
Chiew Larn Reservoir is surrounded by two
protected areas that form part of the largest
(>3500 km2) contiguous forest area in southern
Thailand. All surveyed islands were unoccu-
pied by humans (18).

We found that native small mammal commu-
nities disappeared rapidly after fragmentation.
By 5 to 7 years after fragmentation, three large
islands in our sample (10 to 56 ha) sustained 7 to
12 species of small mammals (Table 1), which was
similar to diversity found on the nearby mainland
(table S3) (19). However, on nine small islands
(<10 ha), species richness rapidly declined to
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just one to three species during these initial sur-
veys. After 25 to 26 years, native small mammals
had virtually disappeared from all 16 islands
(Fig. 2, figs. S1 and S2, Table 1, and table S1).

Species richness on islands was most strongly
correlated with area, but there was an important
contribution of time since isolation, as well as a
weak negative interaction between area and time
since isolation (table S2).We also surveyed small

mammal communities in the mainland forest sur-
rounding the reservoir and detected no similar
decrease in diversity (table S3).

To describe the process of biotic relaxation
over time for our islands of different size, we de-
rived an island biogeographic model. The model
included both immigration and extinction, which
are negatively and positively proportional to the
number of species on the islands, respectively
(18). The model estimates the number of species
occupying forest fragments before isolation and
calculates the rate of extinction. The best-fitting
model was

St = 0.751 – (0.751 – 2.223a0.482)e–0.0732t (1)

where St is the number of species at time t, a is
island area, and t is time since isolation. This
model fitted our data well (coefficient of determi-
nation = 0.783, fig. S3) and predicted that, be-
fore isolation, the largest island (56 ha) had 15.5
species and the smallest island (0.3 ha) had 1.2
species. For all islands, the mean time to extinct-
ion of half of the resident species (t1/2) was 13.9 T
3.9 years. Full relaxation to just one species was
projected to occur within 40 years, regardless of
fragment size (Fig. 3A). To determine the sensi-
tivity of these results to the choice of underly-
ing model, we also constructed a variant of the
extinction-immigration component and considered
twoother species-area relationshipmodels (Kobayashi

Fig. 2. Small mammal species richness per
transect in large (10.1 to 56.3 ha, n = 7)
and small (0.3 to 4.7 ha, n = 9) islands 5 to
7 years and 25 to 26 years after isolation.
Plotted are median values, interquartile ranges, and
full ranges (outliers are plotted as open circles). The
upper dashed line represents the number of small
mammal species found in surrounding mainland
forest (table S3).

Fig. 1. Islands sampled in Chiew Larn Reservoir, Thailand. The reser-
voir is surrounded by protected forest areas in Khao Sok National Park to the
south and west (shaded dark green) and Khlong Saeng Wildlife Sanctuary to the
north and east (shaded light green). The 12 islands sampled during all surveys

are labeled by island number [in the sense of (19)], and the additional four
islands surveyed in more recent surveys are labeled X1 to X4. The dam is located
in the lower right corner of the figure. The location of the reservoir in southern
Thailand is shown in the regional map inset.

Table 1. Number of small mammal species
found on islands 5 to 7 years and 25 to 26 years
after isolation. The maximum number of species
observed on each island is reported. Islands X1
to X4 were only surveyed 25 to 26 years after
isolation.

Island
Area
(ha)

Richness
(5 to 7 years)

Richness
(25 to 26 years)

6 56.3 12 5
5 12.1 9 3
9 10.4 7 1
28 4.7 2 2
7 1.9 3 2
33 1.7 1 1
3 1.4 2 1
41 1.1 3 1
39 1.0 3 1
40 0.8 2 1
2 0.4 2 1
16 0.3 2 1
X1 23.5 2
X2 10.1 2
X3 24.4 2
X4 21.2 1
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and Gleason) in addition to the Arrhenius power-
law model; results differed little from those de-
rived above (18). Our modeled extinction rates
are similar to those observed by Ferraz et al. (14),
who found that 100-ha forest fragments in the
central Amazon lost half of their understory bird
species in less than 15 years. However, our results
diverge with the unexpected finding that species
diversity declined faster on larger than on smaller
islands (Fig. 3B), with the former having a shorter
extinction half-life (Fig. 3C). This is a consequence
of the catastrophic faunal collapse we documented
across the entire archipelago of fragments, so that
larger islands, which initially sustained the most
species and themost forest specialists, exhibited the
most rapid rate of species loss.

With few exceptions, only the Malayan field
rat Rattus tiomanicus remained on islands 25
years after isolation (table S1). Commensal ro-
dents such as R. tiomanicus are among the most
common invasive species worldwide and often
have a devastating effect on native fauna, par-
ticularly birds (20–23). R. tiomanicus does not
occur naturally in undisturbed tropical forests
of Southeast Asia, but is common in secondary
forests, agricultural areas, and villages (24) and
probably spread from such habitats to islands
and reservoir fringes after inundation. By the
time we had resurveyed islands 25 to 26 years
after isolation, few native small mammals re-
mained (just 13 and 9 individuals, respectively,
were detected on the 16 sampled islands, not
including the invading R. tiomanicus; table S1).
At that point, all islands were dominated by the
invasive rodent and if not already in ecological
meltdown (25), were well on their way to becom-
ing Rattus monocultures.

Small forest fragments can play important
conservation roles in some contexts (26), includ-
ing enhancing landscape connectivity and sus-
taining locally endemic species in regions such
as Madagascar and the Brazilian Atlantic Forest,
where most native vegetation has vanished. In
these highly fragmented regions, however, mam-

malian communities can disappear rapidly, as
has been observed for medium- and large-sized
mammals in the Brazilian Atlantic Forest (27).
In fact, regional estimates of extinctions from de-
forestation are probably worse than previously
thought, because studies applying species-area
curves have assumed that the persisting forest
was contiguous (28). Additionally, exotic species
such as R. tiomanicus are rapidly expanding into
human-transformed and regenerating forest land-
scapes that increasingly dominate many trop-
ical regions (29) and appear capable of sharply
accelerating extinction rates in some fragmented
landscapes. Hence, our findings, in which frag-
ments were invaded and evidently profoundly
destabilized by an invasive species, have consid-
erable relevance for nature conservation in frag-
mented habitats globally. The apparent synergism
between habitat fragmentation and species inva-
sion underscores a dire need to maintain large
intact forest blocks to sustain tropical biodiver-
sity (4, 30).
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Fig. 3. Lossof species
from forest fragments
of various sizes based
onmodel (1). (A andB)
Number of species re-
maining and number
of species lost per year
on fragments after time
(in years) since isola-
tion. (C) Time to ex-
tinction of half of the
species (t1/2) initially
present on forest frag-
ments according to frag-
ment area.
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