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Canopy structure is a fundamental property of forest ecosystems that influences microclimate, runoff,
decomposition, nutrient cycling, forest disturbance, carbon storage, and biodiversity. Unlike ecosystem
properties such as vegetation production, canopy structure mapping is limited by measurement con-
straints and is primarily measured for small areas. Consequently, few large scale studies of carbon bud-
gets, nutrient cycling, and biodiversity use quantitative data on canopy structure. Progress in broad scale
mapping of canopy structure has recently been made by merging field, airborne lidar, and satellite data.
As a step towards regional mapping of canopy structure with lidar and satellite data, we examine pat-
terns of lidar-derived canopy structure across five ecoregions from Maryland to Mississippi and evaluate
relationships with climate, topography, and soils. We used NASA’s Laser Vegetation Imaging Sensor (LVIS)
to quantify canopy height, canopy cover, diversity of cover, and upper and lower canopy ratio metric
along a 4000-km transect. Controlling for stand age, we found that canopy structure varied among undis-
turbed, closed-canopy stands across the study area. Compared with the Southeast Plains Ecoregion, the
Blue Ridge and Central Appalachians ecoregions were greater in canopy height (25%), canopy cover
(18%), and cover in the upper third of the canopy (212%). Values in the Piedmont were similar to those
in the Southeast Plains. Locations highest in canopy structure were intermediate in temperature, growing
season precipitation, topographic complexity and were located on sandy soils. The strength of biophysical
models differed among ecoregions, explaining 13% of the variation in canopy height in the Southeastern
Plain to 60% in the Ridge and Valley Ecoregion. Canopy structure also differed among disturbance classes.
Undisturbed forests were 30% higher in canopy height, 15% higher in canopy cover, and 18% higher in
cover of the upper third of the canopy than disturbed forests. Managed pine plantations were interme-
diate in canopy structure between disturbed and undisturbed forests. This study demonstrates that air-
borne lidar data can be used to distinguish differences in canopy structure among undisturbed forests in
varying biophysical settings and between undisturbed and disturbed forests across sub-continental tran-
sects. The results suggest that airborne lidar data in conjunction with data on biophysical gradients can
be used as a basis for extrapolating canopy structure at fine spatial scales across regional extents. This
would allow for fine-scale characterization of forest structure continuously across large regions. Such
methods should allow breakthroughs in the use of canopy structure in ecosystem management and glo-
bal change studies.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Canopy structure is a fundamental property of forest ecosys-
tems that strongly influences their characteristics. Canopy struc-
ture is typically defined in terms of canopy height, total canopy
cover, the distribution of canopy cover among forest height strata,
and horizontal variation among these factors (Franklin and Van
Pelt, 2004). These elements of canopy structure can influence
microclimate (Didham and Lawton, 1999; Parker, 1995), runoff
(Brodersen et al., 2000), decomposition and nutrient cycling
(Hobbie, 1992), forest disturbance (Frolking et al., 2009), carbon
storage (Asner et al., 2010), and biodiversity (MacArthur and
MacArthur, 1961; Goetz et al., 2010; Whitehurst et al., 2013).

Because of the importance of canopy structure to ecosystem
properties, foresters and ecologists have long invested in methods
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of measuring forest structure. Until recently, these methods were
laborious field measurements that were restricted to relatively
small plots (<0.10 ha) (Whitehurst et al., 2013). The use of aerial
and satellite based remote sensing in the past decade has dramat-
ically improved our ability to quantify forest structure (Hyde et al.,
2006; Bergen et al., 2009; Lefsky et al., 2005). For example, the light
detecting and ranging sensor (lidar) uses return rates of laser
pulses to quantify the 3-D structure of forest canopies including
canopy height, biomass, canopy cover, and canopy layering in ver-
tical height classes (Dubayah and Drake, 2000; Lefsky et al., 2002;
Vierling et al., 2008; Goetz et al., 2007; Swatantran et al., 2012;
Whitehurst et al., 2013). Due to the cost of acquiring airborne lidar
data, most studies to date have been done within relatively small
areas such as specific forest stands or small watersheds (e.g.,
Hofton et al., 2002; Goetz et al., 2007; Dubayah et al., 2010;
Goetz et al., 2010; Swatantran et al., 2012; Whitehurst et al.,
2013). Satellite based methods have been used to quantify forest
height globally (Lefsky, 2010; Simard et al., 2011), but low accura-
cies and wide spacing of samples limit the use of these data at
regional scales.

In contrast to canopy structure, other ecosystem properties
such as climate, vegetation production, and land cover are mapped
continentally to globally at annual or finer intervals (Running et al.,
2004) and are widely used in studies of carbon budgets, nutrient
cycling, ecosystem productivity, and biodiversity. Such studies
would benefit from consideration of canopy structure if data were
available at appropriate spatial scales. Progress in mapping canopy
structure at regional scales has recently been made (Asner et al.,
2010, 2011). Data from field sampling, stratified lidar sampling,
and Landsat-based mapping of land cover were used to estimate
carbon stocks over a 4.3 million ha area in the Amazon and the
one-million hectare Island of Hawaii. In these applications, the
authors found that canopy structure varied with geologic sub-
strate, landform, vegetation type, land cover and disturbance type.

Knowledge of biophysical and land use effects on canopy struc-
ture is critical to designing lidar and field data collection so as to
sample the major sources of variation in canopy structure. As a
step towards regional mapping of canopy structure with lidar
and satellite data in the southeastern US, we examine patterns of
lidar-derived canopy structure across five ecoregions stretching
from Maryland to Mississippi and evaluate relationships with cli-
mate, topography, and soils, biophysical factors that influence for-
est growth and the development of canopy structure. In his classic
monograph on vegetation of the Great Smoky Mountains,
Whittaker (1956) examined the influence of environmental gradi-
ents on vegetation structure and composition. He concluded that
forest stature, growth rates, and species composition varied across
the environmental gradients of these mountains, reaching peak
levels in particular ‘‘favorable’’ biophysical settings. Forests in the
favorable lower elevation cove forests were as much as 50% taller
than forests on ridge tops at higher elevations.

Some 50 years after this publication, Whittaker’s gradient
approach to vegetation distribution is considered foundational to
ecology (Begon et al., 2006). Canopy structure is thought to be a
product of primary productivity as governed by limiting biophysical
factors and disturbance (Spies and Turner, 1999) (Fig. 1). Biophysical
factors such as climate, topography, and soils influence resources
and conditions within a forest through the mediating effects of can-
opy structure. These resources and conditions influence plant popu-
lation growth rates and the capacity of the ecosystem to support
species richness (SK) (Brown et al., 2001). Actual species richness is
a product of the size of the regional species pool and how those
resources and conditions are allocated among species. Population
growth rates and species richness influence primary productivity
(Tilman, 2000) and the rate of development of canopy structure
(Larson et al., 2008). While primary productivity builds canopy
structure, disturbance can destroy plant tissue, kill plants, and thus
reduce canopy structure (Pickett and White, 1985). Thus, canopy
height and structural complexity are functions of time since distur-
bance and rates of primary productivity as governed by biophysical
conditions.

This model of canopy structure is the basis of the concept of site
index in forestry. Site index is used as a measure of site productiv-
ity and is defined by maximum tree height at a given time since
disturbance (typically 50 years) (Skovsgaard and Vanclay, 2008).
Trees are expected to be taller at a given age in sites with favorable
climate, soils, and other limiting factors. Consistent with this
assumption, Weiskittel et al. (2011) found that site index in wes-
tern US forests was strongly related to climate and to gross primary
productivity. In addition to tree height, the basis of site index,
Larson et al. (2008) found that the complex structures of old
growth forests developed more quickly in locations of high site
index (see also Boucher et al., 2006). Additional evidence that can-
opy structure varies with biophysical factors comes from Homeier
et al. (2010) who found that tree height and basal area were inver-
sely related to elevation across a 700-m elevational gradient in the
Ecuadorian Montane Rain Forest and that basal area was correlated
with soil nutrients. Moreover, across a subcontinental transect
from the maritime climate and favorable soils of the western
Oregon and Washington to the continental climate of the Northern
Rocky Mountains, a measure of forest structural complexity
decreased by about half (Verschuyl et al., 2008).

Despite Whittaker’s pioneering work nearly half a century ago,
patterns of canopy structure across the forests of the southeastern
US and controlling biophysical factors remain poorly known. Con-
sequently, we sampled with an airborne lidar instrument a 4000-
km transect from Washington DC to Jackson, MS (Fig. 2). The data
were used to quantify canopy height, canopy cover, and canopy
layering across five ecoregions. These data offer a unique opportu-
nity to improve understanding of variation in 3-d canopy structure
across the biophysical gradients of the SE US. Lidar transects were
recently flown over the boreal forest of Canada (Bolton et al., 2013),
a region of much harsher climate and lower primary productivity
than the southeastern US. We compare our results with those of
that study and discuss how the effects of biophysical factors on
canopy structure may vary across continental gradients.

The objectives of this study were as follows.

(1) Quantify variation in forest canopy structure within and
among ecoregions for forest stands showing no sign of
recent disturbance.

(2) Determine the biophysical factors (climate, topography,
soils, forest productivity) that best account for this variation.

(3) Evaluate differences in canopy structure among undis-
turbed, disturbed, and plantation forests.

2. Materials and methods

2.1. Overview

Objectives 1 and 2 focused on local and regional variation of
canopy structure of forests across the southeastern US and the
influence of biophysical factors on this variation in canopy struc-
ture. Data on canopy structure were collected using an airborne
lidar system. From among the samples collected along the route,
a subset was selected for this analysis that met the criteria of
closed-canopy forest with no visual evidence of recent disturbance.
Canopy structure of these samples was quantified as the number of
canopy height classes represented and the proportional abundance
of canopy cover within these height classes. Predictor data were
obtained pertaining to climate, soils, topography, and forest pro-
ductivity. Means and variation in canopy structure of stands of



Fig. 1. Conceptual model of the determinants of canopy structure in forest ecosystems. This paper focuses on the portion of the model in the dashed box.

Fig. 2. Map of the study area showing the LVIS transect and ecoregions.
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similar age were compared among ecoregions with ANOVA tech-
niques and regression-based model selection techniques were used
to quantify the amount of variation in canopy structure accounted
for by the biophysical predictors. To gauge how canopy structure of
the undisturbed forest differs from those subject to timber harvest,
residential development, and other disturbances (Objective 3), we
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compared samples of undisturbed forest to samples showing evi-
dence of disturbance and to conifer plantations.

2.2. Study area

Much of the southeastern US is cloaked in forest. With nearly
continuous coverage from the Mississippi Delta to Pennsylvania,
this area is a portion of the vast Temperate Deciduous Forest of
the eastern United States (Olson, 2001). These forests are highly
productive (Phillips et al., 2010) and represent an important com-
ponent of the North American carbon sink (Pan et al., 2011a). They
also support high levels of plant and animal biodiversity (Currie,
1991) and contain globally important conservation lands such as
Great Smoky Mountain National Park.

While the vast southeastern forest looks relatively homoge-
neous from an airplane window, the underlying soils, climate,
and topography are varied. The area includes the Southeastern
Plains, Piedmont, Central Appalachian, Ridge and Valley, and Blue
Ridge ecoregions (USEPA, 1999) (Fig. 2 and Appendix A).

The Southeastern Plains are irregular plains with sandy soils.
The Piedmont is transitional from the coastal plains to the Appala-
chian Mountains and his moderately dissected plains and hills.
Soils are relatively clayey and infertile. The Blue Ridge includes
the Appalachian Mountains with elevations up to 2000 m. Soils
vary with slope position and can be deep and loamy in valley bot-
toms. The Ridge and Valley includes valleys separated by ridges
with sandstone caps. Soils are variable from sandy to loamy. The
Central Appalachians are a dissected plateau with a mix of soils
derived from sandstone, shale and conglomerate parent materials.
Climate across the region is relatively hot, humid, with moderate
rainfall distributed evenly across the year due to the strong influ-
ence of weather systems moving north from the Gulf of Mexico.
While the Southeastern Plains and Piedmont are strongly mari-
time, climate has increasing continental influences to the north
and west, thus summer temperatures are somewhat cooler and
winters more pronounced. The higher elevations of the Blue Ridge
are substantially colder and have prolonged winter conditions.
Oak/hickory, maple/beech/birch, and oak pine are the dominant
forest types across the Central Appalachians, Ridge and Valley,
and Blue Ridge ecoregions (Ruefenacht et al., 2008). These types
are also found in the Piedmont and Southeast Plains Ecoregions,
but loblolly/shortleaf pine and longleaf/slashpine types are the
dominant types.

These ecoregions have all been highly influenced by land use
(Goward et al., 2008; Drummond and Loveland, 2010; Goetz
et al., 2012). Agriculture and urbanization both led to forest clear-
ing, particularly on the coastal plains and piedmont. Timber har-
vest is frequent, converting mature forest to earlier seral stages.
Fast forest growth rates result in afforestation of abandoned farm-
lands and rapid forest recovery following disturbance. For exam-
ple, Li et al., 2011a,b found that 60% of the forests of Mississippi
were less than 30 years old due to frequent disturbance and that
these disturbed forests reached 80% of maximum height within
30 years following disturbance.

2.3. Transect

NASA’s Land, Vegetation, and Ice Sensor (LVIS) (Blair et al.,
1999) was flown over a 4000 km loop between Washington D.C.
and Jackson MS in July 2009 (Fig. 2). The route was selected to
sample vegetation structure across gradients in biophysical factors
over the major US EPA Level III ecoregions of the southeastern US,
within the land allocation and land use types typical of the region.
This route was the longest flight line to date of the LVIS instrument
and this study is the first attempt to use this instrument to study
regional gradients in canopy structure.
2.4. LVIS data

LVIS is a scanning waveform lidar instrument that is flown, by
aircraft, over target areas to collect data on surface topography
and vegetation coverage. The instrument is a medium-footprint,
full-waveform lidar developed at NASA’s Goddard Space Flight
Center (Blair et al., 1999). LVIS records the entire outgoing and
return signal to provide waveforms that can be used to map sub-
canopy topography, canopy height and vertical foliage profiles.
The amplitude of the geolocated waveform at a given height is pro-
portional to the amount of canopy material at that height making it
suitable for canopy stratification studies (Hyde et al., 2005). LVIS
was flown at an altitude that achieved a nominal 20-m diameter
footprint on the ground. The footprints overlap slightly in the
across- and along-track flight direction to achieve approximately
contiguous coverage over the entire imaging swath (about 2 km
wide for these flights). A detailed description of LVIS waveform
processing is available in Hofton et al. (2002) and Dubayah et al.
(2010). Total canopy cover was calculated from the normalized
cumulative laser energy (Ni-Meister et al., 2001) and canopy cover
at 5 m height intervals was calculated from the cumulative energy
return between ground and 60 m, resulting in 10 metrics that
approximated the foliage profile following the methods of
Swatantran et al. (2012) and Whitehurst et al. (2013). Any height
class that had a value of <0.01% cover was converted to 0 so as
not to be included in the metric of canopy layer richness (see
below) where measurement error may account for canopy cover
being represented as present.

The accuracy of LIDAR data has been analyzed in many forest
types and has been found to be very high. In wet tropical rainfor-
ests, Hofton et al., 2002 found subcanopy topography accuracies
to be higher than that of the best digital elevation models. In coni-
fer stands in Western Oregon forest mean stand height had very
high accuracy (r2 = 0.95) (Means et al., 1999), and in wet tropical
rainforests plot-level biomass was modeled at r2 = 0.93 (Drake
et al., 2002).

2.5. Estimating canopy cover metrics

The canopy structure metrics included canopy height, canopy
cover, and vertical distribution of canopy cover (Fig. 3 and Appen-
dix B). Canopy height (canheight) was defined by the height above
the ground where 100% of the return wave form energy was
achieved (RH100 in Hofton et al., 2002). Canopy cover (cancover)
was the summed cover across 5-m height classes. Shannon
Diversity Index (shannon) was calculated as �

P
(pi [ln(pi)]), where

pi = proportion of canopy cover in height class i. We also estimated
the relative distribution of canopy cover in the lower, middle, and
upper third of the canopy in a way that was not influenced by can-
opy height. Canopy cover was found for 1-m segments from the
ground to the top of the canopy. Canopy height was multiplied
by 0.33 and 0.66 to find heights representing the lower and middle
third of the canopy. Total canopy cover in the, lower, middle and
upper third of the canopy was then calculated by summing the
canopy cover in the corresponding portion of each waveform. Most
of the variation among samples among the canopy thirds was
between low and high. Thus, we report the ratio of cover in the
upper to lower third of the canopy in the analyses (highlow).

Canopy structure varies with grain size of analysis. We repre-
sented canopy structure as mean of the 20 m LVIS samples within
100-m plots. We selected this grain size because it allowed repre-
sentation of horizontal variation in canopy structure by canopy
gaps and because it is within the grain sizes of the biophysical pre-
dictor data (30 m to 1 km) (see below). Thus conceptually, a 100-m
grid was overlain on the LVIS samples, and means of canopy met-
rics were estimated within each 100-m plot similar to Dubayah
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Fig. 3. An illustration of the canopy structure metrics quantified in this study.
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et al. (2010). Plots with less than 15 LVIS samples were excluded to
ensure adequate sampling of each plot. The resulting data set con-
tained 325, 978, 100-m plots.
2.6. Selection of 100-m sample plots

Computation time for estimating these metrics for the full 100-
m data set was prohibitive. Thus we subsampled the data set with
a stratified random design to obtain 35,000 samples that were well
distributed among the biophysical, forest cover, disturbance clas-
ses, land-use classes of interest. The intent of Objectives 1 and 2
were to examine canopy structure for closed canopy forest stands
that showed no evidence of disturbance. Thus, we selected for
potential sample plots those that met the following criteria:

� Percent of plot in forest = 100% (based on NLCD% forest, Homer
et al., 2004; Fry et al., 2011).
� Canopy density >75% (based on NLCD canopy density).
� Home density < exurban levels (based on Theobald, 2005).
� No visual evidence of canopy disturbance on ESRI basemap

images.

We reduced this data set still further in order to have similar
sample sizes among ecoregions, land allocation types and land-
forms. Ecoregions were US EPA Units (USEPA, 1999). Land alloca-
tion types were private unprotected, public and private protected
(from Conservation Biology Institute, 2006). With regards to land-
form, we distinguished valley bottom from slopes and ridges in the
two mountainous ecoregions (Blue Ridge and Ridge and Valley).
Landform was relatively homogeneous in the other ecoregions.
The resulting data set included 2694 100-m samples.

We evaluated our visual classification of stands with no canopy
disturbance against independent data from the North American
Forest Dynamics Project (http://daac.ornl.gov/NACP/guides/
NAFD_Disturbance_guide.html) (Goward et al., 2008). NAFD used
the Vegetation Change Tracker (VCT), an automated forest change
analysis algorithm, on temporally dense (annual or biennial) Land-
sat Time Series Stack (LTSS) of images and produces forest distur-
bance data products (Huang et al., 2010). They defined ‘‘persistent
forest’’ as forest stands that did not show evidence of disturbance
during the 1984–2009 analysis period. We compared 100-m plots
that we tallied as ‘‘undisturbed’’ to the NAFD persistent forest class
in the two ecoregions where their samples overlapped our 100-m
plots (Appendix C). This analysis revealed that plots that we classi-
fied as showing no evidence of disturbance were classified as per-
sistent forest by NAFD with accuracies of 90–100% in the Blue
Ridge, Ridge and Valley, and Cumberland Plateau ecoregions and
43–59% in the Southeast Plains and Piedmont ecoregions.

For Objective 3, we identified two types of disturbed forest
among the 35,000 100-m samples. Stands that had more open can-
opies, roads, or exposed soil were classified as ‘disturbed’. Those
dominated by coniferous trees, oriented in rows, typically in rect-
angular stands, with road access were classified as conifer planta-
tions. These two types were only adequately represented in the
Piedmont and Southeast Plains Ecoregions and the analyses were
restricted to these ecoregions. Sample sizes were 192 disturbed
stands and 841 for conifer plantations.
2.7. Predictor data

The biophysical gradients that have been found to influence
canopy structure in undisturbed forests in other studies relate to
climate, topography, and soils (Weiskittel et al., 2011; Larson
et al., 2008; Homeier et al., 2010). The sources of data used to rep-
resent the biophysical predictors (Appendix D) were selected to be
the best available with regard to availability across the study area,
grain of 1 km or less, representative of the date of lidar sampling
(2009), and had published methods and availability of accuracy
assessments (see Appendix D for data details). Climate data were
obtained from PRISM (Daly et al., 2008) for the time period
2005–2009. Climate metrics were calculated for two time periods:
annually and growing season; and are distinguished with a suffix
‘an’ and ‘gs’, respectively. Climate metrics are mean temperature
(TEMP), mean precipitation (PPT), mean actual evapotranspiration
(ET), mean potential evapotranspiration (PET), and an aridity index
(PET/PPT). PET and ET were calculated using basic water balance
equations (Dingman, 2001). Growing degree day (GDD) was calcu-
lated for months with average temperature >5 �C (Sork et al.,
2010). Soils data were selected from multiple sources to best rep-
resent soil texture, soil nutrient status, and water holding capacity.
Soil texture and waterholding capacity largely came from Miller
and White (1998) who developed raster data from STATSGO data
(Soil Survey Staff, 2012). The finer-scale SSURGO soils data are
available in raster form from the NRCS Gridded SSURGO data set.
We selected from this data set soil organic carbon (SOC0150),
available water stores (AWS015), rooting zone depth (ROOTZONE),
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and root zone available water storage (ROOTZONEWS). The CONUS
dataset also provided soil metrics of Soil silt fraction (SILT), soil
clay fraction (CLAY), soil sand fraction (SAND), depth to bedrock
(BED), annual waterholding capacity (AWC2), and soil bulk density
(BULK). Data for gross forest productivity (GPP) came from MODIS
which uses simulation modeling of biophysical processes using
input data from meteorological stations, satellite spectral data
and land-cover information. Data representing topography
included Aspect (Geesch et al., 2002), Topographic position index
(TPI) (Jenness, 2006), mean annual solar radiation (RAD), and a
measure of hillslope position (HILLSLOPE).

Time since disturbance or forest age is known to influence can-
opy structure (see Introduction). We obtained estimates of forest
age for our samples from Pan et al. (2011b). They mapped stand
age for the year 2000 at a 250 m grain size across the forested por-
tion of the US based on tree ages from Forest Inventory and Anal-
ysis Data and NASA Landsat Ecosystem Disturbance Adaptive
Procession System. Stated accuracies were generally ±10 years in
our study area. We basically controlled for stand age in the
analyses.

2.8. Analyses

Differences in mean values of canopy structure among ecore-
gions types were analyzed with ANOVA. The distributions of stand
age differed among ecoregions with older stands being present in
the three mountainous ecoregions. To control for stand age, we
restricted the comparison of canopy structure among ecoregions
to stands 30–70 years of age, which were well represented in all
the ecoregions. We chose this age range because forests in the SE
US were found to reach 80% of maximum height by 30 years of
age (Li et al., 2011a,b). We confirmed the small influence stand
age on tree height in this age range with regression analyses (see
Table 1). ANOVA was also used to evaluate differences in canopy
structure among disturbance types. Regression-based model selec-
tion techniques (Burnham and Anderson, 1998) were used to iden-
tify best biophysical models predicting canopy structure. Both
ANOVA and Regression techniques assume that residuals (error
terms) are independent, normally distributed and with constant
variance. We first evaluated if univariate models between the
response variable and each predictor variable were linear or best
fit with a second-degree polynomial. We then examined X–Y plots
for outlier observation and histograms for skew in the predictor
data. Where the predictor data included outliers or were skewed
in distribution, we transformed the predictor (log10), regressed
the response variables on the predictor data and inspected diag-
nostic plots (R v.3.0.0) for homogeneity of variance and normality
of the residuals, and leverage of individual observations.

Stand age was included in candidate models to determine its
relationship with canopy structure and to evaluate if stand age
was included in best models of canopy structure. This variable
explained 68% of the variation in metrics of canopy structure
Table 1
Models relating biophysical predictors to each canopy metric across the study area. DF: 10
predictors in the model.

Dependent
variable

Best model Adj R2 of
predictors

Adj
pred

Canheight Space FORAGE – TEMPAN – TEMPAN2

PPTGS – PPTGS2 – TPI – TPI2 – RAD SAND – BULK
0.27 0.38

Cancover FORAGE – TEMPAN – TEMPAN2 PPTGS –
PPTGS2 – TPI – TPI2 – RAD SAND

0.30 Spac

Highlow –TEMPAN – TEMPAN2 PPTGS – PPTGS2 –
TPI–TPI2 – RAD PH SAND

0.30 Spac
and was included in the best model only for canheight at the
study-area wide level. It was not included in best models for can-
cover or highlow at the study-area wide level nor for canheight
within any of the ecoregions. Thus, within the 30–70 year old for-
ests analyzed, stand age had little effect on canopy structure.

Linear and quadratic forms were evaluated for each predictor
and the form resulting in the best model was used in subsequent
analyses. For the assessment of the best overall models, all predic-
tors were considered except those found to be highly correlated
(r > 0.75). All analyses were performed in R (v.3.0.0). The models
were analyzed using ordinary least squares regression techniques.
The Akaike information criterion (AIC) was the primary criterion
for determining best models (Burnham and Anderson, 1998). The
AIC provides an estimate of the distance between the specified
model and some full truth or reality. We used the difference in
AIC values (DAIC) and Akaike weights of evidence (AIC weights)
to assess relative model strength (Burnham and Anderson, 2002).
We interpreted the cumulative Akaike weights as relative proba-
bilities of importance. However, AIC only provides a measure of
model strength relative to other models being examined; it does
not inform on the overall model goodness of fit. Hence, we used
the coefficient of determination (R2) as a measure of how much
variation in the response variables was explained by the best
model.

To determine if spatial autocorrelation was problematic in our
data, we examined Moran’s I correlograms of the model residuals,
since spatial autocorrelation violates the assumption of indepen-
dent residual values in regression analyses. Moran’s I is an index
of global autocorrelation ranging between �1 (negative correla-
tion) and 1 (positive correlation). Moran’s I was calculated and
standardized with the Z value. When spatial autocorrelation was
present (Moran-Index p 6 0.001), semivariograms were used to
determine the spatial relationship and generalized least squares
multiple regression models were used to incorporate the spatial
structure determined by the semivariogram. The GLS models
included the spatial structure in the model, thus controlling for
the influence of spatial autocorrelation on sample size. Software
used for these analysis was Spatial Analysis for Macroecology
(SAM) (v.2.0) (Rangel et al., 2006). We report adjusted R2 values
for the predictor values and for the predictors plus the spatial term.

Some level of collinearity is expected among biophysical vari-
ables and this can inflate the variance of coefficient estimates in
the model. We reduced correlation between predictors and their
squared forms (used to represent nonlinear relationships) by cen-
tering the values on their means before squaring them. Addition-
ally we assessed the Variance Inflation Factors (VIF) of terms in
the best models and report them. A VIF of 1 means that there is
no correlation among a predictor and the remaining predictor vari-
ables, and hence the variance of coefficient is not inflated. The gen-
eral rule of thumb is that VIFs exceeding 4 warrant further
investigation, while VIFs exceeding 10 are signs of serious multi-
collinearity requiring correction.
and 2705. VIF is variable inflation factor and is reported for the highest value among

R2 of
ictors + space

F-statistic P-value < VIF Variation explained
by forest age (adj R2)

100 2.2e�16 2.98 0.06

e not significant 126 2.2e�16 2.74 0.08 But not sig in final
model

e not significant 130 2.2e�16 2.33 0.08 But is not in the best
model
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3. Results

3.1. Correlation among canopy metrics

The canopy structure metrics were moderately correlated indi-
cating that they carried overlapping information. Correlation coef-
ficients for canheight, cancover, and highlow were between 0.34
and 0.64 (Appendix E). Tall forests were generally higher in canopy
cover and had a higher ratio of cover in the upper third of the can-
opy relative to the lower third. Shannon was highly correlated with
canopy height (0.93), indicating that the forest samples differed
more in number of 5-m height classes represented in the canopy
rather than the proportional abundance of cover among height
classes, thus it was dropped.
3.2. Mean and variation canopy structure across ecoregions

Canopy structure for stands of similar age differed substantially
among the ecoregions in the study area. The Blue Ridge and Central
Appalachians ecoregion had the highest levels of canheight, can-
cover, and highlow (Fig. 4 and Appendix F). The Ridge and Valley
ecoregion had slightly lower values, but the differences were gen-
erally not significant. The Piedmont and Southeast Plains Ecore-
gions were typically significantly lower in these metrics than the
other ecoregions. Differences between the highest and lowest val-
ues were substantial: canheight (25%), cancover (18%), and high-
low (212%).

The tallest forests were disproportionately located within the
Blue Ridge, Ridge and Valley and Central Appalachians Ecoregions
and on public lands (Fig. 5). Forests 40–50 m in height were largely
located in Great Smokey National Park and the surrounding
national forests. National forests in the Central Applications Ecore-
gion also support these tall forests. The Southeast Plains and Pied-
mont ecoregions had relatively few samples with tall forests and
those samples were primarily on public lands.
Fig. 4. Comparison of frequency distributions of canopy structure metrics among
ecoregions for (A) canopy height, (B) canopy cover, and (C) ratio of cover in the
upper third of the canopy to the lower third. Units are (A) meters, (B) percent cover,
and (C) dimensionless ratio.
3.3. Biophysical predictors of canopy structure

Climate predictor variables that were highly correlated (>0.75)
were TEMPAN, TEMPGS, PETAN, PETGS, ETAN, ETGS, and GDD.
Among these, we chose to use TEMPAN in the analyses. Topo-
graphic predictors were not highly correlated. Among soil predic-
tors, ROOTZONE, ROOTZONEWS, and AWS0150 were highly
correlated and ROOTZONEWS and AWS0150 were excluded from
the analyses.

Stand age (FORAGE) was included as a candidate variable in the
models to control for its effects on canopy structure. The canopy
structure metrics were positively correlated with stand age, but
the relationship was weak, explaining 6–8% of the variation in
the canopy structure metrics in the study area wide analyses
(Table 1, Appendix G)). Moreover, FORAGE was not included as a
predictor in the best models for cancover and highlow. Spatial
autocorrelation was present and controlled for in the canheight
model but was not significant in the cancover and highlow models.

Across the study area, the canopy structure metrics were most
consistently correlated with a subset of biophysical predictors.
These included TEMPAN, PPTGS, TPI, RAD, and SAND (Table 1,
Appendix H). The relationship between canheight and TEMPAN,
for example, was unimodal, increasing to about 12 �C then decreas-
ing and flattening at about 19 �C (Fig. 6a). There was considerable
scatter in canopy height across the range of temperatures
(R2 = .16). Samples within ecoregions were relatively nonoverlap-
ping across the regional temperature gradient, with coolest to
warmest being: Central Appalachians, Ridge and Valley, Blue Ridge,
Piedmont, Southeast Plains. Thus, TEMPAN decreased to the north
and with elevation (Fig. 7). The best biophysical predictor model
for canheight included TEMPAN, PPTGS, TPI, RAD, SAND, and BULK
and explained 27% of the variation (Table 1). Locations highest in
canheight were intermediate in temperature, growing season pre-
cipitation, topographic complexity; were on sandy soils; and were
lower in radiation and bulk density of soil. The results for cancover
and highlow were similar to those for canheight in terms of best
biophysical models (Table 1). Cancover decreased more steeply
with TEMPAN (R2 = .24) (Fig. 6b) as did highlow (R2 = .24).

The strength of the best biophysical models differed substan-
tially among ecoregions. For example, models for canheight for
the Ridge and Valley and the Central Appalachians explained 60%
and 45% of the variation (Table 2). Only 13% of the variation in can-
height was explained for the Southeast Plain ecoregion. Variation



Fig. 5. The location of the tallest forests along the transect and the representation of tall forests among public and private lands and ecoregions.
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explained was intermediate for the Blue Ridge (29%) and Piedmont
(29%). This difference in strength of best biophysical models was
also true for cancover, and highlow (results not shown). Strength
of models among ecoregions varied with the range of the biophys-
ical predictors represented within the ecoregions. The Central
Appalachians, Ridge and Valley, and Blue Ridge generally spanned
greater ranges of temperature, precipitation, aridity index, eleva-
tion, and slope than did the Piedmont and Southeast Plains Ecore-
gions. Spatial autocorrelation was not present in any of the
ecoregion biophysical models. The VIF levels were well within
acceptable limits for all of these analyses (Tables 1 and 2).

3.4. Canopy structure among disturbance types

Disturbed and plantation disturbance types were poorly repre-
sented in the Central Appalachian, Ridge and Valley, and Blue Ridge
ecoregions. Thus, only samples from the Piedmont and Southeast
Plains Ecoregions were analyzed. Undisturbed samples were
higher than plantation and disturbed samples in canheight, can-
cover, and highcancover (Fig. 8 and Appendix I). Plantation was
generally intermediate between the undisturbed and disturbed
classes in these canopy metrics. Compared with disturbed samples,
undisturbed samples were 30% higher in canheight, 15% higher in
canopy cover, and 18% higher in cover of the upper third of the
canopy.

4. Discussion

Asner et al. (2010, 2011); Bolton et al. (2013), and this study
represent the first applications of airborne lidar to regional gradi-
ents in canopy structure and potential underlying biophysical con-
trolling factors. This technology allows quantification of canopy
structure attributes that are difficult to obtain in the field and that
are likely to be important determinants of ecosystem function and
biodiversity. We represented 3-dimensional canopy structure in
terms of the height of the canopy, total canopy cover, the vertical
distribution of canopy cover. Vertical distribution was represented
as the number of 5-m height classes above the forest floor with
canopy presence (richness) and a diversity index that integrates
number of canopy height classes represented and the proportional
abundance of cover among the height classes. We also developed
new metrics to account for the proportion of total cover present
in the lower third, middle third, and upper third of the canopy,
controlling for canopy height. Recent studies have documented
the value of vertical distribution of vegetation for biodiversity in
forests relatively equal in canopy height (Swatantran et al., 2012;
Whitehurst et al., 2013). Our samples varied substantially in can-
opy height, thus we defined the three vertical height classes
(low, mid, high) within a sample relative to the total height of
the forest in that sample. Most of the difference in samples was
between the low and high canopy classes, thus we expressed this
difference as the ratio of high to low canopy cover.

We found that, controlling for stand age, canopy structure var-
ied substantially across the study area. Among ecoregions, the Blue
Ridge ecoregion, which includes the Smoky Mountains studied by
Whittaker (1956), and the Central Applications Ecoregion had the
fullest development of canopy structure. Samples in these ecore-
gions were characterized by tall forests with high total cover and
proportionally more of the canopy cover in the upper strata. For-
ests in the Central Appalachian and Ridge and Valley ecoregions
were similar in structure to the Blue Ridge. Forests in the Piedmont
and Southeast Plains Ecoregions were shorter in height, more open
in canopy cover, and had proportionally more cover in the lower
canopy strata. Canopy metrics in the mountain ecoregions were
9–25% higher than in the Southeast Plain Ecoregion: in the case
of the ratio of high to low canopy cover, the difference was 212%.



Fig. 6. Relationships between TEMP and canheight (a) and canopy cover (b) across
ecoregions. black – Central Appalachians, red – Ridge and Valley, green – Blue
Ridge, purple – Piedmont, light blue – Southeast Plains.
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Consistent with our conceptual model on the drivers of canopy
structure, biophysical factors explained significant variation in
canopy metrics. Across the study area, canopy height, canopy
cover, and the ratio of high to low canopy cover were greatest in
samples with: intermediate levels of temperature, precipitation,
and topographic position; higher levels of sand/silt content in soil;
and lower levels of solar radiation, PH, and soil bulk density. The
samples with more fully developed canopy structure were located
in the more northerly and mountainous portions of the study area
(e.g., the Central Appalachian, Ridge and Valley, and Blue Ridge
ecoregions). Locations with intermediate elevations (ca 1100 m),
in the low mountains of the Central Appalachians and Ridge and
Valley and the valley bottoms and lower slopes of the Blue Ridge,
had the intermediate levels of temperature, precipitation, steeper
slopes, and lower levels of radiation where canopy structure was
most developed. The Piedmont and especially the Southeast Plains
had higher temperatures, higher solar radiation, higher aridity
index, lower precipitation and higher sand content in soil associ-
ated with shorter forests with lower canopy cover and relatively
more of the cover in the lower third of the canopy.

The hypothesis that canopy structure varies with environmen-
tal favorableness is the basis for the widely used method in for-
estry of quantifying the productivity of a site based on the height
of trees on the site at a given age (e.g., site index) (Skovsgaard
and Vanclay, 2008). Weiskittel et al. (2011) confirmed this rela-
tionship finding that 78% of the variation in site index across wes-
tern North America was explained by climate and 70% by gross
primary productivity. Additional evidence on the influence of bio-
physical factors on canopy structure comes from Fang et al. (2012)
who found that tree diameter, tree height, and total basal area all
increased significantly with summer temperatures in temperate
forests in northeast China. Substrate geology or age predicted car-
bon stocks in forests in the Amazon and in Hawaii (Asner et al.,
2010, 2011). Additionally, Larson et al. (2008) found that an index
of old-growth forest structural complexity was positively related
to site productivity in coniferous forests in Western Washington.
Similarly, Boucher et al. (2006) concluded that in productive sites
in boreal forests of Quebec, Canada, forest stands become
uneven-sized earlier than unproductive stands and also maintain
greater diameter diversity. Finally, Moles et al., 2009 found that
precipitation in the wettest month was the best biophysical predic-
tor of plant height globally, explained 26% of the variation.

The effects of biophysical factors on canopy development likely
vary with the level of the limiting biophysical factor relative to the
tolerances of forest vegetation. For example, site index has been
found to asymptote for given tree species, presumably because fac-
tors other than site quality set limits on maximum tree height in
the most favorable sites (Skovsgaard and Vanclay, 2008, Fig. 1).
Evidence for a positive flattening relationship between site index
and gross primary productivity comes from Weiskittel et al.,
2011 who found that tree height increased steeply between 3
and 15 Mg C/ha/year but showed no relationship with GPP at levels
of GPP > 15 Mg C/ha/year. Similarly, canopy cover is known to
asymptote in increasingly favorable sites because light extinction
sets upper limits on the benefits for photosynthesis of increased
leaf area (Chapin et al., 2011). Further evidence comes from com-
paring the results of Bolton et al. (2013) with our results. In the
Canadian Boreal Forest where gross primary productivity (GPP) is
relatively low (about 2–12 Mg C/ha/year), Bolton et al. (2013)
found that canopy cover was significantly positively related to
GPP in six of the ecoregions and correlation coefficients were rela-
tively high (0.27–0.74). In our southeastern US study area where
GPP is among the highest in North America (10–19 Mg C/ha/year)
we found no relationship between canopy structure and GPP.

In addition to being high in GPP, we found that levels of temper-
ature and precipitation were likely at threshold levels in the study
area. Canopy structure had a unimodal relationship with mean
annual temperature and with precipitation, suggesting that our
study area may be at the asymptote in the continental gradient
of between canopy structure and the interaction of temperature
and precipitation. If so, studies in colder or drier environments
would be expected to find stronger relationships, as did Bolton
et al. (2013) with regards to temperature.

Another obvious factor influencing the strength of models of
biophysical factors and canopy structure is the range of biophysical
conditions in the samples. Both our study and Bolton et al., 2013
had the strongest models in ecoregions with the widest span in
biophysical predictors. In our case, biophysical factors explained
only 13% of the variation in canopy structure in the relatively
homogenous Southeastern Plains Ecoregion, but 60% of the varia-
tion in the mountainous and heterogeneous Blue Ridge ecoregion.

More studies are needed to delineate the strength and shapes of
the relationships between canopy structure and biophysical pre-
dictors across subcontinental to continental areas. The evidence
presented above suggests that these relationships can be nonlinear
with flattening or slightly unimodal functions.

4.1. Considerations

Canopy structure is known to vary with stand age (time since
the last stand-initiating disturbance). We drew on a published data
set (Pan et al., 2011a,b) to derive estimates of stand age for our
samples and then controlled for stand age in the analyses. Our
samples were 100-m cells, however, and unknown level of error
in stand age for our samples due this difference in spatial resolu-
tion. Pan et al. (2011a,b, pg. 719) report that most of the standard
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deviations in stand age in eastern forests were around 10 years,
which we consider reasonably good for this application. Accurate
age data collected within our samples, however, would have
allowed for more rigorous control of stand age effects on our
analyses.

A second consideration is that we draw inference about bio-
physical correlates with canopy structure only for those biophysi-
cal settings that are currently forested. Land use may have
preferentially converted the most productive biophysical settings
to agriculture, pasture, or other non-forest cover types, as was
found by Asner et al. (2010) in Amazonia. If so, such biophysical
settings would not have been included in our samples and the pos-
sible positive effect of such settings on canopy structure would not
have been detected.
Fig. 7. Maps of predictor variables, (a) annual temperature (b) slope (c)

Table 2
Models relating biophysical predictors to canheight within ecoregions.

Ecoregion N Best Model Adj R2 of
predictors

Central Appalachians 133 TEMPAN PPTGS – TPI – ASPECT SAND 0.45
Ridge and Valley 255 TEMPAN PPTGS PPTGS2 – RAD –

ASPECT – ROOTZONE PH SILT–
0.60

Blue Ridge 638 –TEMPAN – TEMPAN2 – PPTAN –
PPTAN2 – TPI –TPI2 RAD – ASPECT
SAND –PH – HILLSLOPE

0.29

Piedmont 857 FORAGE TEMPAN – TEMPAN2 –
PPTGS PPTAN2 – TPI – RAD SAND –
PH – SILT

0.29

Southeast Plains 872 TEMPAN – TEMPAN2 PPTGS –
TPI TPI2 ASPECT – RAD

0.13
4.2. Implications

The major conclusions of this study are:

� Canopy structure of ‘undisturbed’ forests varies substantially
across the southeastern US, with average canopy height, for
example, being 25% greater in the Blue Ridge ecoregion than
then Southeastern Plains Ecoregion.
� Gradients in climate, topography and soil factors likely contrib-

uted to these differences in canopy structure across the region.
Canopy height, for example, was greatest in locations that were
intermediate in temperature, growing season precipitation, and
topographic complexity; were on sandy soils, and were lower in
radiation, PH, and bulk density of soil.
solar radiation (d) aridity (e) elevation (f) topographic complexity.

Adj R2 of predictors +
space

F-statistic P-value < VIF Variation explained
by forest age
(adj R2)

Space not significant 23.4 2.2e�16 4.3 0
Space not significant 47.6 2.2e�16 2.25 0.02

Space not significant 17.1 2.2e�16 2.32 0

Space not significant 34.3 2.2e�16 2.7 0.03

Space not significant 17.6 2.2e-16 1.5 0



Fig. 8. Differences in canopy metrics among undisturbed, disturbed and plantation
forests. Error bars denote on standard deviation. ‘‘L’’ is lower third of canopy, ‘‘M’’ is
middle third of canopy, and ‘‘U’’ is upper third of canopy.
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� Disturbance strongly influenced canopy structure in the study
area. Conifer plantations, for example, were 30% lower in can-
opy height than ‘undisturbed’ forests.

One implication of these results is that current estimates of eco-
logical properties related to canopy structure can be improved
through consideration of biophysical gradients on canopy develop-
ment. Forests in the southeast US play a particularly important role
in the US Carbon cycle. Owing to favorable temperature and mois-
ture conditions, the Southeast US has some of the fastest-growing
forests in North America (Goetz et al., 2012). The region has been,
and continues to be, subject to intensive human management and
land-use change, both cropland establishment and cultivation and
cropland abandonment and subsequent forest regrowth (Chen
et al., 2006). This frequent disturbance and rapid regrowth has
led to the southeast US having with the greatest increase in net pri-
mary productivity in the 1980s and 1990s among regions in North
America (Hicke et al., 2002). Consequently, this part of the US is
thought to be the largest carbon sink across the conterminous US
(Pacala et al., 2001, Chen et al., 2006). Thus, accurate carbon
accounting in this regional is vital to national estimates.

Carbon accounting in this region needs to take into account fast
overall growth rate, spatial variation in forest structure and growth
rates due to biophysical gradients, and disturbance history. Current
field-based methods estimate tree stocking densities from Forest
Inventory and Analysis field plots and convert these data to esti-
mates of biomass and carbon using allometric equations (Birdsey
et al., 2000). These methods are not designed to take into account
biophysical gradients between plots and estimates are considered
accurate only at the spatial scales of counties or above.

Estimates of carbon storage could be improved by integrating
Landsat, lidar, and field sampling methods largely along the frame-
work of Asner et al. (2010, 2011). As summarized by Goetz et al.
(2012), high frequency analyses of Landsat imagery has been used
to reconstruct forest disturbance history with unprecedented tem-
poral detail (Huang et al., 2009, 2010; Kennedy et al., 2010; Powell
et al., 2014). These methods allow wall-to-wall mapping of forest
disturbances at sub-hectare spatial resolution (Li et al., 2009a,
2009b). As demonstrated in this paper, airborne lidar remote sens-
ing allows assessment of structure at fine spatial resolution along
transects that bisect gradients in biophysical factors and land
use. Stratified random sampling of forest structure with lidar
across biophysical and land use gradients can be used to derive
carbon estimates for the fine-scale land cover type and seral stage
classes derived from high-frequency Landsat analysis leading to
much more accurate mapping of carbon stocks than is currently
available for the southeast region. Application of such methods in
Hawaii found that total aboveground carbon was 56% lower than
estimates that ignored gradients in soils, climate, and disturbance.
Moreover, knowledge of local variation in forest growth and stat-
ure would allow carbon management strategies to be tailored to
these gradients.

The southeast US is also of high interest for biodiversity and
conservation. Tree and amphibian diversity are the highest in
North America (Currie, 1991). Many of the rare or sensitive species
here are associated with forests of complex canopy structure,
including the guild of forest interior neotropical migrant birds that
have been the subject of long-term conservation efforts (Robbins,
1980, Sauer et al., 2011). The vertical layering of forest canopies
is an element of niche partitioning for some species of plants and
animals and influences species abundances and community diver-
sity (MacArthur and MacArthur, 1961; Carey, 1998; Hunter, 1999;
Bell et al., 1991). Knowledge of variation in the capacity of forests
to support complex structure would improve conservation and
management efforts aimed at protecting such species. The loca-
tions of the especially tall forests identified in our results may be
particularly important to target for conservation measures.

A third implication of this study relates to evaluation of lidar
airborne and satellite campaigns. The need for remotely sensed
lidar data over regional to global areas has been widely recognized
(Lefsky et al., 2002). Various current studies (including this one)
are aiming to assess the types and quality of information about
ecological response variables that can be derived from different
lidar instruments, platforms, and spatial scales (Vierling et al.,
2008; Goetz and Dubayah, 2011). Such knowledge would provide
guidance to remote sensing agencies as to design criteria for future
lidar-based campaigns. One implication of our results along with
those of Asner et al. (2010, 2011), and Bolton et al. (2013) is that
such tests should be done with reference to continental gradients
in canopy structure and biophysical gradients. Given the nonlinear
relationships described above, the strength of relationships
between canopy structure and biophysical predictors within an
ecoregion will likely vary with mean and range of biophysical pre-
dictors within that ecoregion relative to broader scale gradients.
Hence, conclusions about the information derived from a particular
lidar system may be erroneous if only locations with weaker
expected relationships are sampled. This situation is not unique
for lidar. Modis GPP, for example is known to be less accurate in
wet tropical forests where plant growth is less constrained by bio-
physical factors than other biome types (Running et al., 2004).
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Careful design of sampling strategies integrating field, lidar, and
satellite data have considerable promise for mapping forest struc-
ture continuously at fine grain across regional extents and greatly
improving current understanding of carbon budgets, biodiversity,
fuel loading and other ecological response variables.
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