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Abstract

Previous attempts to quantify topographic controls on vegetation have often been frustrated by issues concerning
the number of variables of interest and the tendency of classification methods to create discrete classes though
species have overlapping property sets (niches). Methods of fuzzy k-means classification have been used to address
class overlap in ecological and geographical data but previously their usefulness has been limited when data sets
are large or include artefacts that may occur through the derivation of topo-climatic attributes from gridded digital
elevation models. This paper presents ways to overcome these limitations using GIS, spatial sampling methods,
fuzzy k-means classification, and statistical modelling of the derived stream topology. Using data from a ca.
3600 km2 forested site in the Greater Yellowstone Area, we demonstrate the creation of meaningful, spatially
coherent topo-climatic classes through a fuzzy k-means classification of topo-climatic data derived from 100 m
gridded digital elevation models (DEMs); these classes were successfully extrapolated to adjacent areas covering a
total of ca. 10 000 km2. Independently derived land cover data and middle infrared corrected Landsat TM derived
estimates of Normalised Difference Vegetation Index (M_NDVI) at 575 independently sampled sites were used to
evaluate the topo-climatic classes and test their extrapolation to the larger area. Relations between topo-climatic
classes and land cover were tested by χ2 analysis which demonstrated strong associations between topo-climatic
class and 11 of the 15 cover classes. Relations between M_NDVI and topo-climatic classes proved to be stronger
than relations between M_NDVI and the independent cover classes. We conclude that the fuzzy k-means procedure
yields sensible and stable topo-climatic classes that can be used for the rapid mapping of large areas. The value of
these methods for quantifying topographic controls on biodiversity and the strength of their relations with computed
NDVI values warrant further investigation.

Introduction

The conservation of biodiversity remains one of our
greatest challenges as we search for models of sustain-
able human settlement and economic development.
Hansen and Rotella (1998) recently argued that in
order to improve landscape management we need to
quantify the links between key abiotic factors, eco-
logical processes, vegetation and land use. Similarly,

Mackey (1996) has argued that we need to be able to
investigate how projected changes in land use and en-
vironmental conditions may affect biodiversity. These
aims require understanding based on sufficient appro-
priate data and the tools to analyse them properly.
Until recently our ability to reach sufficient under-
standing has been limited by the multi-scaled and
multivariate nature of key biophysical processes, large
numbers of species, the relative paucity of biological
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data and the need to extrapolate from point samples
to larger areas. The advent of Geographic Information
Systems (GIS), Remote Sensing (RS), and related dig-
ital data sets provides new opportunities to circumvent
these obstacles (e.g., Gerrard et al. 1997).

Mackey (1996) applied elements of hierarchy the-
ory (Koestler, 1967) to ecological phenomena as a
means of coping with scale effects. Figure 1 shows
five possible scales at which environmental regimes
can be modelled and gives examples of the processes
and factors operating at each scale for a forested site
in a humid, erosional landscape. Primary environ-
mental regimes (PERs) determine the distribution of
light, heat, water and mineral nutrients for photosyn-
thesising plants, and the processes at higher levels set
constraints for those operating at lower levels. There
is some feedback up this hierarchy and biologically
mediated processes will usually dominate in defin-
ing the effective environment for a given organism.
Most of the ecological research this century has been
conducted at the global-, micro-, and nano-scales, al-
though an increasing number of recent studies have
examined the controls on vegetation patterns and bio-
diversity at meso- and topo-scales.

The work at these two intermediate scales has
capitalized on the increasing availability of high-
resolution, continuous, gridded Digital Elevation
Models (DEMs) and the development of new com-
puterized terrain analysis tools as exemplified by the
PCRaster (Wesseling et al., 1996) and TAPES tool
sets (Wilson and Gallant, 1998). DEMs with grid sizes
of 100 m, 30 m, 10 m, 5 m, and even 1 m res-
olution can be obtained from which many different
topographic attributes can be derived for every grid
cell as a function of its surroundings (Burrough and
McDonnell 1998; Burrough et al., 2000). Topographi-
cal attributes such as drainage networks and ridgelines
that affect the distribution of water, and slope, aspect,
and horizon shading that modify the amount of solar
radiation received at the surface, have important eco-
logical consequences in many landscapes (Moore et al.
1991, 1993). These topo-climatic attributes can easily
be derived as gridded but continuous surfaces from
DEMs using GIS: the challenge is to determine if this
information usefully quantifies topographic controls
on vegetation patterns.

Mapping vegetation requires two components, first
a meaningful classification and second a means of ex-
trapolating the classes to areas. For practical purposes
such as the monitoring and management of natural
forest stands over large areas it is necessary to re-

duce the multivariate abiotic and biotic attributes to
a meaningful, but manageable number of classes or
relationships that have a clear spatial expression. The
range of methods for relating abiotic factors to veg-
etation response at sample sites includes aerial photo
interpretation, the use of logical relationships and ‘ex-
pert knowledge’ (e.g., the Ellenberg numbers used
in northwest Europe to indicate species-site affinities
– Ellenberg et al. 1992), gradient and site analysis
(cf., Austin et al. 1984, Tilman 1994), multivariate
statistical methods such as principal component analy-
sis and correspondence analysis (e.g., Jongman et al.
1995), logistic regression (Hosmer and Leemshow
1989), and more recently neural networks (Fitzger-
ald and Lees 1996). A major drawback of many of
these methods is that of necessity they may be lim-
ited to a relatively small number of data points or
small areas. Another problem in the case of ‘expert
knowledge’ and methods such as aerial photograph
interpretation is that the methods may not be truly re-
producible – see Albrecht (1992) for a discussion on
the problems of ecological modelling on the basis of
phenomenological investigations.

Extrapolating classes to areas is usually done in
one of two ways – either the classes are interpolated
from field observations (e.g., Rossi et al. 1992), or the
classes make use of data that vary continuously over
space. In many cases, the current operational method
for mapping vegetation is to use remotely sensed infra
red data, and from these to derive vegetation indices
to indicate vegetation response through ‘greenness’ –
the so-called NDVI (Normalised Difference Vegeta-
tion Index – cf., Walsh et al. 1994). Field checks are
used to determine relations between these indices and
what is on the ground (field samples) and these are
used to set up a training set of cells so that all other
cells in the study area can be classified.

There are several problems with using RS data for
mapping vegetation. IR reflectance data are passive at-
tributes; their values not only depend on time of year
(which could be useful), but also on cloud cover and
moisture stress, and each observation in time needs
to be geographically registered. In short NDVI is but
one possible, short term indicator of vegetation re-
sponse to ecological driving forces that are considered
in ground-based ecological classifications. It would be
useful to have a spatially contiguous, high resolution,
cheap attribute that provides information on some of
the more important long term ecological conditions
affecting plant growth.
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DEMs provide ground based data, which are usu-
ally strongly spatially correlated, so the results of
ecological classifications based on the derivatives of
elevation data may be both ecologically sensible and
mappable. Recent work in North America on the re-
lations between topographic controls and the spatial
distributions of boreal forest tree species has exam-
ined the extent to which meaningful topographic and
climatic differences can be adequately captured by
digital terrain analysis (Mackey et al. 2000; Nemani
et al. 1993; Walsh et al. 1994). Mackey et al. (2000)
obtained the spatial distributions of Jack Pine (Pinus
banksiana), trembling aspen (Populus tremuloides),
and black spruce (Picea mariana) from published air-
photo interpreted (API) maps, and compared them
with 20 m gridded data sets of incoming shortwave
solar radiation, topographic wetness index, and local
topographic position. The local topographic position
attribute varied from 0 to 1 based on the proportion of
cells in a user-defined circle that were lower than the
centre cell. Using standard combinatorial analysis in
GIS, the first two attributes were paired with this lo-
cal topographic position attribute and used to generate
two sets of 10 000 environmental domains by dividing
each variable into 100 equally spaced classes across
its range. An observed probability of occurrence of
each of the target tree species was then calculated for
each environmental domain by dividing the frequency
of occurrence of the target species by the frequency of
occurrence of all grid cells. The calculated probabili-
ties were used to identify the environmental conditions
where each of the target species is more or less likely
to dominate. The results were promising from the
point of view that the distribution of the three tree
species in the 2-D environmental domains was consis-
tent with field observations and patterns noted in the
ecological literature.

The approach of Mackey et al. (2000) cannot eas-
ily be extrapolated to other species and/or regions,
however, because of four sets of factors.
(1) It requires high-resolution, independently derived,
and accurate maps of existing vegetation across large
areas. There are at least two problems here. First, most
published regional maps of predicted vegetation utilize
some combination of topographic variables derived
from DEMs and spectral reflectance variables derived
from satellite imagery (which introduces circular rea-
soning for the problem tackled in this paper). Second,
the likelihood that individual species have overlap-
ping property sets (niches) and the role of disturbance
(succession) and biotic (competition) factors may im-

pose fundamental limits on the success of predictive
mapping in many landscapes (Franklin 1995).
(2) Using simple combinatorial analysis means that
because of the huge number of potential combinations,
only two variables can be analysed at a time. In prac-
tice, this is insufficient because there are many topo-
graphic attributes that have ecological significance,
and the numbers of classes created by combinatorial
analysis grow exponentially. For example, using eight
attributes (as we do in this study) each with 10 equally
spaced sub-classes would yield 100 million logically
separate combinations (108). Each of these classes has
by definition no overlap with its neighbours, yet it is
common knowledge that vegetation associations often
gradually merge from one to the other, both in terms
of composition and spatial extents. Clearly there is a
requirement for a reproducible, data driven method of
abiotic landscape classification that can create a rea-
sonable number of classes meaningful in biotic terms
that preserve important features of inter-site variability
and overlap while only requiring a modest computa-
tional effort. In previous work, Mackey et al. (1988)
had used agglomerative factor analysis to identify
clusters (groups of grid cells that shared similar PER
index values) and represent their relative inter-group
similarity as a non-overlapping hierarchy, but they had
not included detailed information on the spatial varia-
tion of topographical control variables, which is the
aim of this paper.
(3) Non-systematic and systematic errors occurring in
DEMs may confound the expected relationships be-
tween vegetation patterns and terrain-controlled site
conditions (cf., Wheatley et al. 2000). These problems
may be amplified of course when first- and second-
order derivatives like slope or convexity are calculated.
Additional problems may arise when the analysis is
limited to only two or three variables because the key
topographic variables used to construct the domains
must be selected prior to the environmental domain
analysis.
(4) Finally, there are the issues of locating plots accu-
rately and precisely with reference to the topographic
data and the possibility that the field observations rep-
resent areas smaller than the spatial resolution of the
topographic data because the vegetation composition
varies over short distances (e.g., Franklin et al. 2000).
This is tricky because coarser grid resolutions reduce
the magnitude of the first difficulty, but increase the
likelihood of mis-classification through short range
variation.
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Figure 1. Scales at which various biophysical processes dominate calculation of primary environmental regimes (from Mackey 1996).

The first two problems are potentially the most se-
rious and point to the need to use some other method
to set up the classification. This method must be com-
putationally tractable, and ideally should provide an
easy-to-interpret classification that offers continuity in
both attribute and geographic space that is not con-
strained by grid resolutions nor by the size of the data-
base. Methods of fuzzy k-means classification have
been used by other workers to overcome the problem
of class overlap (problem 1) but until recently their
usefulness has been limited to small data sets (prob-
lem 2) and by artefacts induced by deriving attributes
from gridded DEMs (problems 3 and 4).

This paper describes the creation and testing of
meaningful bio-physical topo-climatic classes that
overcome these limitations by using geographical in-
formation systems (GIS), spatial sampling methods,
statistical modelling of the derived stream topology,
and fuzzy k-means classification. Using GIS makes it
possible to handle very large amounts of spatial data,
and to perform a wide range of computations uni-
formly to spatial or attribute data so that new attributes
can easily be computed at the meso- and topo-scales
identified in Figure 1.

The method of fuzzy k-means serves as an ex-
ploratory technique that suggests how best to divide
the landscape into meaningful groups, both in terms

of the number of classes and their definition. Given
a suitable set of polythetic, overlapping classes, the
allocation of an individual z to each of a given set
of classes is expressed not in terms of a binary ‘Yes’
or ‘No’, but by a set of continuous memberships
0<µA(z)<1 to each of the classes, that add up to 1
(Bezdek et al. 1984; Vriend et al. 1988; Burrough
and McDonnell, 1998). The value of µA(z) presents
a way of giving a graded answer to the question ‘what
is the affinity of observation z with the central concept
of class A?’. Note that the fuzzy k-means approach
initially says nothing about geographical contiguity
of these optimal, overlapping classes, though if the
source data are spatially correlated (as most deriva-
tives from DEMs are) then it is likely that the resulting
membership values will also be spatially correlated
(Burrough et al. 1997).

Finally, the computed topo-climatic classification
is compared with an independently derived land cover
data set to investigate the relationships between these
topographically-based classes and biological diversity.

To sum up, the questions we address in this pa-
per are not whether the methods presented here give
a better ecological classification of forest types than
multivariate clustering or logistic models, but whether
the fuzzy k-means means of classifying the derivatives
of DEMs, (a) provides a useful, generic and mappable
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Figure 2. Location of the study area in the West Yellowstone National Park, in southern Montana. The numbers on the detailed map show:
1. The whole 10 000 sq km study area; 2. The central area of 3500 sq km used for setting up the classification; and 3. The area used to illustrate
the source data and fuzzy k-means results given in Figures 3, 6 and 7.

procedure that is ecologically meaningful for vege-
tation response in the long term, (b) makes sense in
terms of local field observations and (c) scores at least
as well or better than the current NDVI methods.

Study area

We used a 10 000 km2 area that includes the 6500 km2

Greater Yellowstone study area surveyed by Hansen
and Rotella (1998) in their pilot study of bird abun-
dance and diversity. This rectangular-shaped study
area combines parts of the Gallatin (GNF) and Targhee
National Forests (TNF) and Yellowstone National
Park (YNP), and includes the upper catchments of the
Gallatin, Madison, and Henry’s Fork Snake Rivers
(Figure 2). This region is very diverse. The growing
season in the high elevation areas of YNP may be
as short as two months and the young volcanic soils
are very infertile and subject to summer drying (De-
spain, 1990). These areas are dominated by a crown
fire vegetation system with large wildfires occurring
at approximately 250-year intervals (Romme, 1982).
Over 40 percent of YNP was burned in the exten-

sive fires of 1988 (Christensen et al. 1989) and many
of the native species are adapted to this disturbance
regime. Some species require periodic fire to pros-
per. This pattern can be contrasted with TNF to the
west of YNP where approximately 55% of the land-
scape has experienced clear-cut logging (Hansen and
Rotella 1998). However, the topography is much more
varied and the trees less amenable to harvest in the
GNF portion of the study area to the north of TNF
and YNP. The growing seasons in the lower valleys of
the Gallatin, Madison, and Henry’s Fork Snake Rivers
approach five months in length. The combination of
milder climate and deeper soils generates much higher
net primary productivity in these areas compared to
the surrounding uplands (Hansen and Rotella 1998).

The biological significance of different cover types
was investigated by Hansen and Rotella (1998) who in
1995 sampled approximately 100 species of breeding
birds at 97 field sites. They found that bird abun-
dance and richness increased by a factor of two as
one moved from lodgepole pine stands at higher to
lower elevations. In addition, cottonwood, aspen, and
willow stands had much greater bird abundance and
richness compared to other coniferous and herbaceous
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stand types. Finally, they determined that aspen is a
very important population source for yellow warblers
in contrast to cottonwood stands that act as a popula-
tion sink because of lower nest success rates caused
by the presence of larger numbers of predators. Based
on these findings, Hansen and Rotella (1998) hypoth-
esized that the controls on biodiversity in this region
included climate, topography, and soils in addition to
disturbance, patch dynamics and biotic interactions,
but they were unable to test this hypothesis because of
the difficulty of data collection and synthesis. One aim
of this paper is to build on their work and show how
landforms can be classified to help with: (1) the iden-
tification of the topo-climatic controls on land cover;
and (2) the development of methods that might be used
to generate improved maps of vegetation cover in this
region.

Data sources and computational procedures

Our approach has four key steps. First, we built a grid-
ded DEM for the study area and calculated selected
topographic attributes. Second, we took a moderately
large stratified random sample of the grid cells, ex-
tracted their attributes, and submitted this smaller data
set to fuzzy k-means classification. Third, the para-
meters of the fuzzy classes were used to classify all
unsampled cells on the basis of their topographic at-
tributes thereby creating gridded topo-climatic class
maps of large contiguous areas. Fourth, we com-
pared a moderately large data set of point-sampled,
spatially referenced vegetation cover classes and co-
located M_NDVI data with the crisped fuzzy classes in
order to evaluate the usefulness of the landscape clas-
sification as an independent predictor of vegetation
types.

The digital terrain model and derived attributes

A total of 156 7.5-min USGS 30 m DEMs and 12 0.5◦
by 1◦ USGS 1:100 000-scale hydrography files were
acquired and used with ANUDEM (Hutchinson 1989)
to construct a 100 m square-grid DEM. ANUDEM
takes irregular point data or contour data and creates
square-grid DEMs at user-defined resolutions. The
program automatically removes spurious pits within
user-defined tolerances, calculates stream lines and
ridge lines from points of locally maximum curvature
on contour lines, and (most importantly) incorpo-
rates a drainage enforcement algorithm to maintain

fidelity with a catchment’s drainage network (Hutchin-
son 1989). This process eliminated some but not all
of the systematic and non-systematic errors that were
present in the original USGS DEMs (as discussed
below).

Using PCRaster, eight topo-climatic attributes
were computed for each cell from the gridded DEM:
elevation, slope, profile curvature, plan curvature,
distance from ridgelines, total annual incident solar
radiation, topographic wetness index, and sediment
transport capacity index (Figure 3). All attributes can
be easily computed (see Burrough and McDonnell
1998; Moore and Wilson 1992, 1994; Moore et al.
1993, for algorithms). Total annual incident solar ra-
diation was computed instead of aspect, because the
latter is measured on a circular scale, and energy in-
put to the terrain is a related, but ecologically more
useful and interpretable attribute. The Topographic
Wetness Index (TWI) and Sediment Transport Index
(STI) were computed using the surface topology of
the DEM as determined by the well-known D8 algo-
rithm (Burrough and McDonnell, 1998; Moore et al.
1993). While TWI is defined as a natural logarithmic
attribute, the distance from ridgelines and STI were
converted to natural logarithms because their distrib-
utions were strongly positively skewed. As Table 2
shows, the correlations between these data are not
large and therefore they provide largely independent
contributions to the classification.

Data quality

No data are perfect and errors in DEMs may pro-
duce artefacts that will later show up as outliers in
the classification. In this case errors arose because of
differences in base heights between adjacent USGS
source DEMs. Thanks to the large difference in re-
lief, most errors were concentrated in the large flat
area that drains into Hebgen Lake (Figure 4). The first
six topographic attributes listed above were computed
directly from the derived 100 m DEM and given the
data ranges, these are not very sensitive to small, lo-
cal variations in elevation. Moreover, the affected area
contained very few sites where vegetation cover had
been recorded so errors arising in these attributes had
little impact on the final evaluation (Figure 9).

Topographic wetness and sediment transport ca-
pacity indices, however, are very sensitive to the
presence of errors in elevation data in areas of low
relief, particularly when using the D8 algorithm (Bur-
rough and McDonnell 1998; Wilson et al. 2000). This
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Figure 3a and 3b. Samples taken from area 3 in Figure 2 of grey scale maps of input data used for the fuzzy k-means classification. The
elevation map is shown as a 3D image at the top left in Figure 3a – the rest are two-dimensional figures. Grey scales range from low (white) to
high (black), except for ln(Ridge proximity) [top left in Figure 3b] which has reversed tone for clarity. Size of area is 20 × 16.3 km.

algorithm routes flow from each cell to one of the
eight surrounding cells in the direction of steepest de-
scent. The use of eight flow directions typically results
in a poor representation of flow networks where the
surface is not oriented in exactly one of those eight
directions. In addition, this method only represents
parallel or converging flow, so that divergent areas in
the upper parts of the landscape are not represented ac-
curately (Wilson and Gallant 1998). Moreover, small
differences in elevation in almost flat areas can yield
very different drainage nets. Therefore we computed
mean values of both indices from mean specific catch-

ment areas and slopes, where these mean areas and
slopes had been averaged from 20 separate realizations
of the drainage topology made by adding a normally
distributed RMS error of ± 1 m to each cell of the
DEM. This procedure removes the artefacts obtained
with a single derivation of the surface topology of a
mathematically smooth surface (Burrough et al. 2000).

Fuzzy topo-climatic classification – the training set

We split the study area north-south into three roughly
equal quadrangles of approximately 3000–3500 km2
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Figure 3b. Continued.

so we could test whether or not a fuzzy classifica-
tion developed for one area could be extrapolated to
adjacent areas (see Hypothesis 1 below). The centre
quadrangle of 593 rows × 607 columns (359951 cells
or 3599.5 km2) was used to derive the classification.
A training set of 699 sample points needed to assem-
ble the data for the fuzzy classification was obtained
using stratified, random sampling of this centre quad-
rangle (Figure 4). Table 1 gives the basic statistical

information for these sample data and Table 2 their
correlations.

The methods of fuzzy k-means

The fuzzy k-means algorithm is described in detail in
Burrough and McDonnell (1998) and Burrough et al.
(2000); only the main points are summarized here.
Fuzzy k-means uses an iterative procedure that usually
starts with an initial random allocation of N objects to
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Figure 4. Shaded relief map of the central study area showing the locations of the samples used to extract data for the fuzzy k-means
classification. The unevenness in the image in the flat area bottom right is caused by systematic differences in the digitized elevation data
between neighbouring map sheets.

Table 1. Basic statistics for the sampled input data (N = 699).

Input data and units Mean Standard Minimum Maximum

(where appropriate) deviation

ELEV (m) 2034 291 1781 3223

SLOPE (degrees) 10.83 8.97 0.00 41.25

PROFC (deg m−1) −0.10 1.19 −5.20 6.60

PLANC (deg m−1) −0.02 1.27 −5.25 8.09

RDPRX (ln (m)) 5.39 1.60 0.00 8.25

SOLAR (kjoule y−1 m−2) 9.11 1.28 3.51 11.89

WET20 (ln (m degrees−1)) 12.70 2.19 9.49 22.25

SED20 (ln (m degrees)) 5.24 1.40 1.73 9.11
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Table 2. Correlations between input data.

Attributes ELEV SLOPE PROFC PLANC RDPRX SOLAR WET20 SED20

ELEV –

SLOPE 0.567 –

PROFC 0.078 −0.053 –

PLANC −0.031 −0.024 −0.447 –

RDPRX −0.355 −0.233 −0.483 0.241 –

SOLAR −0.124 −0.195 0.000 −0.022 0.113 –

WET20 −0.421 −0.560 −0.321 0.373 0.393 0.113 –

SED20 0.321 0.605 −0.348 0.342 −0.028 −0.142 0.177 –

Figures in bold are significant at α = 0.01.

K clusters. Given the cluster-allocation (expressed in
terms of the memberships µic in the range 0–1), the
cluster centre C of the cth cluster for the j th attribute
x is calculated as a weighted average:

Ccj =
N∑

i=1

(µic)
q xij /

N∑

i=1

(µic)
q, (1)

where the fuzzy exponent q determines the amount of
fuzziness or overlap – see next section.

In the next step, objects are reallocated among
the classes according to the relative similarity be-
tween objects and clusters. In ordinary k-means, the
membership µ of the ith object to the cth cluster is
determined by:

µic = [(dic)
2]−1/(q−1)/

K∑

c′=1

[(dic′)2]−1/(q−1), (2)

where d is the distance measure used for similarity.
Using the Diagonal metric (in which attributes are
scaled to have equal variance), we obtain with the
sample variances s2

j :

(dic)
2 =

V∑

j=1

[(xij − Ccj )/sj ]2. (3)

Other metrics that are frequently used are the Euclid-
ian (no scaling) or Mahalanobis (both variance and
co-variance are used for distance scaling).

Reallocation proceeds by iteration until a stable
solution is reached where similar objects are grouped
together in a cluster. Once the sample variances and
the optimal class centroids for the sample have been
computed, unsampled objects (cells) can also be as-
signed membership values using equations (2) and
(3).

The ratio of the dominant and first sub-dominant
membership value for each object is a useful index of

the degree of class overlap. It is defined as:

CI = µi,max2/µi,max1 (4)

and is termed the Confusion Index. Mapping the con-
fusion index may indicate parts of the landscape where
spatial change in classes is clear and abrupt, or diffuse
and vague (Burrough et al. 1997).

The classification may be repeated for a range of
numbers of classes. The optimal number of classes
can be determined using two parameters that express
the overall fuzziness of the classification: these are the
partition coefficient F and the classification entropy
H . They are computed as:

F = 1/N

N∑

i=1

K∑

c=1

(µic)
2, 1/K ≤ F ≤ 1, (5)

H = 1/N

N∑

i=1

K∑

c=1

−µic ln(µic), 1 − F ≤ H ≤ ln(K).

(6)

Both F and H depend on the number of clusters K ,
hence scaled values are often more useful (Bezdek
et al. 1984):

Fscaled = (F − 1/K)/(1 − 1/K) (7)

Hscaled = (H − (1 − F))/(ln(K) − (1 − F)) (8)

Applying fuzzy k-means to the training set

In this study the fuzzy k-means procedure was car-
ried out using the FUZNLM program (van Gaans and
Vriend 1995 – basic algorithms taken from Bezdek
et al. 1984) on the 699 sample points to yield from
two to nine classes. The success of the classification
was assessed in terms of the scaled H and F para-
meters (Figure 5). The maximum F and minimum H
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Figure 5. Determining the optimal number of fuzzy classes.

Table 3. Cluster centres for the six topo-climatic classes – units as in Table 1.

Input data C1 C2 C3 C4 C5 C6

ELEV 2094 2175 2316 2522 2540 2599

SLOPE 1.97 5.04 9.26 21.61 13.10 22.18

PROFC 0.01 −1.03 0.00 −0.47 2.58 −0.44

PLANC −0.15 1.00 −0.24 0.01 −1.34 0.13

RDPRX 6.23 6.04 5.54 5.40 0.10 5.48

SOLAR 9.44 9.22 9.18 6.79 8.72 10.42

WET20 13.17 16.92 12.02 11.32 10.77 11.47

SED20 3.30 6.64 5.13 6.24 4.77 6.34

values both suggest that six classes are most appropri-
ate. Note that in this study the value of q (the fuzzy
overlap in parameter equation (1)) was set at 1.5, this
being a much used compromise between q = 1 (gives
crisp classes with no overlap) and larger values giving
more overlap. The same value was used throughout as
we were not investigating the effects of modifying the
fuzzy k-means parameters on the classification – this
would require separate study.

Tables 3 and 4 present the class centroids and class
ranges for each attribute for this six-class solution. The
class centroids in Table 3 show clearly that fuzzy k-
means has established classes with clear differences
while Table 4 shows that all classes have consider-
able overlaps in the ranges of all input data, as was
expected. These topo-climatic classes have been given
the following generalized names: Class 1 – valley bot-
toms; class 2 – main drainage lines; class 3 – lower
slopes; class 4 – steep, shaded north-facing upper
slopes; class 5 – narrow ridges; and class 6 – steep,
south-facing, drier upper slopes and broad ridges.

Classifying the remainder of the central quadrangle
and the adjacent areas

Each unsampled cell was assigned a membership
value for each class using equations (2) and (3) and the
parameters of the training set. This procedure yielded
six maps (i.e., one for each class – Figure 6). These
maps demonstrate that the classes can be clearly inter-
preted in landscape terms. The maximum membership
for each cell, and the confusion index were also com-
puted (Figure 7). Finally, a map of the defuzzified,
crisp topo-climatic classification was made by assign-
ing a code to each cell corresponding to the class
with which it has the largest membership (Figure 8).
Table 5 lists the absolute areas and proportions of
the crisped topo-climatic classes for the whole of the
central area.

The procedure of assigning membership values to
unsampled cells was repeated in exactly the same
manner for the adjacent northern and southern quad-
rangles. A composite map of the whole study area was
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Figure 6. Grey scale maps of area 3 showing individual fuzzy k-means membership values for the six optimal classes (values range from 0 –
white to 1 – black) showing how each class represents a different aspect of the landscape. A. Valley bottoms; B. Drainage channels; C. Lower
slopes; D. N-facing steep slopes; E. Ridges; F. S-facing lower slopes.
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Figure 7. Grey scale maps of area 3 showing A. the variation of maximum membership values, and B. the variation in confusion index (in both
cases the scale ranges from 0 – white to 1 – black). These show clearly that lowlands are more easily classified than mountains.

produced by combining the three individual maps in
the GIS. The joins between the quadrangles may be
seen from the east-west rows of empty cells where
edge effects in the computations of slope had gener-
ated missing values along the map borders (Figure 8).

Field data on vegetation cover classes

A sample of 575 air-photo interpreted observations
of vegetation cover collected independently by one
of the authors (Hansen) was used to evaluate the

crisped topo-climatic classes for vegetation mapping.
The sample sites for these data were chosen on the
basis of size, visibility and ease of access; they were
assigned to one of the fourteen land cover classes
listed in Table 6. Size was important because the
remote sensing classification method of Ma and Red-
mond (Wheatley et al. 2000) for which the data were
originally compiled used a minimum mapping unit of
2 ha in area. Similarly, only those vegetation patches
that were visible in both the Landsat TM scene and
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Table 4. Cluster ranges for the six topo-climatic classes – units as in Table 1.

Input data C1 C2 C3 C4 C5 C6

ELEV 1840–2731 1781–2749 1807–2962 1929–3118 1972–3101 2029–3223

SLOPE 0–8.5 0–22.4 2.2–27.2 8.9–34.3 1.8–32.4 8.1–41.3

PROFC −1.1–1.0 −5.2–0.8 −3.0–1.4 −4.5–1.7 1.0–6.6 −4.1–1.1

PLANC −1.5–1.3 −0.6–8.1 −5.2–2.3 −5.2–3.4 −5.0–2.1 −3.9–5.8

RDPRX 4.6–8.3 4.6–8.1 4.6–7.2 4.6–7.1 0.0–4.6 4.6–7.1

SOLAR 8.7–10.2 7.4–10.6 7.6–10.3 3.5–8.8 4.7–11.2 8.7–11.9

WET20 11.0–17.4 13.0–22.2 9.8–14.4 9.6–14.5 9.6–12.2 9.5–14.4

SED20 1.7–5.4 4.5–9.1 3.5–6.8 5.4–7.4 2.9–6.0 5.1–8.4

aerial photographs were selected as plots, and ease
of access was necessary so that the cover types at
some locations could be checked in the field. The
test data also included single values for seven Land-
sat TM bands recorded on June 21, 1991, and several
other attributes. We used only the cover classes and
NDVI data computed from the TM bands at the 575
sites to carry out the tests described below, referring
to this data set as the VEGPNT data throughout the
remainder of the paper.

The VEGPNT data were converted to a gridded
map showing the locations of the samples (Figure 10).
This map was used to determine the crisped topo-
climatic class for each VEGPNT sample location,
so that cover classes, NDVI data and crisped topo-
climatic classes could be compared at all 575 data
points.

Testing the methodology: Results

To evaluate the usefulness of the combined fuzzy
k-means classification and allocation procedure we
examined the following hypotheses, which may be di-
vided into procedural (1+3) and ecological/functional
groups (2+4+5):
• Hypothesis 1. The fuzzy topo-climatic classifica-

tion developed for the training data set from the
central quadrangle can usefully be extrapolated to
the central area as a whole and also to the adjacent
north and south areas, thereby reducing compu-
tational loads on sampling and classification for
areas larger than the study area (cf., Lagacherie
et al. 1997).

• Hypothesis 2. The spatial distribution of the VEG-
PNT cover class data is not biased in favour of
particular types of topo-climatic classes that may

have been indicated by the fuzzy k-means classi-
fication of the morphological data from the DEM.
If this is so, then we may use the VEGPNT data
with confidence to examine the relations between
VEGPNT cover classes and the crisp topo-climatic
classes derived using fuzzy k-means.

• Hypothesis 3. The VEGPNT point samples have
been located in the correct grid cell. If they had
been displaced by even a single 100m cell, the
topo-climatic classification could be different, par-
ticularly in the vicinity of narrow drainage nets and
ridges which may be only one cell wide (classes 2
and 5). Therefore we investigated whether moving
the VEGPNT samples systematically 100 m east-
west or north-south had any effect on the quality
of the registration of the VEGPNT data with the
crisped fuzzy classes.

• Hypothesis 4. The cover class composition of a
given crisped topo-climatic class is significantly
different from random, but is this true for all cover
classes identified, or is it only true for certain
classes? Assuming that the VEGPNT data are a
representative sample (Hypothesis 2), we wish to
test the degree to which the crisped topo-climatic
classes give useful information about the cover
classes.

• Hypothesis 5. The topo-climatic classes will show
an affinity with differences in vegetation response
as measured in terms of NDVI indices provided by
remote sensors.

The fuzzy topo-climatic classes (Hypothesis 1)

The maps of the maximum class memberships and the
confusion index show that much of the central area has
been unambiguously allocated to a single class (Fig-
ures 7a, b). This is a reflection of the strong spatial
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Figure 8. Map of crisped topo-climatic classes for the central quadrangle.

Table 5. Data on the crisped topo-climatic classes for
the central quadrangle.

Topo-climatic class Area (km2) Area(%)

1. Valley bottoms 930.31 26.18

2. Drainage channels 369.81 10.41

3. Lower slopes 1048.33 29.51

4. N-facing steep slopes 370.85 10.44

5. Ridges 260.27 7.33

6. S-facing steep slopes 519.33 14.62

Lakes 53.53 1.51

correlation structure of the input data (Burrough et al.
1997). In areas dominated by topo-climatic classes 1,
2, 3 and 5, the thin lines indicating large CI show sud-
den changes where spatial boundaries between classes
occur (Figure 7a). The largest values of the confusion
index occur within classes 4 and 6, the north and south
facing upper slopes. This is presumably because not
all upper slopes face strictly neither north nor south;

many have clearly different orientations. In general the
spatial distributions of the fuzzy topo-climatic classes
are so different that most areas may be assigned to the
single ‘hard class’ with which they have most affinity
(Figure 8).

Similarly, it is clear that the classification derived
from the training set of 699 points can be applied di-
rectly to the northern and southern quadrangles with-
out serious loss of information. For the sample data
set and each of the map quadrangles, Table 7 lists the
mean value of cell maximum membership for each
of the six classes together with the F and H statis-
tics. It shows that all three quadrangles are classified
equally well (or even better) than the training set.
Overall differences arise from differences in the pro-
portions of mountainous and flat areas, as the latter
are more easily classified. Figure 8 shows in detail the
transition from the central to the northern quadrangle
from which it is apparent that the pattern of classes
is disrupted neither at the join between the areas nor
within the body of the area. Running the same clas-
sification procedures on the adjacent areas produced
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Figure 9. Map showing edge matching between the central and northern quadrangles.

similar results, so we conclude that in this case, the
topo-climatic classification based on a single training
set from the central quadrangle seems to be suitable to
classify a much larger area. In other words, the pattern
of landscape represented by the central quadrangle
extends at least to the immediately adjacent areas.

Comparison of map of crisped fuzzy k-means and
VEGPNT data (Hypothesis 2)

The VEGPNT data had not been collected evenly over
the whole study area but were clustered in north-
and south-central locations. In particular, the Madison
Range in the northwest and the Gallatin Valley to the
north were not sampled so they were masked out for
the rest of the analysis (Figure 10). All comparisons
between VEGPNT data and the map of crisped fuzzy
k−means discussed in the remainder of this section
were made using this map.

The degree of representativeness of the VEGPNT
data was examined as follows. The map of crisped
topo-climatic classes was used to predict how many

of the 575 VEGPNT sites should fall in a given topo-
climatic class based solely on the proportions of the
map it occupies. The numbers of expected VEGPNT
samples per topo-climatic class were then compared
with the observed number of VEGPNT observations
in the same topo-climatic class and evaluated using the
χ2statistic with 5 degrees of freedom (Table 8). These
comparisons show clearly that the proportions of the
mapped area falling in the different crisped classes as
estimated by the VEGPNT data do not differ signif-
icantly from the proportions computed from the map
itself. Therefore we can use the VEGPNT samples to
test hypotheses about the relations between the occur-
rence of cover classes in VEGPNT and the crisped
topo-climatic classes.

The geometric registration of the point data set
(Hypothesis 3)

The geometric registration of the VEGPNT samples
was examined by creating eight copies of the VEG-
PNT data set for which the X and Y coordinates
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Figure 10. Grey scale map showing elevation of the whole area and the locations of the independent vegetation sample sites used to test the
fuzzy k-means classification.

respectively had been offset by 100 m (i.e., 1 grid cell)
from the original values. These were then overlaid on
the crisped topo-climatic class map to give new values
for the topo-climatic classes at the offset data points.
Each new data set was compared with the original by
computing the χ2value between the new proportions
of points and the predictions from the whole map to
yield a 3 × 3 matrix of χ2 values with 5 degrees of
freedom cantered on the original data (Table 9).

These results demonstrate in all cases that the
fit between the proportions of the area estimated by
the original VEGPNT data and the proportions de-
rived from the map of crisped classes deteriorates if
the VEGPNT data are relocated by 100 m in any
direction. The reason seems to be that moving the
VEGPNT sites by only 100 m causes the topo-climatic
classes representing spatially linear features such as
drainage networks (riparian areas) and ridges to be
under-sampled. Evidently, these areas had been specif-
ically and correctly sampled by the VEGPNT survey.
The conclusion is clear that the registration of VEG-
PNT is good enough to support an analysis of the

distribution of cover classes with respect to the crisped
fuzzy classes.

The value of the crisp topo-climatic classes for
predicting land cover (Hypothesis 4)

VEGPNT is now used to examine the hypothesis
that the crisped topo-climatic classes provide mean-
ingful predictions of land cover. Figure 11 presents
histograms of the proportions of each land cover
class associated with each crisped topo-climatic class.
These data show that the proportions of VEGPNT
sites falling in the crisped topo-climatic classes clearly
differ from cover class to cover class. To test the sig-
nificance of these apparent differences we computed
χ2 values for the following comparisons.

We computed the expected number of cover class
samples per crisped topo-climatic class simply as a
function of the proportion of the area of the topo-
climatic class and the number of VEGPNT samples
in the given cover class. We then computed χ2 for
the comparison of these predictions with the actual
number of cover class observations given by VEG-
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Figure 11. Set of 3-dimensional histograms showing the relations between the proportion of each vegetation type (vertical axis), the
topoclimatic classes (long horizontal axis) and the vegetation types at the independently sampled vegetation sites.

Figure 12. Box and whisker plots of M_NDVI for (a) Cover classes, (b) topo-climatic classes.
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Table 6. Land cover classes used in this study.

Class name Code # No. Class descriptions

obs.

Cottonwoods 1 90 Cottonwood (Populus spp.) dominated deciduous forest on

large floodplains.

Willow 2 26 Riparian communities dominated by several willow (Salix)

species.

Riparian meadow 3 29 Moist grassland communities.

Grassland 4 57 Herbaceous communities dominated by grasses and

containing forbs.

Sagebrush 5 15 Big sagebrush (Artemisia tridentata) and grass (Festuca

idahoensis) dominated communities on drier sites.

Young conifers 6 19 Young conifer seedlings and saplings growing on areas

burned in 1988 Yellowstone fires.

Aspen 7 19 Deciduous forests dominated by quaking aspen (Populus

tremuloides).

Aspen-Douglas fir 8 11 Mixed deciduous and coniferous forests dominated by these

two species.

Douglas fir 9 54 Coniferous forests dominated by Douglas fir (Pseudotsuga

mensiesii).

Lodgepole pine 10 125 Coniferous forests dominated by lodgepole pine (Pinus

contorta).

Mixed conifer 11 35 Coniferous forests containing lodgepole pine, Englemann

spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa),

and other tree species.

Spruce-Douglas fir 12 33 Coniferous forests dominated by Engelmann spruce and

Douglas fir.

Whitebark pine 13 40 Subalpine savannas dominated by whitebark pine (Pinus

albicaulis).

Krumholz 14 5 Subalpine communities containing dwarf whitebark pine,

lodgepole pine, and other conifer species.

Bare rock 15 26 Rock outcrops with little or no vegetation cover.

PNT. From the results presented in Table 10, it is
clear that there are strong associations between crisped
topo-climatic class and cover class for all cover classes
except Aspen, Mixed Conifer, Conifer seedlings on
burnt areas, and the Aspen-Douglas Fir association.
These results support the histograms linking crisp
topo-climatic class to cover class given in Figure 10.
Therefore we conclude that the fuzzy classification
of sites in terms of the abiotic attributes that can
be derived from a DEM provides a useful and re-
producible tool for predicting land cover in the area
studied. Note also that Table 10 shows that the differ-
ent topo-climatic classes differ greatly in the number
and variety of cover classes present.

Fuzzy Classes derived from a topo-climatic analysis
show an affinity with differences in vegetation
response as measured in terms of NDVI indices
provided by remote sensors

As noted in the Introduction, Landsat TM derived
estimates of Normalised Difference Vegetation Index
(NDVI) have been used to map forest types in moun-
tainous areas. Walsh et al (1994) suggest that for the
Glacier National Park, Montana, in spite of large local
variations in biophysical conditions, separation of dif-
ferent forest types (e.g. lodgepole pine versus spruce
and fir) is possible with the aid of NDVI. As the vege-
tation data set used by the current study also includes
measurements of TM reflectance for 7 bands, NDVI
was computed for each test location. Though not a
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Table 7. Goodness of classification for the different samples and map quadrangles expressed as Mean µmax,
and in brackets the % of cells, for each data set or quadrangle and topo-climatic class.

Topo-climatic class 699 cell Sampled Northern Southern 575 point land

and code training set quadrangle quadrangle quadrangle cover data

1. Valley bottoms 0.825 (22) 0.861 (27) 0.776 (12) 0.900 (65) 0.894 (41)

2. Drainage channels 0.726 (14) 0.768 (11) 0.741 ( 8) 0.745 (13) 0.707 (10)

3. Lower slopes 0.633 (30) 0.779 (29) 0.733 (29) 0.769 (17) 0.827 (27)

4. N-facing steep slopes 0.663 (12) 0.636 (10) 0.634 (18) 0.614 ( 1) 0.623 ( 6)

5. Ridges 0.830 ( 6) 0.607 ( 7) 0.610 ( 9) 0.549 ( 2) 0.512 ( 6)

6. S-facing steep slopes 0.640 (15) 0.638 (14) 0.647 (23) 0.655 ( 2) 0.686 (11)

Overall 0.706 (100) 0.752 (100) 0.689 (100) 0.843 (100) 0.797 (100)

F 0.583 0.663 0.583 0.772 0.717

F scaled 0.500 0.596 0.499 0.727 0.661

H 0.856 0.637 0.787 0.441 0.541

Hscaled 0.319 0.206 0.269 0.136 0.171

Table 8. Observed number of vegetation samples per topo-climatic class and number
predicted from map proportions.

Crisp topo-climatic class Number of points from Number of points predicted

and code VEGPNT overlay by map proportions

1. Valley bottoms 234 221

2. Drainage channels 59 63

3. Lower slopes 153 146

4. N-facing steep slopes 33 45

5. Ridges 33 33

6. S-facing steep slopes 63 67

Total 575 575

χ2 4.793 n.s.

major aim of this study, these data provide an op-
portunity to compare the observed Vegetation cover
classes with the crisped topo-climatic classes in terms
of differences in NDVI.

Several workers have noted that simple NDVI data
may give inflated values for broad leafed understorey
and other background vegetation – this seems to be a
particular problem in mountain ecosystems (Nemani
et al. 1993). Nemani et al. (1993) showed that changes
in middle Infra Red (MIR) may be used to correct
this when estimating conifer forest leaf area index. In
this study we use the changes in MIR to correct the
NDVI computed from TM3 (Red) and TM4 (Near In-
frared - NIR). We use a formula that was empirically
adapted from Nemani et al. (1993) to calculate a MIR-
corrected NDVI from TM bands 3, 4, and 5 for each

test location namely:

M_NDVI=(TM4 − TM3)/(TM4 + TM3 + 1)∗

(256/(TM5 + 1))∗100 (9)

Exploratory data analysis confirmed that M_NDVI
displays relations with both vegetation and topo-
climatic classes that are both stronger and more capa-
ble of being interpreted than the simple NDVI, which
returned little more than noise. For the topo-climatic
data, simple correlation analysis showed weak but sig-
nificant positive correlations between M_NDVI and
sediment transport and slope, and significant nega-
tive correlations with insolation (direct received solar
radiance) and elevation (Table 11).

Figure 12 shows box and whisker plots of mean
M_NDVI for a) each cover class, and b) each
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Table 9. χ2 values for offset sample points.

Offset (m) 100 W 0 100 E

100 N 15.61∗∗ 9.89 14.22∗
0 17.61∗∗ 4.79 12.56∗
100 S 15.56∗∗ 11.21∗ 12.18∗

∗Significant at 0.05.
∗∗Significant at 0.01.

crisped topo-climatic class. Figure 12a shows clearly
that M_NDVI is definitely lowest for cover classes
“Krumholz and ‘Bare rock’ (14 and 15), and also
for the lowland cover classes Cottonwoods, Sage-
brush and Young Conifers (1,5,6). M_NDVI values for
Willow, Riparian Meadow and Grassland (2,3,4) over-
lap with the M_NDVI ranges for the forested cover
classes, but given their topographic location it is easy
to separate these cover classes (and also Krumholz
and Bare rock) by combining the M_NDVI data with
information from the fuzzy DEM analysis.

In spite of this success, Figure 12 indicates that
the four cover classes Douglas fir, Lodgepole Pine,
Spruce, and mixtures of these (9, 10, 12,11), show
little if any differences with respect to M_NDVI.
These cover classes dominate the mountains and cover
the major parts of the crisped topo-climatic classes
‘Lower slopes’, ‘N-facing steep slopes’, ‘Ridges’ and
‘S-facing steep slopes’ which together cover almost
two-thirds of the original study area. As these topo-
climatic classes are so dominant, it would be useful to
see if they differ in their mean M_NDVI. To do this,
the VEGPNT data were reduced to include only those
134 sites that are located in both the four cover classes
and the four topo-climatic classes just listed. Veg-
etation cover classes including Aspen were omitted
because they did not occur on N-facing steep slopes
and Ridges. The Whitebark cover class was excluded
because there were no occurrences of this cover class
on ‘N-facing steep slopes’.

Box plots and ANOVA on these 134 data points
showed that it is difficult to distinguish all topo-
climatic classes in terms of M_NDVI: a Scheffé test
of contrasts (a standard conservative test of differ-
ences between groups of means in ANOVA) shows
that the groups ‘lower slopes and South-facing steep
slopes’ and the groups ‘North-facing steep slopes and
Ridges’ have similar values: however, M_NDVI val-
ues for the N-facing steep slopes and Ridges are
significantly greater than for the lower and S-facing
steep slopes. Unfortunately there are too few data to

detect any significant association when the land cover
and topo-climatic classes are combined.

Discussion and conclusions

This paper clearly demonstrates that applying the
methods of fuzzy k-means to topo-climatic deriva-
tives of DEMs results in spatial classifications that are
reproducible and intuitively meaningful for attributes
other than those from which they were derived. Using
the methods of allocation developed here there is no
limitation in the size of database or area being clas-
sified so that problems related to the size of data sets
that can be classified are avoided. Note that all work
presented in this paper was accomplished on a mod-
ern personal computer so computational requirements
are not extreme: the most resources were consumed
for the stochastic modelling of the mean topographic
wetness and sediment transport indices. This study has
also demonstrated that when landscapes contain the
same mix of morphological features over large areas,
for reconnaissance classification as used in this study,
it is not necessary to spread the allowed number of
point samples over the whole area. Indeed, it is proba-
bly better to ensure that a sufficient number of samples
are located in such a way as to pick up important fea-
tures at different levels of resolution – e.g., drainage
lines versus flat riparian areas. Stratified random sam-
pling is an elegant and easy method for sampling an
already digitized database though in the field it may
prove expensive in difficult terrain to reach all points
on the ground.

Although we only used eight attributes in the
topo-climatic classification, this number may be eas-
ily extended without computational problems. Indeed,
we expect that the classification will be improved by
adding information from geological and soil maps.
Multi-temporal data from remotely sensed images giv-
ing NDVI for different times of the year may also pro-
vide useful additional information. The topo-climatic
classes may also be valuable as ancillary data for cre-
ating classifications of existing vegetation cover using
remote sensing.

Although the computations are strictly repeatable,
errors in classification may arise through systematic
or random errors in the data. Certain errors may man-
ifest themselves as outliers in the classification, and
can therefore be identified and corrected, but the arte-
facts produced by algorithms used to generate DEMs
and their attributes need careful attention. We believe
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Table 10. Results of χ2 analysis comparing observed number of VEGPNT samples per topo-climatic class and
number predicted from proportional map area and points in cover class for combined areas.

Topo-climate class 1 2 3 4 5 6 Sum χ2 Significance

Cover class Code No. of samples per topo-climatic class

Cottonwoods 1 50 11 20 0 2 1 84 27.52 0.001

Willow 2 6 9 4 0 0 1 20 28.70 0.001

Rip. Meadow 3 18 9 2 0 0 0 29 27.03 0.001

Grassland 4 20 7 17 0 7 5 56 10.49 0.09

Sagebrush 5 12 2 1 0 0 0 15 12.25 0.02

Young conifers 6 13 1 5 0 0 0 19 9.64 0.1

Aspen 7 6 3 5 0 0 3 17 3.39 >0.1

Aspen-D fir 8 4 0 7 0 0 0 11 9.33 >0.1

Douglas fir 9 8 0 24 2 7 12 53 34.84 0.001

Lodgepole pine 10 70 11 24 13 2 2 123 28.24 0.001

Mixed conifers 11 16 3 9 3 3 1 35 3.69 >0.1

Spruce-D fir 12 2 0 17 8 1 5 33 32.52 0.001

Whitebark pine 13 4 3 14 0 8 11 40 38.17 0.001

Krumholz 14 0 0 1 0 0 4 5 23.33 0.001

Bare rock 15 3 0 1 6 2 14 26 62.38 0.001

% of map 38.5 11.0 25.4 7.8 5.7 11.6 100

Table 11. Pearson Correlations of topo-climatic variables with M_NDVI (N=566).

ELEV SLOPE PROFC PLANC RDPRX SOLAR WET20 SED20

R -.115∗∗ .144∗∗ -.043 -.011 -.074 -.240∗∗ -.074 .213∗∗

∗∗Correlation is significant at the 0.01 level (2-tailed).

more work is necessary on the question of errors in the
derivatives of DEMs (cf., Burrough and McDonnell
1998; Davis and Keller 1997; Wilson et al. 2000).

This study has demonstrated the value of com-
bining quantitative map analysis with fuzzy k-means
classification for generating and testing hypotheses
about the topo-climatic relations between landscape
and ecology. On the basis of the results obtained in this
study it seems possible to investigate other relations,
such as topo-climatic zones and the avian fauna of the
area.

This analysis demonstrates that even though sim-
ple, single time NDVI values showed no significant
differences for land cover or topo-climatic classes, the
modified M_NDVI index seemed to be able to dis-
tinguish vegetation types that differ greatly in form
and morphology. Together with topo-climatic infor-
mation from the DEM certain land cover classes such
as riparian vegetation, krumholz and bare rock were
easily and unambiguously distinguished and mapped.
The major forest vegetation types that occur on the

upper topo-climatic units of lower slopes, North and
South-facing slopes, and ridges, cannot be so easily
separated: here the M_NDVI response appears to be
dominated by site factors that affect all tree species
more or less equally. This problem may have been ag-
gravated because not all test data were collected in the
field and unknown errors may have arisen during the
aerial photo interpretation. The conclusion is that it is
very difficult to distinguish differences in Douglas Fir,
Lodgepole and Spruce on mountain sites using single
time NDVI or M-NDVI data alone though there are
indications that topo-climatic information may be of
help (cf., Walsh et al. 1994). Clearly, more research
is needed to improve understanding of the relations
between NDVI response and topographic controls on
vegetation response in these areas.
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