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Abstract

Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For
the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable
bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of
spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a
bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing
predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-
scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled
using a Random Forests algorithm for the 1980–2010 climate period and showed strong presence/absence separations by
summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century
suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration
Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2–29% and 0.04–
10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the
2010–2099 time period related to consistent warming above the 1910–2010 temperature normal after 2070 for all GCMs. A
decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong
differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM
projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that
restoration strageties such as planting of seedlings and controlling competing vegetation may be necessary to maintain
P.albicaulis in the GYA under the more extreme future climate scenarios.
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Introduction

Over the next century, it is expected that most of North

America will experience climate changes related to increased

concentrations of anthropogenic greenhouse gas emissions and

natural variability [1]. At regional scales these changes are highly

variable and can result in areas of increased mesic, xeric, or even

hydric habitat conditions relative to present day. These shifting

climates in turn also transform the suitable habitat for individual

species that may result in changes in species composition and

dominant vegetation types.

Whitebark pine (Pinus albicaulis) is a native conifer of the

Western U.S. that is considered a keystone species in the sub-

alpine environment. It provides a food source for animals such as

the grizzly bear (Ursus arctos), red squirrel (Tamiasciurus
hudsonicus), and Clark’s nutcracker (Nucifraga columbiana) [2].

It also serves the ecosystem functions of stabilizing soil, moderating

snow melt and runoff, and facilitating establishment for other

species [2,3]. Whitebark pine has experienced a notable decline in

the past two decades within the U.S. Northern Rockies due to high

rates of infestation from the mountain pine beetle (Dendroctonus
ponderosae) and infections from white pine blister rust (Cronartium
ribicola), resulting in an 80% mortality rate within the adult

population [4–7]. Given the potential loss of important ecosystem

functions that whitebark pine contribute to the landscape under

this mortality event, there is an emphasis to understand the climate

characteristics of its habitat to identify the restoration strategies

and locations that may aid the persistence of the species under

future climates.

One method of understanding species response to climate

change is through bioclimate niche modeling, which has become a

common practice for assessing potential vegetation shifts under

new environmental conditions [8–13]. Ecological niche theory

proposes there exists some range of bioclimatic conditions within

which a species can persist [14]. In bioclimatic niche modeling, the

realized niche is modeled by empirical relationships between the

presence or absence of a species and the associated abiotic, and
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sometimes biotic, variables that describe the niche space.

Bioclimatic models assume that species are in equilibrium with

their environment and that the current abiotic relationships reflect

a species environmental preferences which may be retained into

the future [15,16]. At macro scales, bioclimatic approaches have

demonstrated success at predicting current distributions of species

[17,18]. Most bioclimatic models do not explicitly consider the

many additional ecological factors that ultimately influence a

species distribution such as dispersal, disturbance, or biotic

interaction. Thus the approach does not predict where a species

will actually occur in the future, but rather it predicts locations

where climatic conditions will be suitable for the species.

Bioclimatic niche methodology has demonstrated utility in

modeling historic ranges of species for conservation and manage-

ment applications. By modeling the present day suitable habitat

and then projecting those habitats into the future, bioclimatic

Figure 1. Historic and projected climates variables for the GYA from 1895–2099 under RCP 4.5 and 8.5 scenarios. Light shaded orange
and red lines represent individual GCMs for RCP 4.5 and 8.5 respectively. Bold lines represent GCM ensemble average. (a) Mean annual temperature
(b) Mean annual precipitation.
doi:10.1371/journal.pone.0111669.g001

Figure 2. The Greater Yellowstone Area, representing an area of 150,700 km2 with an elevational gradient from 522–4,206 m.
doi:10.1371/journal.pone.0111669.g002
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niche models can serve as the first step filter for conservation

action plans, such as mapping suitable species reintroduction sites

or habitat reserve selection [19–21]. For P.albicaulis, McLane and

Aitken [22] utilized bioclimate niche models to successfully

implement experimental assisted migration on persisting climate

habitat in British Columbia. Additionally, models of Pinus flexis, a

closely related species of five needle pine, have been used to

evaluate management options in Rocky Mountain National Park

[23]. Given these examples, an effort to model and projected

suitable climate habitat for P.albicaulis within a regional domain

can provide valuable insight to land resource managers.

In this study, we present a bioclimatic habitat model for

P.albicaulis within the Greater Yellowstone Area (GYA). Al-

though P. albicaulis has a range-wide distribution that is split into

two broad sections, one along Western North America: the British

Columbia Coast Range, the Cascade Range, and the Sierra

Nevada; and the other section in the Intermountain West that

covers the Rocky Mountains from Wyoming to Alberta [2,24]; the

GYA was selected as the primary geographic modeling domain for

three reasons: 1) evidence that the P. albicaulis sub-population in

the GYA is genetically distinct from other regional populations

with different climate tolerances [25]; 2) the high regional

investment in P. albicaulis conservation in the area [6]; 3) the

high density of climate stations within the region. Climate within

the GYA is highly heterogenous due to complex topography, and

sharp elevational gradients. Current knowledge of the region

expects climate to shift towards increased mean annual temper-

atures and earlier spring snowmelt [26,27]. This shift is expected

to have an impact on the total suitable habitat area for P.
albicaulis. Modeling at a regional scale can provide a finer

resolution spatially explicit description of the bioclimatic envelope

of P. albicaulis in the GYA.

Here we also present an opportunity to investigate the effect of

future climate variability on projected species distributions. In

2013, the World Climate Research Programme Coupled Model

released the new generation General Circulation Model (GCM)

projections through the Coupled Model Intercomparison Project

Phase 5 (CMIP5) [28]. These new GCM projections also include

four possible climate futures are modeled with each GCM under

the Representative Concentration Pathways (RCP) of greenhouse

gas/aerosol. These RCP scenarios designate four different levels of

radiative forcing (2.6, 4.5, 6.0 and 8.5 W/m2) that may occur by

the year 2099 [29]. In practice, research of future species suitable

climate generally use a small suite of GCM/RCP combinations to

project future climate [8,11,30]. However, internal variability in

these GCMs that arise from modeled coupled interactions among

the atmosphere, oceans, land, and cryosphere can result in

atmospheric circulation fluctuations that are characteristic of a

stochastic process [31]. Such intrinsic atmospheric circulation

variations from model structure induce regional changes in air

temperature and precipitation on the multi-decadal time scale

[31]. For the GYA specifically, this GCM variability has be

observed with mean annual temperatures projected to increase by

2{9uC and mean annual precipitation to change by 250 to +
225 mm (Fig. 1). This suggests that magnitude and direction of

projected species distributions at a regional scale can vary

depending on the GCM selected and the modeled species

response to more xeric or mesic future climate conditions [32].

To summarize, this study presents a bioclimate niche model for

P. albicaulis based on historic climate observations and field

sampling of P. albicaulis presence and absence. Using this

modeled bioclimate envelope, projections of future total climate

suitable habitat area under nine GCMs and two RCP scenarios

will be measured. Since different GCMs may project a diverging

spectrum of climates, it is expected that measures of total suitable

habitat will reduce with varying degrees of area loss. It is also

expect that number and size of continous patches of P. albicaulis
habitat will reduce due to the limited available number of sub-

alpine areas distributed within the landscape. This research

provides an analysis of the variability of biotic response under a

large suite of GCMs to provide managers/researchers with a

measure of the uncertainty associated with future species

distribution models. Furthermore, this analysis explicitly describes

the spatial patterns of bioclimatic niches for P. albicaulis to gain a

better understanding of topographic characteristics, such as

elevation, on suitable habitat. Changes in these spatial patterns

are examined through quantifying landscape patch dynamic that

may result from GCM projections to understand the species trends

for persistence on the landscape.

Methods

Study area
The GYA, which includes Yellowstone National Park, Grand

Teton National Park, and a number of state and federally

managed forests, is a mid- to high-latitude region in the Northern

Rocky Mountains of western North America. Conifers are

dominant in the range, with forest types composed of Pinus
contorta, Abies lasiocarpa, Pseudotsuga menziesii, Pinus albicaulis,
Juniperus scopulorum, Pinus flexis and Picea engelmannii,

Table 1. General Circulation Models for analysis.

Name Institute Country

CESM1-CAM5 National Center for Atmospheric Research US

CCSM4 National Center for Atmospheric Research US

CESM1-BGC National Center for Atmospheric Research US

CNRM-CM5 Centre National de Recherche Meteorologiques FR

HadGEM2-AO Met Office Hadley Centre Climate Programme UK

HadGEM2-ES Met Office Hadley Centre Climate Programme UK

HadGEM2-CC Met Office Hadley Centre Climate Programme UK

CMCC-CM Centro Euro-Mediterraneo per Cambiamenti Climatici ITA

CanESM2 Canadian Centre for Climate Modelling and Analysis CAN

Selection of AR5 GCMs that represent historic climate in the U.S. Pacific Northwest region for future bioclimate habitat modeling.
doi:10.1371/journal.pone.0111669.t001
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although the deciduous hardwood Populus tremuloides, is also

wide spread. Plateaus and lowlands are dominated by species of

Artemisia tridentata and open grasslands of mixed composition.

The GYA study area encompasses 150,700 km2 with an

elevational gradient from 522–4,206 m that represents 14

surrounding mountain ranges (Fig. 2).

Data
Biological data. Field observations of P. albicaulis adult

presences and absences were compiled from three data sources.

First, 2,545 observations from the Forest Inventory and Analysis

(FIA) program were assembled. FIA plots are located on a regular

gridded sampling design with one plot at approximately every

2,500 forested hectares, with swapped and fuzzed exact plot

locations within 1.6 km to protect privacy [33]. Gibson et al. [34]

found that model accuracy to not be dramatically affected by data

fuzzing, but to provide the most spatial accuracy, this study culled

FIA field points where measured elevation were w300 m different

from a 30 m USGS DEM [35]. To capitalize on additional field

observations of P. albicaulis within the study area, and because

false absences are one of the most problematic data issues in

constructing bioclimatic niche models [36]; supplementary points

were drawn from the Whitebark/Limber Pine Information System

(WLIS) [37], and long-term monitoring plots established by the

Figure 3. Selected predictor variables based on Principal Component Analysis and a maximum correlation filter of ƒ0.75. Scatter
plots represent one-to-one covariate plots where red points represent P. albicaulis presence, and blue points represent absence from field data. Far-
left columns display logistic-regression of covariates from Generalized Additive Modeling using the Software for Assisted Habitat Modeling (SAHM
[59]).
doi:10.1371/journal.pone.0111669.g003
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National Park Service Greater Yellowstone Inventory and

Monitoring Network (GYRN) [38]. The presences in these two

additional datasets were collocated within predictor pixels of FIA

absence to correct for false absences. In doing so, only one P.
albicaulis presence or absence record was associated per predictor

pixel, thereby avoiding issues associated with sampling bias that

are common when building bioclimate niche models with data

from targeted surveys [39]. This compilation of data represents an

effort for ‘‘completeness’’ as described by Kadmon et al. [40] and

Franklin [36], to capture all climate conditions where a species

does exist. New data sources added 119 P. albicaulis presences

that would have been missed by using FIA data alone, for a total of

938 presences and 1,633 absences.

‘‘Adult’’ class P. albicaulis were selected for modeling based on

a recorded diameter at breast height (DBH) w20 cm. P. albicaulis
within the Central Montana are reported to reach 100 years of age

at approximately 8–12 m in height with DBHs between 15–20 cm

[41]. Given previous silvicultural studies, it was assumed that

20 cm DBH P. albicaulis represent adult class individuals for the

GYA, with potential to reproduce [24]. Furthermore, this study

focused on adult size class due to difficulties distinguishing younger

age class P. albicilus from P. flexis.
Historic climate data. Climate inputs for modeling were

acquired from the 30-arc-second (*800 m) monthly Parameter-

elevation Regressions on Independent Slopes Model (PRISM), a

derived product that interpolates local station measurements

across a continuous grid [42]. PRISM data includes monthly

average minimum temperatures (Tmin), maximum temperature

(Tmax), mean temperature (Tmean), and mean precipitation (Ppt).

All monthly data were averaged for the temporal extent of 1950–

1980 for bioclimatic niche model fitting. The 1950–1980 temporal

extent was selected for modeling since: 1) a sufficient density of

weather stations were operating by 1950 to provide a reasonable

network; 2) evidence of anthropogenic warming that begins in the

Table 2. Bioclimatic predictor variable list.

Code Predictor Variable

tmin1 Minimum Temperature January

vpd3 Vapor Pressure Deficit March

ppt4 Precipitation April

pack4 Snow Water Equivalent April

tmax7 Maximum Temperature July

aet7 Actual Evapotranspiration July

pet8 Potential Evapotranspiration August

ppt9 Precipitation September

Final predictor variable set for Random Forest modeling. All variables were calculated as a 30-year climate mean from 1950–1980.
doi:10.1371/journal.pone.0111669.t002

Figure 4. Area under curve for the receiver operating characteristic plot suggests adequate performance from the Random Forest
modeling.
doi:10.1371/journal.pone.0111669.g004
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late 1980s; 3) trees old enough to bear seeds today likely

established under a similar climates to the 1950–1980 period.

Water balance. A Thornthwaite-based dynamic water bal-

ance model was used to estimate a number of variables that

include actual evapotranspiration (AET) and potential evapo-

transpiration (PET) [43–45]. The model required only monthly

mean temperatures, dew point temperatures, and precipitation

(see Text S1). Water was stored as soil moisture or in surface

snowpack, with the excess taking the form of evaporated vapor or

loss through seepage/runoff. In addition to the climatic variables,

latitude and physical characteristics of the soil were required to

define water holding capacity. Soil attributes assigned by the Soil

Survey Geographic (STATSGO) datasets were allocated from the

Natural Resource Conservation Service at a 30-arc-second

resolution to determine soil water holding capacity and estimates

for soil depth [46]. All water balance variables, which include

PET, AET, soil moisture, vapor pressure deficit (vpd), and snow

water equivalent (pack), were averaged by month over 1950–1980

to match with historic climate data for bioclimate model fitting.

GCM data. The general circulation model (GCM) experi-

ments conducted under CMIP5 for the Intergovernmental Panel

on Climate Change Fifth Assessment Report provided future

projected climate data sets for assessing the effects of global climate

change. Using a Bias-Correction Spatial Disaggregation (BCSD)

approach, an archive of statistically down-scaled CMIP5 climate

projections for the conterminous United States at 30-arc-second

spatial resolution was assembled by the NASA Center for Climate

Simulation NEX-DCP30 [47]. For this analysis, a subset of the

Figure 5. Threshold for probability of presence of 0.421 determined at the intersection of true positive rate (TPR) and true negative
rate (TNR). Equivalent TPR and TNR, displayed a compromise between the maximum true skill statistic (TSS : 0:345) and maximum Kappa statistic
(k : 0:538).
doi:10.1371/journal.pone.0111669.g005

Table 3. Confusion matrix from out-of-bag analysis.

Validation data set

Presence Absence

Model Presence 763 (81.9%) 169 (13.1%)

Absence 176 (10.9%) 1437 (89.1%)

Random Forest tree estimators displays higher OOB specificity than sensitivity. Area Under Curve (AUC) value of 0.94 suggests model has high predictive capacity for
projecting future suitable bioclimate habitat.
doi:10.1371/journal.pone.0111669.t003
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total GCM models available from NASA were selected that best

represent the Northwestern US. Rupp et al. [48] recently

presented an analysis of GCM performance versus the observed

historic climate in the U.S. Pacific Northwest under 18 specified

climate metrics. In their analysis, Rupp et al. ranked GCMs for

accuracy using an empirical orthogonal function (EOF) analysis of

the total normalized error compared to reference data. This

analysis selected models with a normalized error score v0:5 as a

threshold to cull the full suite of GCMs to the top nine models.

These GCMs were used to project modeled P. albicaulis

distributions into the future (Table 1). Two RCP scenarios were

selected to understand effects of differing carbon futures under

climate change from 2010 to 2099. RCP 4.5 was the first,

representing increased radiative forcing until stabilization of

greenhouse emissions between 2040–2050 and total radiative

forcing of 4.5 W/m2 by 2099. RCP 8.5 was the second,

representing the ‘‘business as usual’’ scenario, with uncontrolled

radiative forcing increasing with stabilization of 8.5 W/m2 by

2099 [49,50].

Figure 6. Random Forest out-of-bag variable importance plots find removal of maximum temperatures for July and April snow
water equivalent to create the greatest reducing in model accuracy.
doi:10.1371/journal.pone.0111669.g006

Figure 7. Modeled binary presence for P.albicaulis under 1980–2010 mean July maximum temperatures and mean April snow water
equivalent bioclimate variables shows agreement with field presence data. Dotted lines designate climate means for corresponding P.
albicaulis field points. Blue lines represent the distribution of Random Forest modeled presence within the GYA.
doi:10.1371/journal.pone.0111669.g007
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Modeling methods
A random forest (RF) [51] algorithm was used to create a

bioclimate niche model of P. albicaulis in the GYA. Random

forest is an ensemble learning technique that generates indepen-

dent random classification trees using a subset of the total

predictor variables and classifies a bootstrap random subsample of

the data. These trees are aggregated and a majority vote over all

trees in the random forest defines the resulting response class. This

method of random trees with subsampling ensures a robust

ensemble classification reducing overfitting and collinearity issues,

especially with a large number of trees [9,51–53]. The python

programming language (Python 3.3) and the Scikit-Learn library

was used to fit the random forest model and predict current

habitat niche, with parameters for number of trees

(nestimators~1000), number of variables (maxfeatures~4), and node

size (minsamplesleaf ~20) [54].

First pass filtering of environmental covariates was performed

using Principal Component Analysis (PCA) to generate proxy sets

[55–57]. After initial list was constructed, an additional filter was

imposed on the variables with a 0.75 maximum correlation

threshold to avoid collinearity issues (Fig. 3) [55]. Physiologically

relevant variables to P. albicaulis presence were given precidence

in final culling in cases of correlation above the specified

maximum threshold. The final variable list selected were tmin1,

vpd3, ppt4, pack4, tmax7, aet7, pet8, ppt9 (Table 2). The

Software for Assisted Habitat Modeling (SAHM) was used to

visualize correlations with the pairs function embeded in the

VisTrails scientific workflow management system [58,59].

Model evaluation was performed under a variety of methods.

An out-of-bag (OOB) error estimate was calculated by comparing

the modeled probability of presence using approximately two-

thirds of the field data, while withholding a subset of the

remainder. Accuracy was evaluated by calculating: 1) the

sensitivity, representing the true positive rate (TPR), 2) the

specificity, representing the true negative rate (TNR), 3) the

receiver operator characteristic curve (AUC). Importance of a

specific predictor variable was calculated by examination of the

increase in prediction error within the OOB sample when the

predictor variable was permuted while others were held constant

[54,60]. The rate of prediction error with permutation of a

specified variable can be interpreted as the level of dependence of

presence or absence response to that variable [61].

Projections for P. albicaulis were computed using 30 year

moving climate averages for the period from 2010–2099 for both

RCP 4.5 and 8.5 climate scenarios. Changes of suitable habitat

area were determined using a binary classification of expected

presence and absence. Binary class assignment was made under a

probability of presence threshold where the ratio of sensitivity and

specificity equalled 1. This method ensured an equal ability of the

model to detect presence and absence. The Kappa and True Skill

Statistic (TSS) were also calculated to observe how sensitivity and

specificity responded under differing probability thresholds [62].

Survey plots predicted as suitable under climatic conditions in

2010 served as a reference for projections. The presence

classifications were evaluated as the amount of suitable habitat

changed over time, confined within specified elevational limits. To

account for the need for a minimum patch size, total number of

patches and median sizes using the an eight-neighbor rule (see

Text S1) for patch identification were tracked over time [63].

Results

Model evaluation
The random forest model displayed an out-of-bag (OOB) error

rate of 16.1% with greater errors of commission (13.1%) than

omission (10.9%) (Table 3). The AUC was 0.94, displaying high

Figure 8. Probabiliy presence for P.albicaulis §20 cm DBH within the GYA for the 2010 climate period.
doi:10.1371/journal.pone.0111669.g008
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specificity and sensitivity (Fig. 4). Threshold probability of

presence for a binary classification was selected at 0.421 (i.e

where sensitivity = specificity). A probability threshold where

TPR and TNR were equal was compared to the maximum Kappa

statistic (0.538) and the maximum True Skill Statistic (TSS) (0.345)

and found to be a compromise between the diagnostics (Fig. 5).

Estimates of variable importance plots revealed that permuta-

tion of maximum temperatures of summer months from all

random trees resulted in a large drop in mean accuracy for

distinguishing presence and absence of P. albicaulis (0:706
decrease in mean accuracy). This was followed by spring time

snowpack (0:137 decrease in mean accuracy) (Fig. 6). Histogram

plots of July maximum temperatures and April snowpack provided

evidence of discrimination for presence and absence that are

consistent with the modeled probability of presence for the year of

calibration (Fig. 7).

Spatially explicit probability plots for the 2010 climate displayed

highest probability of presence values within the §2500 m

mountain ranges of the GYA in agreement with studies employing

aerial imagery and remote sensing [4,5] (Fig. 8). Assuming that the

modeled suitable bioclimate for P. albicaulis remains similar in the

next century, the model demonstrated capacity to predict probable

future P. albicaulis suitable habitat under projected climate

conditions.

Model projections
Under both RCP 4.5 and 8.5, there was a predicted steady

reduction of suitable bioclimate habitat for P. albicaulis over the

course of this century, with RCP 8.5 displaying steeper declines

than RCP 4.5 (Fig. 9). Under the RCP 4.5 and 8.5 scenarios,

suitable habitat shifts from 100–85% to 2–29% by 2099, and 100–

85% to 0.04–10% by 2099 respectively (Table 4).

CNRM-CM5, CMCC-CM, and CESM1-BGC projections

showed the highest probabilities for suitable habitat area at the

end of the century, while HadGEM2-AO, HadGEM2-ES, and

HadGEM2-CC indicated the lowest probabilities. The standard

deviations per year for both RCPs progressively decreased over

time (Fig. 10). Among climate scenarios, standard deviations for

both RCPs display low variability for the first five projection years

and a rapid increase of variability peaking at 2043. For RCP 4.5,

high variability existed primarily due to differing climate

projections by models HadGEM2-AO and HadGEM2-CC,

resulting in uncertainties in probabilities of presence fluctuating

between 8 and 15% until 2068, after which variability was

between 6–8%. Under RCP 8.5, standard deviations between

GCMs were consistently lower than RCP 4.5. Regardless of the

GCM, by 2079 the areas of suitable habitat converged to similar

values.

Spatially explicit mapping of probability surfaces presented

similar contractions of P. albicaulis habitat suitability toward the

Figure 9. Bioclimate projections for P.albicaulis for 2010 to 2099 under 30-year moving averaged climates.
doi:10.1371/journal.pone.0111669.g009
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upper elevation zones of the GYA that included the Beartooth

Plateau and Wind River Ranges (Fig. 11). This implied that rapid

warming may lead to conditions outside of the P. albicaulis niche

in lower elevation areas, and limiting the species to the alpine

zones. Elevational analysis of cells within threshold presence

probabilities over time observed mean elevations of suitable

bioclimates shifting from 2,875 to 3,218 m and 2,875 to 3,470 m

for RCP 4.5 and 8.5 respectively. By 2099, ensemble averaged

GCM projections displayed over 70% loss of habitat under both

scenarios.

P. albicaulis patches from the 2010 baseline observed 202

patches with median patch size of *180 km2. Projected patch

dynamics analysis denoted a quadratic relationship of patch size

over time. Patch dynamics displayed a slow increase in number of

P. albicaulis patches to a maximum at 2074 and 2057 for RCP 4.5

and 8.5 respectively, followed by a decreasing trend. RCP 4.5

patch numbers were more sporadic, displaying fluctuations across

the time period compared to RCP 8.5 associated with the greater

interannual climate variability amongst GCM models. Median

patch size saw a steady decrease from 72–65 km2 to 21–8 km2 for

RCP 4.5 and 8.5 respectively, for the projection period, suggesting

habitat loss through fragmentation (Fig. 12).

Discussion

In this analysis, the spatiotemporal patterns for P. albicaulis
distributions were assessed under nine climate models and two

emissions scenarios. Bioclimate modeling of P. albicaulis illustrat-

ed that presence and absence were strongly separated by summer

temperatures and spring snowpack. This was in agreement with

empirical findings of P. albicaulis presence in cool summertime

environments where July temperatures range between 4–18uC
[64]. Concordantly, these cool summer regions were synonymous

with late snow melt, supporting snowpack as an important feature

in distinguishing presence and absence.

Future projections by all nine GCMs suggested a contraction in

suitable P. albicaulis climate area by the end of the century to

v30% of current conditions. This was consistent with the results

from various other research using either niche models or hybrid

process models, predicting similar amounts of P. albicaulis
contraction [8,9,65]. Variability among projected suitable habitat

areas under differing GCMs decreased as all projected maximum

temperatures increased above 1uC from the 100 year historic

mean. This pattern of warming convergence occurred earlier for

the GCMs under the RCP 8.5 scenario than those under RCP 4.5,

resulting in the observed low variability of P. albicaulis suitable

habitat area under RCP 8.5. Despite temperature variability

remaining relatively constant amongst GCMs within a RCP, once

mean annual temperatures increased beyond sim 1uC from the

historic average, all bioclimatic habitat models exhibited a pattern

of contracting total area and variability. These results lead to the

conclusion that explicit selection of a GCM to model under may

not necessarily matter for P. albicaulis bioclimatic niche modeling

studies, especially if the direction of change is solely of concern.

However, if investigation of the magnitude of change is relevant,

Table 4. Projected binary P. albicaulis presence area within GYA to 2099.

Ensemble Average RCP 4.5 2010 2040 2070 2099

Area (km2) 29250.9 16381.2 9151.1 5685.9

(27134–32858) (6918–23359) (2962–12477) (763–9194)

% Total Threshold Area* 91.3 51.1 28.6 17.8

(85–103) (22–73) (9–39) (2–29)

Mean Elevation (m) 2875.7 3020.2 3128.0 3217.9

(2842–2895) (2938–3182) (3055–3297) (3114–3471)

2.5 Percentile Elevation (m) 2356.3 2494.2 2595.0 2691.5

(2320–2376) (2433–2656) (2506–2758) (2571–3041)

97.5 Percentile Elevation (m) 3521.9 3603.5 3677.8 3734.6

(3507–3530) (3551–3701) (3636–3783) (3673–3905)

Ensemble Average RCP 8.5 2010 2040 2070 2099

Area (km2) 29259.3 15746.0 5271.5 960.0

(27188–32604) (12985–19581) (1247–8850) (13–3105)

% Total Threshold Area* 91.3 49.2 16.5 3.0

(85–102) (40–61) (4–28) (0–10)

Mean Elevation (m) 2874.7 3022.5 3225.5 3470.5

(2845–2893) (2974–3061) (3116–3412) (3255–3749)

2.5 Percentile Elevation (m) 2353.1 2492.2 2691.3 3001.5

(2322–2369) (2436–2547) (2553–2934) (2622–3401)

97.5 Percentile Elevation (m) 3522.1 3605.7 3739.5 3908.7

(3508–3530) (3576–3631) (3677–3866) (3775–4063)

Summary of projection outputs under RCP 4.5 and 8.5 climate scenarios displays loss of bioclimate habitat from 2010 to 2099 (low and high probability of presence
GCM summaries displayed in parentheses). Projections into 2099 under all 9 GCMs suggest rapid loss of suitable bioclimate habitat to below 70% of the current
modeled distribution and shifts towards the limited high elevation zones (w3000 m). *(Percent threshold areas calculated from the 2010 PRISM reference probabilities of
presence.)
doi:10.1371/journal.pone.0111669.t004
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Figure 10. Evaluation of the standard deviation s for percent suitable habitat area by RCP scenario.
doi:10.1371/journal.pone.0111669.g010

Figure 11. Spatially explicit probabilty surfaces for 2040 to 2099 suggest contraction of suitable bioclimatic habiatat for P.albicaulis
into the §2500 m elevation zones.
doi:10.1371/journal.pone.0111669.g011
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then GCM selection may directly influence the projected total

suitable habitat area. This can be observed with RCP 4.5 habitat

projection models differing by as much as 27% total suitable

habitat area by the year 2099. Therefore arbitrary selection of a

GCM for future projection modeling is likely inappropriate since it

could lead to overly optimistic/pessimistic results for the species of

concern.

Temporal patch dynamic analysis present an increase in

fragmentation of the larger P. albicaulis suitable habitats over

the next five decades, suggested through an increase in the total

number of continuous patches but decreases in median size. This

was followed by a contraction of small patches until they were

almost absent from the system. Remaining habitat patches were

smaller and less prevalent on the landscape by the end of the

century. Reduced habitat patch size and density may reduce the

likelihood for N. columbiana to disperse successful germinating

seed caches, due to the limited size and area of suitable patch

space. If changing climate habitats result in mortality within adult

patches, genetic diversity may be lost resulting in a population

bottleneck, thus reducing the robustness of the species to adapt to

future disturbances. Experimental trials of P. albicaulis survival

and fecundity under warmer and drier conditions outside the

currently known range would provide greater confidence of the

species ability to persist under future change. Limited analysis on

seedling environmental conditions would also elucidate spatially

explicit dispersal ranges and greater understanding of probable

ranges for future establishment and survivorship.

Projected distributions of persistent P. albicaulis patches

displayed a strong trend towards contraction into high elevation

zones. Physiologically, there does not appear to be any upper

elevation limit for P. albicaulis in the GYA. P. albicaulis in the

region has been reported to survive in absolute temperatures as

low as 236uC [64]. Lab experiments performed on Pinus cembra,

a related five-needle pine residing in similar climates, were able to

endure cold temperature extremes as low at 270uC without

cellular tissue damage [66]. Considering the current absolute

minimum temperatures the species resides in and cold tolerance of

its relatives suggests that P. albicaulis treeline in the GYA are not

limited by lower temperatures. Controlled laboratory experimen-

tation on P. albicaulis tolerances to temperatures would greatly

improve this physiological understanding of cold tolerance.

Elevational habitat constriction do not imply that P. albicaulis
will be completely gone from the region, but merely the loss of

suitable climate habitat. Currently pre-established adult age class

individuals will likely persist, since projected conditions of

increased temperatures and CO2 concentrations physiologically

indicate increased growth rates of P. albicaulis [67]. Furthermore,

micro-refugia sites may exist in the GYA that support P. albicaulis
survival into the future, but were failed to have been modeled due

to the coarseness of 30-arc-second climate data resolution. Since

this bioclimatic envelope modeling approach was parameterized

by the realized niche from in-situ data, it was difficult to determine

if lower elevation limits are driven by warmer climate conditions

or competition for light, water, or nutrients [15,17]. For example,

lower treeline limits for P. albicaulis maybe driven primarily by

competitive exclusion from late seral species A.lasiocarpa,
P.contorta, and P.engelmannii. This follows from paleoecological

pollen records of competitor migration during the Early Holocene

(9000–5000 yr B.P), when climate conditions were warmer and

drier. Longer growing seasons allowing competitors to invade

likely drove P. albicaulis communities +500 m in elevation [68–

70]. If future climate conditions become analogous to this Early

Figure 12. Patch dynamics of modeled P.albicaulis. Time series of P.albicaulis patch projections for number of patches and median patch size to
2099.
doi:10.1371/journal.pone.0111669.g012
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Holocene period, invasion of competitor species will likely contract

P. albicaulis habitat to the limited high elevation zones of the

GYA, specifically the Beartooth Plateau region and Wind River

range [71].

Conclusion

This analysis examined the future of P. albicaulis suitable

climate in the GYA and explicitly addressed the question of

distribution variability under 9 representative GCMs and 2

emission scenarios. Increases in temperature within the GYA will

likely result in a high level of contraction of suitable climate habitat

for P. albicaulis over the next century. This contraction was

consistent for all GCM projections, with approximately 20%

uncertainty in total probable area. This analysis recommends that

care be taken for species distribution modeling in future studies

during the selection of GCMs due to their relevance for

magnitudes of change. GCM ensemble averaging may be a

solution to this issue, however it should be noted that averaging

should take place after an individual GCM is projected in order to

maintain interannual variability.

Although other studies have examined P. albicaulis species

distribution models [8,65,72], this study is a step forward through

its focus on relevant regional scale design, expansive local datasets,

inclusion of high resolution climate and dynamic water balance

variables, and selective projection under the latest AR5 GCMs. It

is reiterated that the bioclimate niche model approach has high

utility for understanding habitat conditions through correlative

relationships with environmental variables, however, it may fail to

explicitly model competitive exclusion, disturbance, phenotypic

plasticity, and other complex interactions that are vital in

determining a species’ actual presence as it experiences changes

in climate [15,17,73,74]. These unmodeled factors create uncer-

tainties suggesting that this modeling effort does not identify the

full potential climatic range of P. albicaulis in the future.

Uncertainties also exist regarding new suitable climates that may

occur outside the current species range. Despite most rangewide

studies confirming our results of total suitable habitat area

reduction, there is potential for previously unsuitable habitat to

become available under future climate change in the Northern

regions [8,22,65]. Caution is therefore advised to individuals

interpreting these findings. Changing climate will inevitably result

in impacts on biomes and community structures. As such,

mitigation and adaptation for potential futures are vital to

conservation of climate sensitive species [75]. Future research

that combines bioclimatic niche modeling with a mechanistic

based disturbance, dispersal, and competition model will likely

provide greater insight to the potential range of P. albicaulis in a

climate changing world [76,77]. It would furthermore provide

insight towards informing management options for restoration that

may include controlled fire, selected thinning of competitor

species, or assisted migration.
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