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Abstract: State-and-transition simulation models (STSMs) are known for their ability to explore the 
combined effects of multiple disturbances, ecological dynamics, and management actions on 
vegetation. However, integrating the additional impacts of climate change into STSMs remains a 
challenge. We address this challenge by combining an STSM with species distribution modeling 
(SDM). SDMs estimate the probability of occurrence of a given species based on observed presence 
and absence locations as well as environmental and climatic covariates. Thus, in order to account for 
changes in habitat suitability due to climate change, we used SDM to generate continuous surfaces of 
species occurrence probabilities. These data were imported into ST-Sim, an STSM platform, where 
they dictated the probability of each cell transitioning between alternate potential vegetation types at 
each time step. The STSM was parameterized to capture additional processes of vegetation growth 
and disturbance that are relevant to a keystone species in the Greater Yellowstone 
Ecosystem—whitebark pine (Pinus albicaulis). We compared historical model runs against historical 
observations of whitebark pine and a key disturbance agent (mountain pine beetle, Dendroctonus 
ponderosae), and then projected the simulation into the future. Using this combination of correlative 
and stochastic simulation models, we were able to reproduce historical observations and identify key 
data gaps. Results indicated that SDMs and STSMs are complementary tools, and combining them is 
an effective way to account for the anticipated impacts of climate change, biotic interactions, and 
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disturbances, while also allowing for the exploration of management options.  

Keywords: climate change; Greater Yellowstone Ecosystem; mountain pine beetle; spatially explicit 
simulation; ST-Sim; VisTrails:SAHM; whitebark pine 

 

1. Introduction 

There is a challenging dichotomy in the resource management community. On the one hand, 
there is a need to know and understand fundamental physical processes at a very specific and local 
level. On the other, there is also a need to know the larger context within which the system works. 
This is particularly true for integrating climate change into natural resource management practices. 
Ecological restoration and management actions require an understanding of local conditions (such as 
species competition, disturbance conditions, micro topography, and a given jurisdiction’s 
management options), but climate impacts are often measured and modeled at a coarser scale and 
imply the need to consider the wider landscape. Recent work has called for integrating various 
methods in order to overcome limitations of individual tools and the challenges associated with 
climate change adaptation [1].  

Species distribution modeling (SDM) has proven useful for estimating the potential impacts of 
climate change and other abiotic factors on species distributions. Many SDMs are popular due to 
their ability to generate complex predictions without high computational requirements; however, 
there has been increasing recognition of the limitations of SDMs related to interspecific interactions, 
dispersal, equilibria, stochastic events, and fundamental niche space [2,3]. In addition to their 
inherent limitations, there are some specific questions that are not appropriate or possible within the 
framework of correlative modeling but may be of keen interest to natural resource managers. For 
example, what would happen to a species if the budget for a given restoration project was doubled or 
cut in half? 

State-and-transition simulation models (STSMs) provide a spatial and quantitative framework to 
explore “what if” scenarios, which can be used to explore both management options and evaluate the 
sensitivity of the system to specific parameterizations or assumptions [4]. STSMs have been 
recognized as useful tools for incorporating the effects of multiple disturbances, biotic interactions, 
and management scenarios, but lack statistically robust techniques for relating climate data to species 
distributions. Together, STSMs and SDMs are well-equipped to account for the various facets of 
natural resource management challenges, at both regional and local scales, and combine them in a 
spatial simulation framework.  

Our case study of whitebark pine in the Greater Yellowstone Ecosystem serves as a 
proof-of-concept for combining stochastic simulation models (STSMs) and correlative models 
(SDMs), and sets the stage for future exploration of management options. This research offers two 
novel contributions: 1) accounting for climate change and other dynamics through a combination of 
SDMs and STSMs; and 2) outlining an approach for validating STSMs based on recent 
developments in agent-based modeling, which remains an active area of exploration. 
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2. Background 

2.1. Species distribution models 

Species distribution models (SDMs) refer to a variety of empirical methods that associate 
species with the attributes of their preferred bioclimatic environment, also sometimes referred to as 
“habitat” [5,6]. SDMs evolved over the last several decades from our conceptual understanding of 
niche theory combined with the increased availability of geospatial datasets and geographic 
information systems with which to quantify bioclimatic attributes and their variation across space. 
SDMs typically represent individual species presence (and/or absence) at the spatial resolution of 
commonly available climate data (usually ~ 1 km or coarser) at temporal resolutions of decades or 
longer (often 30 year averages). More recently, interest in the ecological impacts of climate change 
has spurred rapid development and growth in application of SDMs because they are relatively easy 
to train on contemporary conditions and apply to projected future conditions. Future SDM 
projections often support commonly held assumptions about climate change and species extinctions 
and range shifts, although their temporal transferability (i.e., ability to be calibrated for one time 
period and make predictions for another) is rarely considered [7].  

There are numerous challenges to producing actionable science using SDMs including that: they 
often represent unknown mechanistic relationships between species and their environments [8]; 
empirical methods do not always capture the direct effects of climate on species in ecologically 
meaningful ways [9]; there is often a mismatch of spatial and temporal resolution between SDMs 
and management action [10]; and SDMs rarely consider climate change impacts to communities of 
species and functional types whereas management is often charged with preserving assemblages of 
species and ecosystem function [11]. Numerous refinements of SDMs have been proposed [12]; 
however, the above challenges suggest that there remains a need to develop new methods that better 
produce scientific information that is useful to natural resource managers who are engaged in climate 
adaptation planning. 

2.2. State-and-transition models 

State-and-transition models originated as conceptual models that represented groups of 
vegetation communities and the shifts between them [13]. The definition of states often depends on 
the modeling objectives and data availability, but can generally be thought of as suites of vegetation 
communities that have distinct functional groups, ecosystem processes, and structure [14]. 
Transitions include natural events, management interventions, or a combination of both [15]. 
State-and-transition models are typically represented using box and arrow diagrams, in which boxes 
or nested boxes represent vegetation phases and states, and arrows represent the transitions between 
them. 

These conceptual models remain at the heart of more recent quantitative computer-based 
state-and-transition models, or state-and-transition simulation models (STSMs, reviewed by Daniel 
and Frid [4]). In STSMs, transitions can be deterministic (e.g., growth, aging) or probabilistic (e.g., 
fire, invasion), and can be aspatial or spatially explicit. Spatially explicit STSMs are analogous to 
joint cellular automata-Markov models [16], hybrid Markov-cellular automaton models [17], and 
spatio-temporal Markov chains [18]. Bestelmeyer et al. [19] note that spatial context is important for 
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conceptual state-and-transition models because spatial dynamics such as contagion, feedbacks 
between patches, spatial patterns in historical legacies, and variation in soils, topography, and climate 
can all affect the likelihood and location of transitions. These spatial dynamics can similarly be 
incorporated into spatially explicit STSMs.  

STSMs can be used to compare and evaluate different resource management scenarios [20-23], 
and can incorporate climate effects [24-28]. Here we present a novel approach to incorporating the 
effects of climate on vegetation into STSMs that is spatially explicit and based on correlative models 
of habitat suitability. 

2.3. Study area 

Whitebark pine (Pinus albicaulis) is an iconic member of the subalpine forest community in the 
western North American mountains and is highly valued for the ecosystem services it provides. It is 
considered a keystone species because it has strong influence on ecosystem properties. Whitebark pine 
(WBP) is able to tolerate the harsh conditions typical of mountainous terrain and creates forest in 
high-elevation locations that would otherwise be shrubs and herb. By colonizing open subalpine 
patches, it provides safe sites for subalpine fir (Abies lasiocarpa) and other species resulting in greater 
forest cover. In addition to providing habitat for many wildlife species the unusual reproductive 
strategy of producing large crops of cones with large nutritious seeds every few years provides a rich 
food source to the threatened Grizzly bear and other wildlife species. In addition to these positive 
effects on high-elevation ecosystems, the species has strong social values. The unique umbrella shape, 
large size, and grizzled appearance developed over its centuries-long lifespan evokes strong emotional 
appeal to people visiting these mountain haunts. 

The Greater Yellowstone Ecosystem (GYE), which includes Yellowstone National Park, Grand 
Teton National Park, and a number of state and federally managed forests, is a mid- to high-latitude 
region in the Northern Rocky Mountains of western North America. Conifers are dominant in the 
range, with forest types composed of Pinus contorta, Abies lasiocarpa, Pseudotsuga menziesii, Pinus 
albicaulis, Juniperus scopulorum, Pinus flexis and Picea engelmannii, although the deciduous 
hardwood Populus tremuloides, is also wide spread. Plateaus and lowlands are dominated by species 
of Artemisia tridentata and open grasslands of mixed composition. The GYE study area encompasses 
150,700 km2 with an elevational gradient from 522–4,206 m that represents 14 surrounding mountain 
ranges [29]. 

WBP is present in the GYE from below 2,100 m to nearly 3,300 m, an elevation range that spans 
the montane and subalpine zones [30]. WBP is subdominant to other conifer species in the lower 
portion of its distribution and is dominant in many locations at upper treeline [31]. The WBP 
population in the GYE has been particularly hard hit in recent years: in some areas whitebark pine 
mortality has exceeded 95% of cone bearing trees (DBH > 15 cm) [32] due to factors related to 
warming climate, mountain pine beetle (Dendroctonus ponderosae), and an exotic fungal pathogen 
(Cronartium ribicola) associated with white pine blister rust [33]. Beyond the current forest die-off, 
resource managers are concerned because the area of suitable habitat for WBP in the GYE is projected 
to decline dramatically in the coming century due to projected climate change [29,34,35,36]. 
Consequently, the US Fish and Wildlife Service listed the WBP on the U.S. candidate species list [37]. 
Yet questions remain as to how best to manage WBP under these various threats. 
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Figure 1. Study area, highlighting the approximate extent of the Greater Yellowstone 
Ecosystem. 

3. Methods 

3.1. Species distribution modeling 

For the SDM portion of the research, we used the VisTrails:SAHM software package to 
preprocess data, select predictor variables, compare model algorithms, produce model diagnostics, 
and capture data and workflow provenance. VisTrails is a free open source scientific workflow 
software [38] that has been customized for SDM using a set of add-on tools that comprise the 
Software for Assisted Habitat Modeling (SAHM) [39]. 

Field observations of adult tree presences and absences were compiled from the Forest 
Inventory and Analysis (FIA) program, Whitebark/Limber Pine Information System [40], and long 
term monitoring plots established by the National Park Service Greater Yellowstone Inventory and 
Monitoring Network [41]. ‘‘Adult’’ class WBP were selected for modeling based on a recorded 
diameter at breast height (DBH > 20 cm). WBP within central Montana are reported to reach 100 
years of age at approximately 8–12 m in height with DBH 15–20 cm. Given previous silvicultural 
studies, it was assumed that 20 cm DBH for WBP represent adult class individuals for the GYE, with 
potential to reproduce. First, 2,545 WBP observations from the Forest Inventory and Analysis (FIA) [42] 
program were assembled. FIA plots are located on a regular gridded sampling design with one plot at 
approximately every 2,500 forested hectares, with swapped and fuzzed exact plot locations within 
1.6 km to protect privacy. Gibson et al. [43] found that model accuracy was not dramatically affected 
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by data fuzzing, but to provide the most spatial accuracy, this study culled FIA field points where 
measured elevation were > 300 m different than a 30 m USGS digital elevation model. In order to 
generate probability of occurrence surfaces for competitor species, separate species distribution 
models for spruce-fir1 and lodgepole pine were constructed using 2,489 FIA plots.  

Probability surfaces were generated using a random forest algorithm. Random forest is an 
ensemble learning technique that generates independent random classification trees using a subset of 
the total predictor variables and classifies a bootstrap random subsample of the data. The predictor 
variables were 30-year means (1950‒1980) of Parameter-elevation Regressions on Independent Slopes 
Model (PRISM) variables and Thornthwaite-based dynamic water balance model variables [29]. We 
used a maximum correlation filter of 0.75 (all pairs of variables) to avoid collinearity issues, and 
physiologically relevant variables were determined by expert analysis and literature review [29]. A 
total of eight predictor variables were used to determine the probability of WBP occurrence: 
minimum temperature January, vapor pressure deficit March, precipitation April, snow water 
equivalent April, maximum temperature July, actual evapotranspiration July, potential 
evapotranspiration August, precipitation September. Atmospheric CO2 concentrations were not in the 
list of available predictors, but are noteworthy because they could affect tree physiology and 
response to warming [44].  

Accuracy for the model was evaluated by calculating the receiver operator characteristic curve 
(AUC). Although AUC alone does not provide an explicit description of commission and omission 
error rates within a model, it does serve as an index of how likely a model can discriminate a 
presence versus an absence [45]. As a general rule of thumb, an AUC of 0.5 indicates performance 
no better than random and 1.0 indicates perfect model prediction. AUC measures above 
approximately 0.7 are generally considered to be good and above 0.9 excellent [46]. After fitting, our 
WBP model reported an AUC value of 0.94, displaying high specificity and sensitivity. In addition to 
examining the AUC for WBP, the out-of-bag (OOB) error estimation was also examined and found a 
rate of commission (13.1%) and omission (10.9%) for ensemble bagged trees, demonstrating low test 
error. Evaluation of AUC for the other species displayed good/excellent skill for present day climate 
conditions.  

A post-hoc comparison of habitat niche fit with seedling class WBP (< 2.54 cm DBH, n = 497) 
was also constructed, displaying a spatial distribution for WBP analogous to adults (Figure 2). Binary 
classification of presence and absence based on a probability threshold, where sensitivity and 
specificity were equal, generated near equivalent distribution maps for adults and seedlings despite 
seedlings presenting lower occurrence probabilities as a result of lower empirical sample prevalence. 
Comparison of predicted presence distributions across predictor variables again verified similar 
environmental gradients for both adults and seedlings (Figure 3). This post-hoc analysis rationalizes 
use of the “adult” fit distribution probabilities under future climate for state and transition 
simulations as potential suitable habitats for dispersed recruit colonization (details below) due to its 
more complete empirical representation of the population on the landscape. 

Following model fitting and applying the model to a historic climate period (1950‒1980 and 
1980–2010, respectively), we projected our SDM under two global climate models (GCMs) and two 
carbon concentration scenarios. Using a Bias-Correction Spatial Disaggregation (BCSD) approach, 

                                                              
1 Since Englemann spruce and sub-alpine fir are often sympatric and this analysis is focused on WBP, the spruce 

and fir probability surfaces were combined in order to generate a single spruce-fir probability surface. 
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an archive of 9 statistically downscaled CMIP5 climate projections for the conterminous United 
States at 30-arc-second spatial resolution was assembled by the NASA Center for Climate 
Simulation NEX-DCP30. For this analysis, two GCMs that represented the greatest and least change 
in total WBP habitat in the GYE by the year 2099 (CNRM-CM5 [46] and HadGEM2-AO [47], 
respectively), and two representative concentration pathway (RCP) scenarios were used to project 
WBP occurrence probabilities. RCP 4.5 was the first, representing increased radiative forcing until 
stabilization of greenhouse emissions between 2040 and 2050. RCP 8.5 was the second, representing 
the ‘‘business as usual’’ scenario, with uncontrolled radiative forcing with stabilization by 2099. 
Using this approach, we sought to demonstrate the “bookends” of range for projected WBP probable 
habitat under the high uncertainty and variability of global climate models [48]. Occurrence 
probability surfaces were constructed for the 2040, 2070, and 2099 climate projections. 

 

Figure 2. Modeled suitable bioclimatic envelope for adult WBP (938 presence, 1631 
absence; accuracy rate of about 93%) (left panel), and for seedlings (497 presence, 
2072 absence; accuracy rate of about 84%) (right panel). 
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Figure 3. Binary classification of modeled presence for WBP adults (blue) and 
seedlings (red) display similar environmental gradient distributions. 

3.2. State-and-transition modeling 

We implemented the STSM in the ST-Sim modeling platform [49]. ST-Sim’s graphical user 
interface streamlines the process of defining distributions and probabilities, managing model inputs 
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and outputs, viewing results, and creating and comparing alternative simulation scenarios.  
Within ST-Sim, we defined state-and-transition pathways for each potential vegetation type (or 

stratum) in the model. Strata and state classes were defined based on vegetation dynamics models 
developed for the area as part of the Landscape Fire and Resource Management Planning Tools 
Project (LANDFIRE) [50]; specifically, we created three forest types (WBP, lodgepole, and 
spruce-fir) based on the dominant species in three LANDFIRE biophysical settings (BPS) (northern 
rocky mountain subalpine woodland and parkland, rocky mountain lodgepole pine forest, and rocky 
mountain subalpine mesic-wet spruce-fir forest and woodland). We also included an alpine stratum 
as a potential location for WBP colonization, and a shrub-herb stratum for forest that underwent a 
mortality event. The pathway diagrams for each forest stratum were then updated based on available 
information in the literature on species life histories. 

We initialized the model with multiple sources of spatial data. The extent of the spruce-fir and 
lodgepole forest types were based on spatial data from LANDFIRE, and WBP was based on a 
previously published dataset that was generated with Landsat ETM+ imagery [51]. Cells that were 
classified as WBP by the LANDFIRE biophysical settings data, but not by the Landenburger et al. 
dataset were reclassified as spruce-fir because there was greater overlap in its BPS description than 
lodgepole. The location of state classes within each biophysical setting were spatially randomized in 
proportion to the LANDFIRE mapped state class distributions. 

The entire simulated landscape covers just over 15 million hectares centered on the GYE, at a 
spatial resolution approximately 64 hectares per cell. The simulation was initiated in the year 1920 
and run for 30 years to allow the model (specifically, tree populations) to stabilize. The historical 
period covers 1950–2010, and the model was then projected to 2100. The model included transitions 
for reproduction, aging, mortality, and competition. Modeled disturbances included replacement fire, 
mixed fire, disease, insect pathogens, and wind/weather. Parameters for these and other probabilistic 
transitions were derived from a variety of published sources (see Supplementary Material). 
Deterministic parameters (age-based transitions) were based on LANDFIRE pathway diagrams and 
life histories of the three main tree species. Fire size, seed dispersal distances, and mountain pine 
beetle outbreak size distributions were estimated based on the Monitoring Trends in Burn Severity 
(MTBS) dataset, U.S. Forest Service species information, and published literature [52].  

The relationship between probabilities of mountain pine beetle infection and temperature was 
estimated using a modified logistic function: 

1 Μ /
 (1)  

where L is the maximum probability, μ is the 2-year moving average annual minimum temperature 
anomaly, Μ is the mean annual minimum temperature anomaly for 1999‒2009, and a is adjusted so 
the resulting probability matches observed beetle mortality for the same period. In order to calculate 
annual temporal multipliers, this probability was then divided by the historical rates of insect and 
disease infection from the LANDFIRE model (0.003). This relationship was used for both historical 
model runs (1950‒2010) and model projections (2010‒2100) in order to vary the probability of 
mountain pine beetle through time. Other probabilistic transitions were held constant through time. 

Unfortunately, data was insufficient to parameterize blister rust in detail. There is a wide range 
of estimates of blister rust infection rates across locations within the GYE [31], and little information 
on the size of blister rust outbreaks. Moreover, the mortality of WBP with blister rust is often 
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associated with other disturbances (mountain pine beetle, fire). Modeling blister rust is further 
complicated by the complex relationship between blister rust and climate (temperature and humidity 
both influence the spread of blister rust), and the fungus’ dependence on multiple hosts. As a result, 
we did not explore the influence of blister rust on WBP beyond including it in the model and 
ensuring that the modeled prevalence of infection and mortality matched observations from the GYE. 

The establishment of new forest stands after disturbance was dependent on dispersal distances 
(from the literature), and on habitat suitability as defined by SDM output data. SDM output for each 
period (1950–1980, 1980–2010, 2010–2040, 2040–2070, 2070–2100) and each forest type (WBP, 
spruce-fir, lodgepole pine) were used as spatial multipliers to dictate probabilities of forest 
establishment (Figure 4). If establishment failed, the cell returned to the open state in the shrub-herb 
stratum.  

 

Figure 4. Simplified pathway diagram of the integration of species distribution 
model output into the state-and-transition simulation model, including dispersal 
(blue arrow), depletion of the seedbank or mortality of juvenile trees (black arrow), 
successful establishment (whose probability is characterized by the SDM output, red 
arrow), and aging (green arrow). Other transitions (e.g., MPB infection, blister rust 
infection, fire) were omitted from the figure due to space considerations and because each 
forest stratum had a unique pathway diagram. 

We verified realistic model function and then evaluated model outputs to ensure they 
corresponded to real-world patterns (similar to techniques used in agent-based modeling [53,54]). In 
particular, verification involved model debugging and parameter calibration, and validation included 
sensitivity analysis and pattern evaluation. We calibrated the equation that dictated the relationship 
between mountain pine beetle and minimum annual temperature anomaly (Equation 1) to match 
observations (a similar approach to Frid et al. [55,56]). In particular, we compared observed levels of 
beetle and blister rust infection in GYE to results from simulations using four logistic curves with 
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different maxima for the probability of beetle infection.  
Evaluation of simulation models remains a significant challenge [57,58,59]. Our evaluation 

effort was limited by the availability of independent datasets, but we implemented sensitivity 
analysis and pattern evaluation [60] to check the validity of our model. We sought to reproduce the 
recent large-scale dynamics of WBP population and disturbance. We compared mountain pine beetle 
induced WBP mortality using different stratum shift (dead forest stands to open shrub-herb) 
probabilities to observations from the U.S. Forest Service aerial detection survey. Modeled results 
were subset by the area flown in each year of the aerial survey. 

To test the robustness of our model to parameter uncertainty, we performed sensitivity analysis 
by running the model for the historical period with different values for parameters that might change 
substantially with climate or had lower certainty (were unknown or estimated, see Supplementary 
Material). In particular, we varied the probabilities of alpine colonization by WBP, replacement fire, 
and spruce-fir replacement of WBP stands by +/−50% [54, 61]. We ran 40 Monte Carlo simulations 
(iterations or model runs) for each perturbation, and compared the means of our primary outcome 
variables (WBP population, and mountain pine beetle mortality and infection at year 2010) to those 
from the original model specification. The sensitivity index [61] was calculated as:          

x
/
/

 (2)  

where p is the value of the independent variable, dp is the value for a change of p, x is the value of 
the dependent variable, and dx is the corresponding change in x in response to the change in p.  

After model verification and validation we ran the STSM using a no climate change scenario 
and multiple scenarios that included combinations of two GCMs (CNRM-CM5 and HadGEM2-AO) 
and two RCPs (4.5 and 8.5) to capture the range of change in projected WBP habitat suitability. We 
compared temporal patterns and values of key outcome variables at 2100 for these four climate 
scenarios and a no climate change scenario. The no climate change scenario used SDM output from 
1950‒1980 and the mean probability of mountain pine beetle infection for the same period. 

4. Results 

4.1. Verification and validation 

Calibration of the relationship between annual minimum temperature anomaly and mountain 
pine beetle infection indicated that 0.15 was a reasonable estimate of the maximum probability of 
beetle infection. This value produced estimates of beetle infection and mortality, and blister rust 
infection that were comparable to observations from the literature (Figure 5); about half of 
sub-watersheds in the GYE had high to complete mortality from mountain pine beetle [62], and the 
proportion of infected WBP trees in 2010 was around 20% [63]. 
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Figure 5. Results of model calibration using four different maxima for the 
probability of mountain pine beetle (MPB) infection (bars) as compared to 
observations (points). Columns represent the means of 40 Monte Carlo simulations and 
error bars the standard deviations. 

We also tested the sensitivity of key model outputs (total WBP, live mature WBP, beetle kill 
WBP, and beetle infected WBP) to changes in parameters with less certainty (alpine colonization, 
replacement fire, and spruce-fir competition) (Table 1). Perturbations of all of the three parameters 
produced significant differences in one of the three main model outputs. Reducing (by 50%) the time 
required for spruce-fir forest to replace WBP produced the largest sensitivity index values. 
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Table 1. Sensitivity analysis results. 

Parameter Default 
Value 

Perturbation 
Value 

Total WBP Live Mature WBP Beetle Kill WBP Beetle Infected WBP 

Hectares  

(% Change) 

Sensitivity Hectares  

(% Change) 

Sensitivity  Hectares  

(% Change) 

Sensitivity Hectares  

(% Change) 

Sensitivity  

Alpine 

colonization 

(probability)(a) 

0.0001 0.0002 561,060 

(0.30) 

0.30% 

 

163,524 

(1.14) 

1.14% 

 

146,815 

(−0.05) 

N/A 

 

6,838 

(−0.68) 

N/A 

 

Replacement fire 

(probability)(b) 

0.001–0.003 0.0015–0.0045 586,759 

(4.90) 

9.79% 

 

161,757 

(0.05) 

N/A 

 

142,137 

(−3.24) 

−6.48% 

 

6,674 

(−3.06) 

N/A 

 

  0.0005–0.0015 531,778 

(−4.93) 

9.86% 

 

162,647 

(0.60) 

−1.19% 

 

152,048 

(3.51) 

−7.02% 

 

6,923 

(0.56) 

N/A 

 

Spruce-Fir 

Competition 

(years) 

350 175 459,347 

(−17.88) 

35.76% 

 

123,146 

(−23.83) 

47.67% 

 

103,335 

(−29.65) 

59.31% 

 

4,818 

(−30.01) 

60.03% 

 

  525 567,269 

(1.41) 

2.83% 

 

164,816 

(1.94) 

3.88% 

 

150,577 

(2.51) 

5.01% 

 

6,537 

(−5.05) 

−10.10% 

 

Outcome values are means of 40 model runs measured at year 2010. These values are compared to baseline model output using t tests; significant differences (p < 0.05 for the two-tailed 

distribution) are shown in bold, and sensitivity values are reported for statistically significant differences. Percent changes from the baseline model are in parentheses. 
(a)Alpine colonization could not be decreased further or increased by a smaller increment due to the limitations of the software (i.e., precision was limited to four decimal places)  
(b)The probability of replacement fire varied by state class; default and perturbation values for replacement fire are listed as ranges due to space considerations  
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In terms of pattern evaluation, the relationship between the probability of beetle infection and 
annual minimum temperature anomaly for the historical period were similar to simulated beetle 
survival published elsewhere [64, Figure 2A in 65]. Additionally, the final model specification (value 
of 0.1 for the probability of a stratum shift from dead forest to open shrub-herb) closely matched 
temporal patterns of mountain pine beetle induced WBP mortality from the aerial detections survey 
data, especially when compared to model specifications using other stratum shift values (0.05 and 
0.0333) and a no climate change scenario (Figure 6). Model output for the total area of WBP in 
National Forest and National Park Service lands in 2010 (536,664 hectares) was also comparable to 
the observed area of WBP dominant stands (531,999 hectares) [31]. 

 

Figure 6. Comparison of mountain pine beetle mortality for four different model 
specifications (three different probabilities of the shift from dead forest to open 
shrub-herb, and a no climate change scenario). 

4.2. Projections 

The area of WBP in 2100 was lower for all climate change projections as compared to the no 
climate change scenario (Figure 7), although this difference does not become pronounced until mid- 
to late-century (Figure 8). The no climate change scenario resulted in less spruce-fir and more 
lodgepole as compared to the GCM/RCP scenarios. 

Despite the appearance of diminishing mountain pine beetle mortality over time and projections 
of low mountain pine beetle mortality in 2100 (Figure 9), beetle infected and killed WBP stands 
accounted for about 40% of susceptible WBP in all climate scenarios at the end of the century. 
Moreover, by 2100 late seral stage WBP was nearly absent from the landscape in all climate 
projections except for the no climate change scenario. 
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Figure 7. Mean areas of three forest types in 2100 under five different climate 
scenarios. Error bars represent the 95% percentile range for 40 Monte Carlo simulations. 

 

Figure 8. Projected area of WBP forest under five different climate scenarios. Lines 
represent the means of 40 Monte Carlo simulations and shaded regions represent the 95% 
percentile range. 
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Figure 9. Projected area of WBP mortality from mountain pine beetle under five 
different climate scenarios. Lines represent the means of 40 Monte Carlo simulations and 
shaded regions represent the 95% percentile range. 

5. Discussion 

Results of the sensitivity analysis suggest that some of the less certain model parameters had a 
substantial effect on model output. The time for WBP stands to transition to spruce-fir forest had the 
largest effect. More detailed information on this dynamic would likely improve model reliability. 
Estimates for seral (as opposed to climax) WBP communities for this parameter range from 100‒200 
years [66]. Although the 350-year replacement time used in the model produced relatively 
conservative estimates of WBP persistence, a more nuanced approach could link spruce-fir 
competition to other factors (e.g., elevation). It is possible that this and other influential parameters, 
such as the rate of WBP colonization of the alpine zone and variation in the probability of stand 
replacing fires with climate, could be estimated based on fire, reforestation, and climatic patterns that 
have been reconstructed from fossil records [30,67]. 

Another limitation of this modeling effort was the use of output from SDMs of adult trees as 
input for seedling establishment. In other words, the spatial multiplier files used in our model 
represent the probability of the presence of adult trees, but dictated the probability of seedling 
establishment. However, these probability surfaces were based on 30-year moving averages of 
climate variables, so, depending on the age of the adult trees, these data may indeed represent the 
climate conditions during establishment. Moreover, our comparison of the presence and absence 
locations of mature and seedling WBP suggests that the distribution of seedlings is very similar to 
that of adults. In sum, without additional data points for the presence and absence of seedlings to 
parameterize more robust seedling SDMs, and given the overlap in WBP adult and seedling 
distributions it seems reasonable to have used the available SDM output for seedling establishment 
within the STSM. 

Despite these limitations, the model produced results that closely matched historical point 
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estimates and temporal patterns of WBP and mountain pine beetle activity in the GYE, indicating 
realistic model function. The counterintuitive finding of less spruce-fir under no climate change is 
likely the result of mountain pine beetle activity; the no climate change scenario had lower beetle 
infection probabilities, less beetle mortality, and thus fewer opportunities for spruce-fir to colonize 
cells vacated by beetle-killed lodgepole and WBP. Future work could incorporate SDM output of 
historic and projected mountain pine beetle habitat suitability in order to provide more nuanced and 
spatially explicit infection probabilities.  

Output for key WBP variables were comparable across GCMs and RCPs. All scenarios showed 
a substantial decline in WBP forest, and especially late seral stage forest. The differential effects of 
climate projections may have been attenuated by similar levels of mountain pine beetle activity 
across climate scenarios. Across all climate projections, the probability of mountain pine beetle 
infection reaches a maximum by early- to mid-century.  

Overall, this modeling effort integrated a wide range of available information on WBP ecology, 
reproduced observed patterns of WBP mortality in the GYE, and set the stage for future exploration 
of WBP management scenarios. The sensitivity analyses and findings also point to the importance of 
accounting for climate, disturbances, biotic interactions, and habitat suitability together. The 
approach outlined here for combining the SDMs and STSMs provides a strong foundation for 
exploring alternative approaches to managing resources under the combined pressures of climate 
change, insects, disease, and interspecific competition.  

6. Conclusion 

This research demonstrated the benefits of integrating correlative and stochastic simulation 
models. In particular, we combined SDM’s ability to produce statistically robust estimates of the 
relationship between climate and habitat with STSM’s ability to account for disturbances and biotic 
interactions. The resulting model reproduced observed patterns of WBP in the GYE. 

Another important outcome from this research is the identification of data gaps and 
opportunities for the integration of additional datasets and modeling approaches. Our framework for 
model validation not only served to corroborate model function, but also identified important 
research needs, including the ability of WBP to colonize alpine zones, the rate of spruce-fir 
replacement of WBP across different parts of the landscape, and changes in fire regime. Looking to 
the historical and paleontological record could help address these shortcomings.  

This model and the software platform offer a basis for exploring resource management 
scenarios such as thinning to protect high value trees from fire, prescribed fires, and the application 
of pesticides and pheromones to deter mountain pine beetles [31]. Ideally, the specific management 
scenarios would be carefully developed in conjunction with resource managers. Scenarios could then 
be implemented in ST-Sim by altering transition probabilities to further explore parameter space and 
model sensitivity, setting management targets for a given outcome (e.g., area of beetle mortality), or 
setting limits on expenditures for a given action (e.g., pesticide application). Moreover, these 
scenarios could be applied to specific management units (e.g., National Forests, National Parks), 
locations (e.g., < 10 km from roadways), and time periods. The costs of implementing management 
actions or achieving particular targets could also be tracked through time.  

STSMs can integrate a variety of data types and sources to create spatially explicit, flexible, and 
verifiable representations of ecological dynamics. When paired with SDMs, they offer an especially 
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powerful approach for anticipating the effects of climate change, and ultimately, exploring options 
for managing species in the face of an uncertain future. 
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Supplementary 

Appendix S1. Probabilistic transition parameter values, sources, and associated transition constraints. 

From Veg. 

Type 

From Class To Veg. 

Type 

To Class Transition Type Probability Age 

(years) 

Source & Notes Other Transition Constraints 

All Forest Propagule All Forest Juvenile Establishment From SDM ≥ 1 SDM output (habitat suitability grids)  

All forest Dead-Fire Shrub-Herb Open Succession Deterministic ≥ 2 Allows for seed dispersal to open cells after 

fire 

 

Alpine Open WBP Propagule Colonization 0.0001 ≥ 1 Estimated/unknown; tested with sensitivity 

analysis 

 

Lodgepole Late-Close Spruce-Fir Mature Competition Deterministic 350 LANDFIRE BPS 2110550 [68] Min. time-since-transition (TST) 

(establishment) = 350 yr.  

Lodgepole Mid-Close Lodgepole Mid-Close Competition/Main

tenance 

0.0020 20‒79   

Lodgepole MPB Lodgepole Dead- 

MPB 

Death-MPB Deterministic ≥ 20 Probability of death incorporated into 

probability of infection (as in LANDFIRE)

Min. TST (MPB infection) = 2 yr.  

Lodgepole Propagule Shrub-Herb Open Establishment 

Failure 

0.9500 ≥ 1 Probability assumed equal for all forest 

types 

Min. TST (dispersal) = 11 yr. 

(estimated based on MPB stands, 

Teste et al. [69]) 

Lodgepole Mid-Close Lodgepole MPB Infection-MPB 0.0030 20‒79 LANDFIRE BPS 2110550 [68] Annual temporal multipliers vary 

this parameter according to 

Equation 1; outbreak size 

distribution estimated based on 

Aukema et al. [52] 

Lodgepole Late-Close Lodgepole MPB Infection-MPB 0.0030 80‒350   

Lodgepole Late-Close Lodgepole Mid-Close Insect/Disease- 

Other 

 

0.0060 80‒350   
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Lodgepole All Lodgepole Dead-Fire Replacement Fire 0.0030 ≥ 1 LANDFIRE BPS 2110550 [68]; tested 

with sensitivity analysis 

Fire size distribution (MTBS [70]) 

Lodgepole Dead-MPB Shrub-Herb Open Succession 0.1000 > 20 Based on time for shrub-herb to early forest 

(10‒30yrs, Keane et al. [66]); used to track 

amount of dead forest 

Min. TST (MPB mortality) = 2 yr. 

(loss of needles) 

Shrub-Herb Open All Forest Propagule Succession 0.2500 ≥ 1 Probability assumed equal for all forest 

types 

Seed dispersal distances (USFS 

[71]) 

Spruce-Fir Propagule Shrub-Herb Open Establishment 

Failure 

0.9500 ≥ 1  Min. TST (dispersal) = 3 yr. 

(Johnson & Fryer [72]) 

Spruce-Fir Late-Close Spruce-Fir Late-Open Insect/Disease- 

Other 

0.0010 ≥ 150 LANDFIRE BPS 2110560 [68]  

Spruce-Fir Late-Close Spruce-Fir Late-Open Mixed Fire 0.0050 ≥ 150   

Spruce-Fir Early Spruce-Fir Dead-Fire Replacement Fire 0.0020 1‒39 LANDFIRE BPS 2110560 [68]; tested 

with sensitivity analysis 

Fire size distribution (MTBS [70]) 

Spruce-Fir Mid-Close, 

-Open 

Spruce-Fir Dead-Fire Replacement Fire 0.0020 40‒149   

Spruce-Fir Late-Open Spruce-Fir Dead-Fire Replacement Fire 0.0025 ≥ 150   

Spruce-Fir Early  Spruce-Fir Mid-Open Succession 0.0010 1‒39 LANDFIRE BPS 2110560 [68]  

Spruce-Fir Late-Open Spruce-Fir Late-Close Succession 0.0010 ≥ 150   

Spruce-Fir Mid-Close Spruce-Fir Mid-Open Wind/Weather/ 

Stress 

0.0010 40‒149   

WBP Late-Close Spruce-Fir Mid-Close Competition Deterministic 350 Based on LANDFIRE BPS 2110550 [68]; 

tested with sensitivity analysis 

Min. TST (establishment) = 350 

yr.  

WBP Mid-Close WBP Mid-Close Competition/ 

Maintenance 

0.0020 50‒129 LANDFIRE BPS 2110460 [68]  

WBP Early WBP Early Competition/ 

Maintenance 

 

0.0050 1‒49   
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WBP MPB, Rust 

& MPB 

WBP Dead- 

MPB 

Death-MPB Deterministic ≥ 51 Probability of death combined with 

probability of infection (as in LANDFIRE)

Min. TST (MPB infection) = 2 yr.  

WBP Rust-Early WBP Dead-Rust Death-Rust 0.5213 ≥ 1 Keane et al. [66]  TST (rust infection) = 10‒30yrs 

(Hatala and Crabtree [73]) 

WBP Rust-Mature WBP Dead-Rust Death-Rust 0.5213 ≥ 50   

WBP Propagule Shrub-Herb Open Establishment 

Failure 

0.9500 ≥ 1 Probability assumed equal for all forest 

types 

Min. TST (dispersal) = 4 yr. 

(USFS [71], Keane et al. [66]) 

WBP Mid-Close WBP MPB Infection-MPB 0.0030 50‒129 LANDFIRE BPS 2110460 [68] Annual temporal multipliers vary 

this parameter according to 

Equation 1; outbreak size 

distribution estimated based on 

Aukema et al. [52] 

WBP Late-Close WBP MPB Infection-MPB 0.0030 130‒350   

WBP Mid-Open WBP MPB Infection-MPB 0.0020 50‒129   

WBP Late-Open WBP MPB Infection-MPB 0.0020 ≥ 130   

WBP Mid-Open, 

-Close 

WBP Rust- 

Mature 

Infection-Rust 0.0067 50‒129 Logan et al. [65]; also similar to Keane et 

al. [66] 

Initiated in 1970; outbreak size 

distribution (estimated) 

WBP Late-Open, 

-Close 

WBP Rust- 

LANDFI

RE Mature

Infection-Rust 0.0067 ≥ 130   

WBP Early WBP Rust-Early Infection-Rust 0.0184 1‒49 Keane et al. [66]  

WBP Late-Close WBP Late-Open Insect/Disease- 

Other 

0.0020 130‒350 LANDFIRE BPS 2110460 [68]  

WBP Mid-Close WBP Mid-Open Insect/Disease- 

Other 

0.0030 50‒129   

WBP Late-Close WBP Late-Open Mixed Fire 0.0020 130‒350   

WBP Mid-Open WBP Mid-Open Mixed Fire 0.0070 50‒129   

WBP Late-Open WBP Late-Open Mixed Fire 0.0070 ≥ 130   
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WBP Mid-Close WBP Mid-Open Mixed Fire 0.0040 50‒129   

WBP Dead-MPB WBP Dead-Fire Replacement Fire 0.0025 ≥ 52 Estimated based on fire probabilities from 

BPS 2110460 (mixed evidence for 

influence of beetle/rust kill on fire); tested 

with sensitivity analysis 

Fire size distribution (MTBS [70]) 

WBP Dead-Rust WBP Dead-Fire Replacement Fire 0.0025 ≥ 2  Fire size distribution (MTBS [70]) 

WBP Rust-Early WBP Dead-Fire Replacement Fire 0.0025 1‒49   

WBP Rust-Mature WBP Dead-Fire Replacement Fire 0.0025 ≥ 50   

WBP MPB, Rust 

& MPB 

WBP Dead-Fire Replacement Fire 0.0025 ≥ 51   

WBP Early WBP Dead-Fire Replacement Fire 0.0010 1‒49 LANDFIRE BPS 2110460 [68]; tested 

with sensitivity analysis 

 

WBP Mid-Close WBP Dead-Fire Replacement Fire 0.0020 50‒129   

WBP Late-Close WBP Dead-Fire Replacement Fire 0.0020 130‒350   

WBP Mid-Open WBP Dead-Fire Replacement Fire 0.0030 50‒129   

WBP Late-Open WBP Dead-Fire Replacement Fire 0.0030 ≥ 130   

WBP Early WBP Mid-Open Succession 0.0100 1‒49 LANDFIRE BPS 2110460 [68]  

WBP Mid-Open WBP Mid-Close Succession 0.0500 50‒129   

WBP Late-Open WBP Late-Close Succession 0.0500 ≥ 130   

WBP Dead-MPB Shrub-Herb Open Succession 0.1000 ≥ 52 Based on time to transition from 

shrub-herb to early forest (10‒30yrs, 

Keane et al. [66]) in order to track amount 

of dead forest 

Min. TST (MPB mortality) = 2 yr. 

(loss of needles) 

WBP Dead-Rust Shrub-Herb Open Succession 0.1000 ≥ 2   
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