
  
Abstract— Fiber-optic communication systems using phase 

shift keying (PSK) modulation may suffer from nonlinear phase 
noise. In this paper, an asymptotic approximation of the 
probability density function (p.d.f.) of the normalized nonlinear 
phase noise is derived by taking the inverse Laplace transform of 
its moment generating function and using the method of steepest 
descent. For comparison, the inverse Laplace transform of the 
moment generating function is also numerically evaluated using 
numerical quadrature. Comparison of the analytical and 
numerical results, for specific examples, indicates that the 
method of steepest descent is more accurate and, therefore, is 
preferable for semi-analytical calculations of the error 
probability. 
 

Index Terms—Optical fiber communication, fiber 
nonlinearities, nonlinear phase noise, phase modulation 
 

I. INTRODUCTION 
HE error probability is used to characterize the 
performance of digital lightwave communication systems 

[1]. Consequently, computationally-efficient algorithms for 
error probability estimation are of significant importance. 
Among them, the semi-analytical method for the evaluation of 
the error probability [1] requires the derivation of an analytical 
formula for the probability density function (p.d.f.) of the 
photocurrent at the output of the optical receiver. 

Nonlinear phase noise significantly affects the performance 
of fiber-optic communication systems using different variant 
of phase shift keying (PSK) modulation [2]. Therefore, the 
accurate nonlinear phase noise statistics must be taken into 
account in the calculation of the error probability of these 
systems [2]. The p.d.f. of the nonlinear phase noise was 
previously numerically calculated by taking the Fast Fourier 
Transform (FFT) of its characteristic function, which has been 
known in closed form [2]. 
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In this study, we derive an analytical expression for the 
p.d.f. of the nonlinear phase noise in a fiber-optic 
communication system. More specifically, an asymptotic 
approximation of  the p.d.f is calculated by taking the inverse 
Laplace transform of the nonlinear phase noise moment 
generating function [3] and by utilizing the method of steepest 
descent (saddle point approximation ) [4]-[7]. For comparison, 
the inverse Laplace transform of the moment generating 
function is numerically evaluated using numerical quadrature. 
It is shown, by example, that the method of steepest descent is 
faster and more accurate compared to the aforementioned 
numerical method. 

The rest of the paper is organized as follows: Section II 
initially presents a brief overview of the derivation of the 
analytical expression for the nonlinear phase noise 
characteristic function [2]. Then, an asymptotic expression for 
the p.d.f. of the nonlinear phase noise is calculated by taking 
the inverse Laplace transform of its moment generating 
function and using the method of steepest descent. In Section 
III, the results of the analytical and numerical calculations are 
compared. 

II. THEORETICAL MODEL 

A. Nonlinear phase noise characteristic function 
The nonlinear phase noise is due to the interaction of 

amplified spontaneous emission (ASE) noise generated by the 
optical amplifiers and the Kerr nonlinearity in the optical 
fibers. It can be modeled using the following approximate 
expression [2] 

 ( ) 2
0

0

TL

NL E n z dzκΦ = +∫  (1) 

where TL = NL  is the total fiber length, N  is the number of 

fiber spans, L  is the length of each fiber span, 0E  is the 
magnitude of the transmitted electric field and κ  is the 
average nonlinear coefficient per unit length. The latter can be 
written as /= effL Lκ γ , where γ  is the fiber’s nonlinear 

coefficient and effL  is the fiber’s effective nonlinear length. 

The term ( )n z  denotes the total accumulated ASE noise as a 

function of the distance z  and is expressed, in equivalent 
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baseband notation [3], as a zero-mean, complex Wiener 
process [8] with autocorrelation given by 

( ) ( ) ( )2
1 2 1 2{ } min ,∗⋅ = sE n z n z z zσ . The term 

2 2
02 /σ σ=s L  is the variance per unit length, and 2

02σ  is the 
ASE noise variance per amplifier per polarization in an optical 
bandwidth equal to the symbol rate [2]. For mathematical 
convenience, it is customary to define the normalized 
nonlinear phase noise as [2] 

 ( )
1

2
0

0

b t dtξΦ = +∫  (2) 

In (2) the normalized nonlinear phase noise Φ  is defined as 
2 /σ κΦ = Φs NLL . In addition, /=t z L  is the normalized 

distance, ( ) ( ) / /= T s Tb t n tL Lσ  is the normalized ASE 

noise, and 0 0 / /= s TE Lξ σ  is the magnitude of the 

normalized transmitted electric field vector. The signal-to-

noise ratio (SNR) is defined as 2 2 2
0 0 /ρ ξ σ= =s T sE L . 

It is straightforward to show that the corresponding 
characteristic function is given by  [2] 

 ( ) ( ) ( )sec exp tansi i i iφ υ υ ρ υ υ Ψ =  
 (3) 

If iυ  in (3) is changed to the complex variable ,z  we obtain 
the moment generating function 

 ( ) ( ) ( )sec exp tansz z z zφ ρ Ψ =  
 (4) 

The inverse Laplace transform of the moment generating 
function yields the p.d.f. [9] 

 ( ) ( ) ( )1 exp
2

c i

c i

p x zx z dz
i φπ

+ ∞

− ∞

= − Ψ∫  (5) 

where c  denotes a real constant that is suitably chosen to 
achieve convergence. 

B. Asymptotic approximation of the nonlinear phase noise 
p.d.f. 
In the following, an asymptotic approximation of the p.d.f. 

of the normalized nonlinear phase noise is derived. This is 
achieved by analytically calculating the inverse Laplace 
transform of its moment generating function, given by (5), by 
applying the method of steepest descent [4]-[7]. The complex 
integral can be also evaluated using numerical quadrature 
(e.g., Simpson’s rule or Gauss-Legendre integration) [10]. 

The method of steepest descent is applied to integrals of the 
form [5] 

 ( ) ( )
'

exp
C

I x x z dz= Φ ∫  (6) 

where 'C  is a path in the complex plane, x  is a large real 
positive parameter such that → ∞x , and 

( ) ( ) ( )Φ = +z u z i zυ  is an analytic function in the 

complex plane. The idea of steepest descent is to deform the 

contour C  so that the region of large ( )u z  is compressed 

into as short a space as possible [4]. This is equivalent to 
deform the initial contour 'C  to a new one C  on which 

( )Φ z  has a constant imaginary part [5]. The paths on which 

( )zυ  is constant and the decrease of ( )u z  is maximal, are 

called paths of steepest descent. These paths go through saddle 
points 0z  which are the roots of the equation ( )' 0Φ =z 1. 

For such a contour, relation (5) is written 

 ( ) ( ) ( )1 exp
2 φπ

= − Ψ∫
C

p x zx z dz
i

 (7) 

or equivalently 

 ( ) ( )1 1exp ln
2 φπ

  = − + Ψ    
∫
C

p x x z z dz
i x

 (8) 

In our case, we observe that the auxiliary function 
( ) ( )ln /φΦ = − + Ψz z z x . Then (8) is written as 

 ( ) ( )1 exp
2π

= Φ  ∫
C

p x x z dz
i

 (9) 

The saddle point 0z  is calculated by taking the first derivative 

of ( )Φ z  [5] 

 ( ) ( )
( )

'
' 11 φ

φ

Ψ
Φ = − +

Ψ
z

z
x z

 (10) 

and setting ( )' zΦ  to zero  

 
( )
( )

'
0

0

φ

φ

Ψ
=

Ψ
z

x
z

 (11) 

Equation (11) is nonlinear and therefore, must be computed 
numerically using an iterative procedure, e.g., the bracketing 
method [10].  
 In Fig. 1, the function ( ) ( )'( ) /φ φ= Ψ Ψf z z z  is 

depicted together with the function ( ) =g z x  for three 

different values of x . We observe that ( )f z  goes to infinity 

for ( ) 2
2 1 / 2 ,κ π= +  z  where 1, 2...κ = . The points 

where ( ) ,f z  ( )g z  intersect correspond to the saddle 

points .0z  The saddle corresponding to the leftmost branch of 

the function ( ) ( )'( ) / ,φ φ= Ψ Ψf z z z  which lies in the 

interval ( )2, / 4 ,π−∞ is the desired root because its 

contribution to the value of the integrand (7) dominates the 
contribution of all other saddle points. 

 
1  In the following primes denote derivatives of different orders with  

   respect to .z  
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Fig.1 Graphical solution of  (11), showing plots of ( ) ( ) ( )'

/φ φ= Ψ Ψf z z z  

and ( ) ,=g z x  for three different values of .x  (Symbols: ( ) :f z solid 
line, x =4: dotted line,  x =26: dashed line and  x =40: dashed-dotted line). 
 
An approximate analytical expression of the leftmost saddle 
point in Fig. 1, for small values of ,x  can be derived by 
arbitrarily assuming that the nonlinear phase noise statistics 
can be fairly well approximated by a Gaussian distribution. In 
this case, the characteristic function is written as [3] 

 ( )
2 2

approx exp
2

υ συ υµ 
Ψ = − 

 
i i  (12) 

where µ , 2σ  denote the mean and the variance of the 
nonlinear phase noise, respectively. The latter are determined 
by taking the first and second derivative, respectively, of the 
exact characteristic function (3) with respect to υ  and setting 

0υ = [3]  

 
1
2sµ ρ= +  (13) 

 2 2 1
3 6sσ ρ= +  (14) 

 
Setting i zυ =  and substituting (12) into (8) yields 

( )
2 2

approx
1 exp

2 2
σµ

π
 

= − + + 
 

∫
C

zp x zx z dx
i

 (15) 

 
The auxiliary function becomes 

 ( )
2 2

approx 2
σµΦ = − + +z zz z

x x
 (16) 

 
The approximate value for the leftmost saddle point 0z  in Fig. 
1 is calculated by evaluating the root of the first derivative of 
(16) with respect to .z  It is straightforward to show that 

 ( )approx
2

µ
σ
−=

0

xz  (17) 

The approximate value ( )approx
0

z  can be used as a starting 
point for the iterative procedure used to solve (11). However, 

it should be stressed that this approximation is useful only for 

small values of .x  As x  increases, ( )approx
0

z  increases and 

eventually exceeds 2 / 4,π  which is the upper bound of the 
interval where the desired saddle point lies. 
Once the saddle point 0z  is known, we expand ( )zΦ  in 

Taylor series around 0z  

 ( ) ( ) ( ) ( ) ( )2 '' 31
20 0 0Φ = Φ + − Φ +z z z z z zO  (18) 

where 

 ( ) ( )
( )

''
'' 21 φ

φ

 Ψ
Φ = − Ψ  

0
0

0

z
z x

x z
 (19) 

 
The path of steepest descent lies along a straight line paralle to 
the imaginary axis passing from 0z since ( )0υ z  along this 

path is ( ) ( )0 0υ υ= =z z . Substituting (18) and (19) into (9) 

and setting ω ω= + ⇒ =0z z i dz id  yields 

 

( ) ( ) ( )

( )
2

''
0

1 exp
2

           exp
2

φπ
ω ω

∞

−∞

− Ψ

    ⋅ − Φ      
∫

∼ 0 0p x xz z

x z d
 (20) 

or equivalently 

 ( ) ( ) ( )
( )''

0

exp

2
φ

π

− Ψ

Φ
∼ 0 0xz z

p x
x z

 (21) 

 
Expression (21) is the asymptotic approximation of the p.d.f. 
of the normalized nonlinear phase noise for → ∞x . In 
Section III, we test the accuracy of (21) for a given range of 
values for .x  

III. RESULTS AND DISCUSSION 
In this section, to illustrate the model, we plot the p.d.f. of 

the normalized nonlinear phase noise calculated both 
numerically and analytically, for three different values of the 
SNR sρ . 

In Fig. 2, the numerical quadrature and the asymptotic 
approximation (21) of the p.d.f. of the normalized nonlinear 
phase noise are plotted in linear scale, for sρ =11, 18 and 24. 
The accurate (solid line) and the approximate (dashed line) 
p.d.f. cannot be distinguished in the scale of the graph. 
Moreover, it is observed that for increasing SNR, the p.d.f. 
curves are shifted to the right and become wider, in agreement 
with (13) and (14). 
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Fig. 2 Probability density function of the normalized nonlinear phase noise  
given by numerical quadrature (solid line) and asymptotic approximation 
(dashed line) in linear scale for SNR  ρs =11, 18 and 24. 
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Fig. 3 Probability density function of the normalized nonlinear phase noise 
given by numerical quadrature (solid line) and asymptotic approximation 
(dashed line)  in logarithmic scale for SNR ρs=18. 

 
In Fig. 3, the solid line corresponds to the numerical 

quadrature approximation of the p.d.f.. The dashed line depicts 
the asymptotic approximation of the p.d.f. (21). Both graphs 
are plotted in logarithmic scale for 18sρ = . The logarithmic 
scale is used in order to highlight the difference between the 
tails of the p.d.f.s evaluated using numerical quadrature and 
the asymptotic approximation. The p.d.f. tail evaluated using 
the numerical quadrature reaches a floor around 1010−  due to 
numerical errors, while the tail of the asymptotic 
approximation of the p.d.f. provides accuracy of at least 20 
significant digits and therefore it is more suitable for small-
error probability calculations.  

IV. CONCLUSIONS 
We used the method of steepest descent in order to derive 

an asymptotic approximation for the p.d.f. of the normalized 
nonlinear phase noise from its moment generating function. 
The accuracy of the asymptotic approximation of the p.d.f. is 
by far superior to numerical quadrature. Most importantly, it is 
very precise at the p.d.f. tails from where the error probability 
can be determined. Therefore, it should be the method of 
choice for semi-analytical evaluations of low error 
probabilities for fiber-optic communication systems using 
PSK modulation. 

Finally, it should be emphasized that the expression of the 
characteristic function of the nonlinear phase noise used as a 
starting point for our calculation contains several idealizations 

[11] and is valid for a large number of fiber spans exclusively 
[2]. Nevertheless, it is anticipated that the method of steepest 
descent should be applicable for alternative nonlinear phase 
noise models as well. The study of these alternative models 
does not lie within the scope of the present paper and will be 
part of future work. 
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