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A B S T R A C T

The mode-dependent signal delay and average power methods are inexpensive direct-detection techniques that
can be utilized to characterize the modal dispersion and the mode-dependent loss of multimode and multicore
optical fibers. In this paper, we study by simulation the impact of receiver noise, device imperfections, and
implementation penalties on the accuracy of these methods in the case of few-mode fibers. We show that
there is a set of optimal launch modes that can minimize errors in the estimation of modal dispersion and
mode-dependent loss.
. Introduction

Space division multiplexing (SDM), in conjunction with multimode
ibers (MMFs) or multicore fibers (MCFs), can increase the link ca-
acity [1]. Different spatial paths provided by different modes/cores
an be utilized for independent data stream transmission through the
iber [2]. However, transmission impairments in MMFs and MCFs,
uch as modal dispersion (MD), mode-dependent loss (MDL), and inter-
odal/intercore coupling, should be taken into account in the design of
reliable and efficient multiple-input multiple-output (MIMO) system.

MD is the dominant limiting factor in uncompensated MMF links
ince it causes strong intersymbol interference (ISI) at the optical
eceiver [3,4], and must be thoroughly characterized. The formalism
f polarization mode dispersion (PMD) in single-mode fibers (SMFs)
an be generalized to describe MD in MMFs. More specifically, MD
an be described by the principal modes (PMs) and their corresponding
ifferential mode group delays (DMGDs), which are jointly represented
y a vector in a generalized Stokes space, the so-called MD vector [5].

To measure the MD of MMFs, several methods have been proposed
n the optical communications literature [6–9]. For instance, Carpenter
t al. [9] used swept wavelength interferometry (SWI) to measure the
iber transfer matrix. This method requires a coherent optical receiver
nd can provide information about PMs, DMGDs, and MDL of the fiber
nder test at once. This is because it is based on amplitude and phase
easurements of input and output modes that can be used to infer the

iber transfer matrix.
A new method that can fully characterize the MD of an MMF is the

ode-dependent signal delay method (MD-SDM) [10]. This is a gener-
lization of the polarization-dependent signal delay method (PD-SDM)
or the measurement of the PMD vector in SMFs [11]. In this method,
he time-of-flight of optical pulses is utilized to characterize the MD of

∗ Corresponding author.
E-mail address: mdadras@montana.edu (M. Dadras).

the fiber, which can be done using a direct-detection receiver. It was
analytically shown [10,12] that the input MD vector components can
be determined by such group delay measurements. Once the input MD
vector is known, the input group-delay operator can be constructed
and the input MD and DMGDs can be estimated [12]. Similarly, for
MDL characterization, one can determine the MDL vector by launching
optical pulses and measuring their average output powers. We will
refer to this characterization technique as the mode-dependent average
power method (MD-APM).

In this paper, we use Monte Carlo simulation to study the accuracy
of the MD-SDM and the MD-APM for fiber characterization, which has
not been addressed before (although early simulation results were pre-
sented in [13]). We use optimized launch modes to minimize the noise
error in the estimation of the MD and MDL vectors [12,14]. We show
that, for different fibers, the DMGDs and input PMs of the fiber can be
estimated by using the MD-SDM. For instance, for a given 500-m-long
6-mode fiber, we observe that the difference between the magnitude of
the MD vector measured using the MD-SDM and estimated directly from
the fiber transfer matrix in the absence of the MDL is only 1.22 ps. The
MDL vector of the fiber can also be determined using the MD-APM by
measuring the average output power of optical pulses. In addition, we
measure the MD vector and the MDL of the fiber in different coupling
regimes. The MD vector is estimated for different few-mode fiber (FMF)
lengths as well. We demonstrate that the maximum discrepancy in the
magnitude of the MD vector with and without the MDL is less than
1.6 ps. Furthermore, we investigate the impact of the thermal noise
of the direct-detection receiver and the modal crosstalk introduced by
the mode converter at the FMF input on MD vector characterization.
Finally, the impact of various sets of launch vectors on the accuracy of
the MD and MDL vectors estimation is analyzed. We show that using
ttps://doi.org/10.1016/j.optcom.2022.128735
eceived 4 January 2022; Received in revised form 28 May 2022; Accepted 2 July
vailable online 8 July 2022
030-4018/© 2022 Elsevier B.V. All rights reserved.
2022

https://doi.org/10.1016/j.optcom.2022.128735
http://www.elsevier.com/locate/optcom
http://www.elsevier.com/locate/optcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2022.128735&domain=pdf
mailto:mdadras@montana.edu
https://doi.org/10.1016/j.optcom.2022.128735


M. Dadras, I. Roudas and J. Kwapisz Optics Communications 523 (2022) 128735

i

m

𝜄

a
S
u
m
m
o
M

m
c
p
T
o

𝐏

M
f

J
i
a
a

𝛼

l
l
M
S
a
b
M

w

a
t
u
v
w
t

2

m
i
c
s
a
t
t

the optimal launch vectors proposed in [12] reduces the penalty in
MD vector and MDL estimations by 3.22 dB and 4.11 dB, respectively,
compared to the random launch vectors.

2. Operating principle overview

2.1. Modal dispersion

Initially, we consider the ideal case of an MMF without MDL, i.e, the
fiber transfer matrix 𝐔 (𝜔) is unitary. The input group-delay operator
s defined as 𝜄𝐔† (𝜔)𝐔𝜔 (𝜔) [5,12], where the subscript 𝜔 in 𝐔𝜔 (𝜔)

denotes differentiation with respect to the angular frequency and the
dagger denotes the adjoint matrix. The input group-delay operator can
be expressed in terms of the identity matrix 𝐈 and the generalized
Gell-Mann matrices, 𝜦 ∶=

[

𝜦1,… ,𝜦𝑁2−1
]𝑇 , where 𝑁 is the number of

odes and 𝑇 indicates transposition [12]

𝐔† (𝜔)𝐔𝜔 (𝜔) ∶= 𝜏0 (𝜔) 𝐈 +
1

2𝐶𝑁
𝜏𝑠 (𝜔) ⋅𝜦. (1)

In (1), 𝜏0 (𝜔) represents the average group delay in the MMF under test,
𝜏𝑠 is the input MD vector in the generalized Stokes space, and 𝐶𝑁 is a
normalization coefficient defined as 𝐶𝑁 ∶=

√

𝑁∕ [2 (𝑁 − 1)].
The MD-SDM [12] can be used to characterize the DMGDs and input

PMs of the fiber. The eigenvalues and the eigenvectors of the input
group-delay operator are the DMGDs and the input PMs, respectively.
The group delay 𝜏𝑔 of an optical pulse is related to the input MD vector
𝜏𝑠 and the combination of launch modes, which is represented by Stokes
vector �̂�, as follows [12]

𝜏𝑔 = 𝜏0 +
1

2𝐶2
𝑁

⟨

𝜏𝑠
⟩

⋅ �̂�, (2)

where ⟨⋅⟩ denotes spectral averaging.
In (2), 𝜏𝑔 is defined as the time average [12]

𝜏𝑔 ∶=
∫ ∞
−∞ 𝑡𝑃 (𝑡)𝑑𝑡

∫ ∞
−∞ 𝑃 (𝑡)

𝑑𝑡, (3)

where 𝑃 (𝑡) denotes the instantaneous optical power at the fiber output.
In the beginning, we can estimate the average group-delay 𝜏0 by

launching 𝑁 pulses corresponding to 𝑁 arbitrary orthogonal launch
states in Jones space. For instance, we can use the MMF eigenmodes,
i.e., we can launch first all the power at the fundamental mode 𝐿𝑃01 in
the 𝑥-polarization; next, we can launch all the transmitted power at the
𝐿𝑃01 mode in the 𝑦-polarization; and so forth. Then, the average group
delay is calculated by averaging the delays of the different eigenmodes.
Next, we employ (2) to form a (𝑁2 − 1) × (𝑁2 − 1) matrix. To calculate
this matrix, first, we need to define the coefficient matrix

𝐒 =
[

�̂�1,… , �̂�𝑁2−1
]𝑇 , (4)

where columns contain the 𝑁2 − 1 launch states, corresponding to the
linearly independent Stokes vectors �̂�𝑖, 𝑖 = 1, 2,… , 𝑁2 − 1. Afterwards,
we use 𝑁2−1 optimal launch states corresponding to different fiber spa-
tial mode combinations. For every launch state, we measure the power
of output pulses using direct detection and calculate the group delays
using (3). Finally, a set of equations can be formed using (2) [12], and,
the MD vector 𝜏𝑠 can be estimated by matrix inversion [12].

2.2. Mode-dependent loss

In practice, MDL is always present in MMFs and must be char-
cterized first because it impacts the MD measurement described in
ection 2.1. MDL is the combined result of differences in the atten-
ation coefficients of different modes and of coupling among various
odes due to manufacturing imperfections, fiber bends, and other
echanical deformations [12]. In [12], the authors proposed a variant

f the MD-SDM, called the MD-APM, to characterize the MDL before
D.
 a

2

If MDL is not negligible, the transfer matrix of the multimode fiber is
not unitary and is denoted by 𝐇(𝜔). In this case, the input group-delay
operator is defined as 𝜄𝐇𝜔 (𝜔)𝐇−1 (𝜔) [12]. This is a non-Hermitian

atrix with complex eigenvalues and non-orthogonal eigenvectors. To
haracterize MDL, as indicated in [12], we can express 𝐇(𝜔) as a
roduct of a unitary matrix 𝐔(𝜔) and a positive definite matrix 𝐏(𝜔).
he MDL is the ratio of the maximum and minimum of the eigenvalues
f the positive definite matrix 𝐏(𝜔)2. The latter can be written as

(𝜔)2 = 𝛼0(𝜔)
[

𝐈 + 1
2𝐶𝑁

𝛤 (𝜔) ⋅𝜦
]

, (5)

where 𝛼0(𝜔) denotes the mean attenuation of the fiber and 𝛤 (𝜔) is the
DL vector [12]. Due to the similarity between Eqs. (5) and (1), we

ollow a similar procedure to the one described in Section 2.1.
For MDL characterization, first, we launch 𝑁 orthogonal modes in

ones space into the MMF and measure the output powers correspond-
ng to these launched pulses. Averaging over the output powers 𝑃𝑘
nd normalizing with the input power 𝑃In gives the estimated mean
ttenuation of the fiber

0(𝜔) =
1

𝑁𝑃In

𝑁
∑

𝑘=1
𝑃𝑘. (6)

Next, we launch 𝑁2 − 1 mode combinations, which are independent
in the Stokes space, and measure the corresponding output powers 𝑃𝑔𝑖 ,
𝑖 = 1, 2,… , 𝑁2−1. The matrix representation of the system of equations
can be written as 𝐒𝛤 (𝜔) = 𝛥𝛼, where 𝛥𝛼 =

[

𝛥𝛼1,…𝛥𝛼𝑁2−1
]𝑇 is a vector

with elements 𝛥𝛼𝑖 ∶= 𝛼𝑖−𝛼0 and 𝛼𝑖 is defined as 𝛼𝑖 ∶= 𝑃𝑔𝑖∕𝑃In. Therefore,
the MDL vector can be determined by solving the matrix equation

𝛤 (𝜔) = 𝐒−1𝛥𝛼. (7)

In addition, since 𝐏(𝜔) is known, we can pre-compensate for MDL
and calculate the transfer matrix of the compensated optical fiber using
the method in Section 2.1. In other words, we construct new mode
combinations for the pre-compensation using the formula

|𝑠′𝑘⟩ = 𝐏(𝜔)−1|𝑠𝑘⟩, (8)

where |𝑠𝑘⟩ and |𝑠′𝑘⟩ denote the uncompensated and pre-compensated
aunch states, respectively. After calculation of the pre-compensated
aunch states, the corresponding mean group-delay, 𝜏′0 (𝜔), and the
D vector, 𝜏′𝑠 (𝜔), can be calculated by the procedure described in

ection 2.1. Therefore, the compensated input group-delay operator
nd input group-delay operator of the fiber in the presence of MDL can
e determined [12]. Subsequently, the MD vector in the presence of the
DL is complex and can be calculated by

𝜏′𝑠 (𝜔) ∶= 𝐶𝑁Tr[𝜄𝐇−1 (𝜔)𝐇𝜔 (𝜔) ⋅𝜦], (9)

here Tr(.) denotes the trace of a matrix.
To summarize, first, the MD-APM can be used to characterize MDL

nd, subsequently, the MD-SDM can be used to characterize MD. In
he joint presence of MD and MDL, initially, we characterize the MDL
sing the MDL formalism described in Section 2.2 and then perform MD
ector measurement of the compensated fiber transfer matrix. Finally,
e create the non-Hermitian input group delay operator for estimating

he MD vector.

.3. Modal crosstalk at the launch

Both the MD-SDM and MD-APM depend on the accuracy of selecting
ode combinations. Indeed, modal crosstalk on the transmitter side

s one of the most important limiting factors of the method and it
an be minimized by utilizing optimal launch vectors in the Stokes
pace [12,15]. For instance, if a spatial light modulator (SLM) is used
s mode converter, it is possible to optimize the phase mask to reduce
he crosstalk. However, even a small amount of crosstalk can affect
he measurement of the input MD vector. In this section, we present

high-level model of modal crosstalk for different numbers of modes.
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Fig. 1. Simulation setup for MMF characterization using the MD-SDM (Abbreviations:
CW: Continuous Wave, V(t): Bias voltage, MZM: Mach–Zehnder modulator, SLM: Spatial
light modulator, MMF: Multimode fiber, PD: Photodetector).

In order to model the modal crosstalk introduced by the mode
converter without taking into account the device physics, we assume
that we launch unintentionally a vector |𝑠′𝑘⟩, instead of the desired
mode combination |𝑠𝑘⟩ [12]. In simulation, we use an abstract proce-
dure to generate the input vectors |𝑠′𝑘⟩. First, we generate a random
vector and then find the orthonormal component |𝛥𝑠⟩ of this vector
with respect to |𝑠𝑘⟩. The perturbed vector |𝑠′𝑘⟩ can be expressed as
|𝑠′𝑘⟩ =

√

1 − 𝜀|
|

𝑠𝑘⟩ +
√

𝜀|𝛥𝑠⟩, where 𝜀 denotes the modal crosstalk level.

2.4. Thermal noise

Thermal noise is the most significant source of noise in direct-
detection optical receivers. As indicated in [12], the variance of the
measured length of the MD vector due to thermal noise in the direct-
detection receiver can be estimated by

𝜎2𝛿𝜏𝑔 = Tr
[

𝐀𝐀𝑇 ] 𝑁0𝐶4
𝑁𝑇 3

6𝑅2
𝑑 �̄�

2
, (10)

where 𝐀 = 𝐒−1. In (10), 𝑁0, 𝑇 , 𝑅𝑑 , and �̄� denote the power spectral
density (PSD) of the thermal noise, the integration time for the compu-
tation of the group delays, the responsivity of the photodiode, and the
average energy of the received pulse, respectively. Then, we calculate
a bound of the relative error in the MD vector by

𝐵𝑅𝐸 ∶=
𝜎𝛿𝜏𝑔
‖𝜏𝑠‖

, (11)

here 𝜎𝛿𝜏𝑔 denotes the standard deviation of the thermal noise in the
eceiver.

. Simulation of MD-SDM and MD-APM

Using the simulation setup shown in Fig. 1, we studied the prop-
gation of light through various FMFs. For this simulation, we used
raded-index FMFs with parabolic refractive index profile for the fiber
ore. The waveform is generated by a continuous wave (CW) laser
nd modulated by a Mach–Zehnder modulator (MZM). Then, the SLM
s used to provide different mode combinations to propagate through
he FMF. At the output of the FMF, optical pulses are detected by a
hotodetector and the PMs and DMGDs are estimated by processing
he results in a personal computer. For simplicity, we assume idealized,
hirp-free, narrowband Gaussian optical pulses.

Table 1 shows the parameters that were used in the simulation.
To simulate real fibers, we consider different properties of FMFs that

ause different modes to have different group delays. Delays due to the
olarization and spatial configurations of the LP modes are simulated
y taking into account the mode dispersion and intramode group delay
arameters. In addition, we enabled mode coupling as well to consider
ntragroup coupling. Every couple of hundred meters, strong coupling
ay occur due to the similarity of the propagation constant, resulting in

ull coupling of the modes. Therefore, we consider mean section length
nd all mode correlation length to consider this effect. Finally, to be
ore accurate, we also include standard deviation of the mean section

ength.
 𝐇

3

Table 1
Simulation parameters.

Parameter Value Unit

Fiber length 1–20,000 m
Group refractive index 1.47 –
Attenuation 0.2–0.6 dB/km
Refractive index reference frequency 193.1 THz
Core refractive index 1.45 –
Index contrast 0.02 –
Core diameter 10–18 μm
Cladding diameter 125 μm
Connector efficiency 64 %
Optical loss at connectors 2 dB
PMD coefficient 1.58 × 10−15

√

s/m
PMD correlation length 150 m
Correlation length 130 m
All modes correlation length 130 m
Effective area LP01 80 μm2

Mean section length 500 m
Section length deviation 5 m
Photodiode responsivity 1 A/W
Photodiode thermal noise 10−9–10−12 A∕

√

Hz

Fig. 2. MD vector estimation in the absence of MDL using the MD-SDM (blue) and
the fiber transfer matrix (red).

4. Results and discussion

In this section, we present simulation results for the characterization
of different fibers using the MD-SDM and the MD-APM. The accuracy
in estimating the norm of the MD vector has been utilized as a figure
of merit for the proper operation of the MD-SDM. Fig. 2 compares the
magnitude of the MD vector as a function of wavelength derived from
the transfer matrix (red) and estimated using the MD-SDM (in blue)
without MDL, for a 500 m long 6-mode fiber. We observe that there
is a small discrepancy between the MD vector estimates using the two
methods. Specifically, we note that the largest difference is 1.22 ps,
which occurs at 1537.5 nm in the C-band.

When the fiber has MDL, the transfer matrix of the fiber is not
unitary and we calculate the MD vector using the process in Section 2.2.
Fig. 3 shows the MD vector estimation using the process in Section 2.1
after we compensate the MDL as described in 2.2. As expected, the
MD estimation error is larger now. The maximum error is 3.41 ps and
occurs at 1552.5 nm.

MDL plays a fundamental role for limiting the signal propagation
in SDM fibers. As mentioned above, the presence of the MDL affects
on the MD vector characterization and, therefore, MDL estimation is
vital in using MD-SDM. In addition, we can calculate the transfer
matrix of the fiber using input and output PMs, which is provided
by the simulation tool. The transfer matrix can be calculated using
𝐇(𝜔) = 𝐏𝐌Out(𝜔)𝐏𝐌In(𝜔)−1, and then MDL can be estimated by the
ratio of the largest eigenvalue to the smallest eigenvalue of the 𝐏(𝜔)2 =

†
(𝜔) 𝐇(𝜔) [12].
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Fig. 3. MD vector estimation in the presence of MDL using the MD-SDM (blue) and
the fiber transfer matrix (red).

Fig. 4. Comparison of the estimated MDL by the MD-APM (blue) and the MDL derived
by the transfer matrix (red).

Fig. 4 shows the MDL and the effect of the receiver thermal noise in
the MDL measurement in the C-band from the transfer matrix and the
MD-APM. In addition, we used vertical error bars to show the means
and associated spread in the MDL measurements. In fact, each time we
ran the simulation in the C-band, we observed different MDL due to the
receiver thermal noise, and we considered the maximum error to plot
the spread of the MDL measurement. For example, at 1536 nm, there
is a 0.1 dB deviation between the estimated value and the actual MDL
of a 500 m 6-mode fiber.

Mode coupling in MMFs is another factor that affects the perfor-
mance of a transmission system. Here, we estimate the accuracy of the
MD-SDM and the MD-APM at different coupling regimes. We define
the coupling parameter as [16] 𝛿𝑐 ∶= 𝐿𝑐∕𝐿𝑠, where 𝐿𝑐 and 𝐿𝑠 denote
the correlation length and the fiber length, respectively. When 𝛿𝑐 is
close to one we are in the weak-coupling regime. When 𝛿𝑐 approaches
zero, the correlation length is much shorter than the system length,
and we are in the strong-coupling regime. We defined the penalty in
MD vector estimation as 10𝑙𝑜𝑔(‖𝜏𝑠‖𝑀𝐷−𝑆𝐷𝑀 − ‖𝜏𝑠‖𝑇𝑀 )∕‖𝜏𝑠‖𝑇𝑀 , where
‖𝜏𝑠‖𝑀𝐷−𝑆𝐷𝑀 and ‖𝜏𝑠‖𝑇𝑀 denoted the MD vector from the MD-SDM
and fiber transfer matrix, respectively. For the MDL estimation, we
defined the penalty as 10𝑙𝑜𝑔(MDL𝑀𝐷−𝐴𝑃𝑀 − MDL𝑇𝑀 )∕MDL𝑇𝑀 .

Fig. 5 shows the impact of different coupling regimes on the MD
vector estimation using the MD-SDM. Strong coupling reduces the sep-
aration of group delays and it can compensate for MD vector estimation
errors. For example, for a 1 km 6-mode fiber, the penalty for using this
method compared to using the fiber transfer matrix for the MD vector
estimation is less than −25 dB.
4

Fig. 5. Penalty in MD vector estimation as a function of the coupling parameter
(Symbols: Orange: N=2, Red: N=3, Blue: N=4, Green: N=5, Black: N=6).

Fig. 6. Penalty in MDL estimation as a function of the coupling parameter (Symbols:
Orange: N=2, Red: N=3, Blue: N=4, Green: N=5, Black: N=6).

Fig. 6 shows the penalty in MDL estimation for different coupling
regimes. Similar to the MD vector estimation, the penalty in MDL
estimation decreases slightly when we approach to the strong-coupling
regime.

Next, we compute the norm of the MD vector for different numbers
of modes and different fiber lengths to illustrate the impact of the MDL
on the MD characterization. We adjusted the correlation length and
fiber length to make the coupling parameter 𝛿𝑐 at 0.2 to be at the
relatively strong coupling regime.

Fig. 7 shows the increase of the norm of the MD vector as a function
of the fiber length for different numbers of modes in the absence and
presence of the MDL. As shown, in the joint presence of MD and MDL,
MDL induces progressively larger penalties in the MD vector estimation
as the fiber length increases. For instance, for a 20 km long 6-mode
fiber, the measured MD has an extra 1.6 ps of error compared to the
measurement in absence of MDL.

The principal attenuation of the fiber determines the MDL of the
fiber. It is accumulated along with the fiber, and depends on the num-
ber of modes and the coupling regime [17]. According to the chosen
coupling parameter for our simulation, the MDL trend for different fiber
lengths shows a growth roughly somewhere between a square root of
the distance and the linear growth. In fact, the coupling strength can
determine the MDL trend, and we can expect more linear growth by
increasing the coupling parameter. Fig. 8 illustrates the MDL of the
fiber as a function of the fiber length for different numbers of modes.
For instance, for a 6-mode fiber, the MDL increases by 0.0625 dB on
average for every 1 km of the fiber.
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Fig. 7. The magnitude of the MD vector vs. fiber length for different numbers of modes
in the absence and presence of MDL.

Fig. 8. MDL vs. fiber length for different numbers of modes (Symbols: Orange: = 2,
Red: = 3, Blue: = 4, Green: = 5, Black: = 6).

Fig. 9. Penalty in MD vector estimate as a function of the SNR in the presence of
different sources of errors (Symbols: Red: Impact of noise, Magenta: Impact of crosstalk
and noise, Blue: Impact of noise and MDL, Orange: Impact of crosstalk, Noise, and MDL
for a two-mode fiber).

To further investigate the accuracy of the method, we consider
other possible limitations like modal crosstalk and thermal noise along
with the MDL, and their combined impacts on the performance of the
channel. The penalty in MD vector estimation as a function of the SNR
for different sources of errors is reported in Fig. 9. In this figure, all
sources of errors, such as thermal noise at the direct-detection receiver,
MDL as the transmission effect of the fiber, and error of the mode
5

Fig. 10. Penalty in MD vector estimate as a function of modal crosstalk at the fiber
input for different launch vectors (Symbols: Red: Random launch vectors, Black: Yang
and Nolan’s vectors [18], Magenta: MUBs launch vectors [19], Blue: SIC-POVMs launch
vectors [20], Green: Optimal launch vectors [12]).

Fig. 11. Penalty in MDL estimation as a function of modal crosstalk at the fiber input
for different launch vectors (Symbols: Red: Random launch vectors, Black: Yang and
Nolan’s vectors [18], Magenta: MUBs launch vectors [19], Blue: SIC-POVMs launch
vectors [20], Green: Optimal launch vectors).

combiner are taken into account to show the accuracy of the MD-SDM
and the MD-APM. For the parameter values used in our simulations,
MDL leads to a higher penalty compared to crosstalk. In the presence
of thermal noise, the MDL and the crosstalk penalties are compounded.

Using optimal launch vectors can minimize the error in the MD vec-
tor estimation. Fig. 10 compares different input launch vectors, such as
Yang and Nolan’s vectors [18], mutually unbiased bases (MUBs) [19],
symmetric, informationally complete, positive operator valued measure
(SIC-POVM) vectors [20], and the optimal launch vectors proposed
in [12]. We observe that the optimal launch vectors [12] produce less
penalty compared to other vector sets that were previously proposed.
For instance, in a 6-mode fiber, the penalty in the MD estimation is
decreased by 3.22 dB using optimal launch vectors instead of using
random launch vectors when the modal crosstalk at the fiber input is
−30 dB.

Fig. 11 illustrates the effect of using different launch vectors for
the MDL measurement as a function of modal crosstalk. As expected,
optimal launch vectors [12] can minimize the error in MDL estimation.
In fact, the optimal launch vectors can reduce the penalty by 4.11 dB
compared to random launch vectors when the modal crosstalk at the
fiber input is −40 dB.

5. Conclusion

In this paper, we investigated the accuracy of the MD-SDM and
the MD-APM in the characterization of FMFs. We simulated different



M. Dadras, I. Roudas and J. Kwapisz Optics Communications 523 (2022) 128735
sources of errors and studied their impact on the accuracy of the MD-
SDM and MD-APM. In addition, the MD and MDL of the fiber were
investigated for different coupling regimes. Furthermore, the thermal
noise of the direct-detection receiver and the modal crosstalk at the
fiber input were discussed as two limiting factors in the MD vector
estimation. Finally, we showed that using the optimal launch vectors
could reduce the penalty in MD and MDL characterization. Experimen-
tal results for these measurement methods will be presented in future
publications.
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