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Abstract: We analyze and optimize the performance of a single-tap constrained decision-directed 
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1. Introduction  
Several digital carrier phase estimation (CPE) algorithms have been proposed for coherent optical M-ary Quadrature 
Amplitude Modulation (QAM) intradyne receivers [1]-[5]. Feed-forward CPE algorithms [1], [2] are parallelizable 
and, therefore, amenable to real-time digital signal processing (DSP) implementation at high symbol rates. In 
contrast, for computer simulations and off-line processing, recursive CPE algorithms [3]-[5] are, by far, superior, in 
terms of computational efficiency, and exhibit comparable performance to their feed-forward counterparts, at least 
of the same order of magnitude, in terms of the maximum allowable 3-dB laser linewidth-symbol period product.  

In this paper, we theoretically study the performance of a single-tap constrained decision-directed least-mean 
square (DD-LMS) CPE algorithm for coherent optical M-QAM receivers [5], [6]. The distinctive feature of this 
particular DD-LMS algorithm is that its single complex tap is constrained on the unit circle of the complex plane. 
This yields increased robustness compared to alternative DD-LMS CPE algorithms, e.g., [4]. We derive analytical 
expressions for the update of the single complex coefficient,  the residual phase noise variance, and the optimum 
step-size parameter, and we calculate, by simulation, the linewidth tolerance of the algorithm for square 16-QAM. 

 
2. Theoretical model of the constrained DD-LMS algorithm 

Fig. 1(a) shows the block diagram of the constrained DD-LMS phase noise estimation algorithm. At each 
discrete time instant kt kT� , where T is the symbol period, the received signal sample kx  is multiplied by a single 

complex tap of unit magnitude ˆ ,kj
kc e ���  where k̂�  is the estimate of the phase noise. The corrected signal sample 

k̂j
k ky x e ��� is used to make a decision on the received symbol ˆ

kd  and calculate the error ˆ .k k ke d y� �  The LMS 
algorithm [7] minimizes the instantaneous square error magnitude.  The minimization is done recursively using the 
method of steepest descent [7]: The derivative of 2

k̂ ke� � with respect to �̂  is calculated at each time instant kt  

and k̂�  is updated by taking a small step in the opposite direction of the derivative. 

More specifically, the derivative of k̂� with respect to �̂  is � �' ' * *ˆ ',k k k k ke e e e� � � where primes denote derivatives 

with respect to �̂  and stars denote the complex conjugates. By substituting ˆ
k k ke d y� � and ˆ ,kj

k ky x e ���  it is 

straightforward to show that ' ,k ke iy� � �* *' .k ke iy� �  Thus, the derivative of �̂  is expressed as 	 
' *ˆ 2 ,k k ke y� � � where 

	
.�  denotes the imaginary part of a complex number. Hence, the LMS recursion is 

 	 
*
1

ˆ ˆ
k k k ke y� � �� � � �  (1) 

where � is the algorithm step-size parameter ( 0)�   and the initial guess for the recursion is 0̂ 0.� �   
It is worth mentioning that the aforementioned algorithm was first proposed by [5], although the recursive 

relationship (1) was given without proof, and the reader was referred to the generic formalism of the stop-and-go 
equalizers [6]. Above, we provided a much simpler alternative derivation based on LMS equalization theory. The 
idea of imposing constraints on equalizer coefficients to enhance convergence was explored before in  [8].  

To analytically study the properties of the constrained DD-LMS algorithm, we next consider the case of 
negligible intermediate frequency offset, intersymbol and cross-polarization interference, since these impairments 
are largely removed by separate DSP modules prior to CPE. At the entrance of the CPE module, the samples of each 
polarization tributary, can be written, in complex representation, as � �exp ,k k k kx d j n�� �  where kd  is the k � th 
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symbol, k�  is the laser phase noise, and kn  is a circularly-symmetric additive Gaussian noise, with zero mean and 
variance 22 ,n�  due to amplified spontaneous emission (ASE), shot and thermal noises.  

Typically, the phase noise is modeled as a discrete Wiener process [9] using the recursion 1 ,k k k� � ��� ��  where 

0�  is arbitrary. In the latter expression, the successive phase increments k��  are independent, identically-distributed 
Gaussian random variables with zero mean and variance 2 2 ,T�� � �� � �  where �� denotes the total 3-dB linewidth, 
i.e., the sum of the 3-dB linewidths of the transmitter laser and the local oscillator.   

The magnitude of �  in (1) affects both the feedback loop speed and the residual phase noise  , .r k�  We can 
analytically calculate the residual phase noise variance from (1) assuming that there are almost no symbol errors 
ˆ

k kd d�  and that ˆ 1.k k� �� ��  Then, � �2* *ˆ
k k k k k k ke y i d d n� �� � � �  and  (1)  can  be  rewritten  as  

� � 	 
2 *
1

ˆ ˆ ˆ .k k k k k k kd d n� � � � � �� � � � � �  We subtract k�  from both sides and after some algebra we obtain 

 � � � �2 2 2 2 2
2 4 2, 2 41 2 2 / 2

r r nm m m m m� �� � � � � � � ��
� �� � � � �� �� �� �  (2) 

In (2), we defined the moments 	 
km E d� �
� and 	 
, , ,r k rm E d� �

�  where 	 
,k r kd d� � and 	
.�  denotes real part. 

The optimal value of the step-size parameter, that minimizes the residual phase noise variance, is calculated by 
taking the derivative of (2) with respect to � and finding its positive root 

 � � � �2
4 4

2 2 2 2
2

2
2 2, 2,/8 / /4opt r n r nm mm mm m� �� � � � �� �

�� � � � �� � �� �� �
�  (3) 

The results of (3) are accurate in the low noise regime, where the assumptions ˆ
k kd d� and ˆ 1k k� �� ��  are strictly 

satisfied. In the opposite case, one can numerically optimize the step-size parameter, in order to minimize the 
symbol error probability, by using the approximate optimal value given by (3) as a starting point.  

In the absence of residual phase noise, the bit error probability, for square M-QAM, is given by [10] 
 � � � �| 22( 1) erfc 3 / 2 / ( 1) / loge b sP M M M M�� � �  (4) 

where 2
2 / (2 )s nm� ��  is the average electronic symbol signal-to-noise ratio (SNR) and erfc(.) denotes the 

complementary error function [10]. Expression (4) will be used as a reference, in order to evaluate the performance 
of the constrained DD-LMS algorithm under various operating conditions. 

 
3.  Results and discussion  
Fig. 1(b),(c) show contours of optimal step, given by (3), and the corresponding normalized minimum residual phase 
noise standard deviation, given by (2) after substituting (3), respectively,  as a function of the total 3-dB linewidth-
symbol period product and the average electronic symbol SNR for square 16-QAM. Fig. 1(b) indicates that the 
optimal step size decreases as the 3-dB linewidth and the average electronic symbol SNR decrease. This is similar to 
the dependence of the M-th power law algorithm [9], typically used in quadrature phase shift keying (QPSK) 
receivers, on the averaging block size. The fixed step-size parameter proposed in [5] is not optimal. In Fig. 1(c), we 
observe that the minimum residual phase noise standard deviation is always larger than 2 .���  

Fig. 2(a)-(c) show representative phase traces, residual phase noise histograms, and constellation diagrams, 
respectively, for an average electronic symbol SNR �s=19 dB and for ���=10-4. Fig. 2(a) indicates that the algorithm 
closely tracks the phase noise for 500,000 symbol periods. However, there are significant residual phase errors, 
although this is not visible on the scale of the graph. The histogram of Fig. 2(b) reveals that residual phase errors 
extend up to 0.9 rad (~52 deg), exceeding the minimal azimuthal separation of ~37 deg between neighboring points 
in  the  square  16-QAM  constellation  [10].  In  other  simulation  runs  for  the  same  ��� and lower �s, the algorithm 
becomes increasingly unstable until, eventually, its estimate completely diverges from the actual phase noise. Track 
loss due to cycle slips can be mitigated to some extent by differential encoding [9].  

Finally, Fig. 3(a) shows plots of the average bit error rate (BER), obtained by Monte Carlo simulation based on 
2×106 bits, as a function of the average electronic symbol SNR for various ���.  From Fig.  3(a)  we calculate  the  
average electronic symbol SNR penalty at BER=10-3,  compared  to  the  ideal  case.  Fig.  3(b)  shows  a  plot  of  the  
resulting penalty vs. ���. We obtain a 1-dB penalty for ���=1.1×10-4. This value is more conservative than the one 
reported previously [5] and slightly inferior to the linewidth tolerance of the considerably more complex feed-
forward blind phase search algorithm (���=1.4×10-4) [1], which also requires mandatory differential encoding. 

JW2A.62.pdf   2 1/23/2012   11:45:49 AM

����������	
����������
�������������



 
 
 

 

  
Fig. 1 (a) Block diagram of the constrained DD-LMS CPE algorithm; (b) Contours of optimal step size; (c) Contours of 

normalized minimum residual phase noise standard deviation for square 16-QAM (Conditions: m4=1.63, m2=1.11, m2,r=0.55). 
 

 

 

 
 

Fig. 2(a) Representative phase noise trace and its estimation by the constrained DD-LMS algorithm;(b) Residual phase noise 
histogram and Gaussian fit; (c) Constellation diagrams: Ideal (blue points), before (red points) and after carrier phase noise 

estimation (green points). (Conditions: 16-QAM, �s=19 dB, normalized 3-dB linewidth ���=10-4, optimum step size �=0.23). 

 
 

Fig. 3 (a) BER vs. average electronic symbol SNR; (b) Electronic symbol SNR penalty vs. 3-dB linewidth at BER= 10-3. 
 
4.  Conclusions  
We theoretically studied the performance of a fast single-tap constrained DD-LMS CPE algorithm for coherent 
optical M-QAM receivers. We derived analytical expressions for the update of the single complex coefficient,  the 
residual phase noise variance, and the optimum step-size parameter and we thoroughly calculated, by simulation, the 
linewidth tolerance of the algorithm. For square 16-QAM, the maximum ��� that can be mitigated is 1.1×10-4, 
compared to ���=1.4×10-4 for the much more computationally intensive blind phase search algorithm [1]. 
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