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Abstract: We propose optimal launch modes minimizing the noise error in the estimation of the 

fiber modal dispersion vector. For a 20-mode fiber, the SNR is improved by 4 dB compared to 

conventional mode combinations. 
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1. Introduction 

Research in multimode and multicore optical fibers (jointly abbreviated by the acronym MMFs) has gained popularity 

in the past few years, owing to their potential use in high-capacity, long-haul, mode-division multiplexed (MDM) 

transmission systems [1]. To minimize the computational complexity of digital signal processing in coherent optical 

receivers, MDM MMFs are designed to exhibit short impulse responses, resulting from small uncoupled differential 

mode group delays (DMGDs) and strong coupling among eigenmodes. Consequently, modal dispersion 

characterization of MDM MMFs requires sensitive complex instrumentation (see [2] and the references therein).  

Recently, the mode-dependent signal delay method [3], [4] was proposed to retrieve the full information about the principal 

modes (PMs) and their DMGDs by measuring the input modal dispersion (MD) vector in the generalized Stokes space using an 

inexpensive direct-detection receiver. More specifically, this method records the group delays of a series of optical pulses 

propagating though the fiber under test, each pulse corresponding to different input mode excitations. By analyzing these pulse 

group delays one can infer the MD vector components, as explained below. The accuracy of the MD vector calculation, however, 

critically depends on the selection of the launch modes. 

The main contribution of this paper is the optimization of launch modes in order to maximize the SNR and enhance 

the accuracy of the mode-dependent signal delay method. For example, for a 20-mode MDM MMF, the optimal mode 

combinations improve the noise performance of the mode-dependent signal delay method by 4 dB compared to [4].  

2.  Mathematical model 

To determine the MD vector in the case of an N-mode fiber, the group delay 𝜏𝑔 of an output pulse can be expressed 

as a function of the dot product of the input MD vector 𝜏𝑠(𝜔) and the launch state vector �̂� in Stokes space [5], [6] 
𝜏𝑔 = 𝜏0 + [(𝑁 − 1)/𝑁]〈𝜏𝑠(𝜔)〉 ∙ �̂�, (1) 

where 𝜏0 is the average group delay and  〈. 〉 denotes spectral-averaging. 

At each frequency, we launch 𝑁2 − 1 pulses corresponding to linearly-independent states  �̂�𝑖 in the generalized 

Stokes space and we observe their group delays 𝜏𝑔,𝑖, i=1, … , 𝑁2 − 1. From these measurements, we can calculate the 

components of 𝜏𝑠(𝜔) based on (1) by solving a set of 𝑁2 − 1 equations with 𝑁2 − 1 unknowns [5], [6]. Thermal 

noise at the direct-detection receiver, however, can lead to an error in the estimate of 𝜏𝑠(𝜔).  

Our aim is to choose a set of 𝑁2 − 1 Stokes vectors �̂�𝑖  that minimizes the variance 𝜎‖𝛿�⃗⃗�𝑠‖
2  of the MD vector. In 

principle, the lowest value of 𝜎‖𝛿�⃗⃗�𝑠‖
2  could be achieved by selecting orthonormal �̂�𝑖  because, then, the errors of the MD 

vector components would be uncorrelated. Interestingly, for N>2, it is impossible to find such an orthonormal set of 

𝑁2 − 1 Stokes vectors �̂�𝑖   due to the incomplete coverage of the generalized Poincaré sphere with valid states [5]. In 

the following, we compute optimal sets of 𝑁2 − 1 quasi-orthogonal Stokes vectors �̂�𝑖  that correspond to feasible 

combinations of propagating modes using two different gradient descent algorithms to minimize 𝜎‖𝛿�⃗⃗�𝑠‖
2  [7].  

In the first algorithm, we parametrize the j-th unit Jones vector |𝑠𝑗〉 using 2𝑁 − 2 hyperspherical coordinates, i.e., |𝑠𝑗〉 =

[cos(𝜙𝑗1) , sin(𝜙𝑗1) cos(𝜙𝑗2) ei𝜃𝑗1 , … , sin(𝜙𝑗1) ⋯ sin(𝜙𝑗𝑁−2) sin(𝜙𝑗𝑁−1) ei𝜃𝑗𝑁−1]
T
. From this expression, we calculate 

the corresponding Stokes vector �̂�𝑗 [5] and its partial derivatives with respect to 𝜙𝑗𝑣 and 𝜃𝑗𝑣. Furthermore, we define the vector 𝐩 

that contains the coordinates 𝜙𝑗𝑣 and 𝜃𝑗𝑣 of all 𝑁2 − 1 Stokes vectors. Then, we perform unconstrained optimization in a 

(𝑁2 − 1) × (2𝑁 − 2) real space using the method of gradient descent [7]: Starting from a random point 𝐩(0), we take successive 

steps 𝐩(k) opposite to the direction of the gradient of the cost function ∇ξ,  where ξ = 𝜎‖𝛿�⃗⃗�𝑠‖
2 , until we reach a local minimum [7]. 

The iteration is written as 𝐩(k+1) = 𝐩(k) − 𝜇(k)∇ξ(k), where 𝜇(k) is a positive scalar (adaptive step size) [7].  



In the second algorithm, we parametrize the j-th Jones vector  |𝑠𝑗〉 = (𝑠𝑗𝑣)
𝑣=1

𝑁
 using 2N real parameters  𝑥𝑗𝑣 = ℜ(𝑠𝑗𝑣) and 

𝑦𝑗𝑣 = ℑ(𝑠𝑗𝑣). Now, the parameter vector 𝐩 contains the coordinates 𝑥𝑗𝑣  and 𝑦𝑗𝑣 of all 𝑁2 − 1 Stokes vectors. The optimization 

takes place in a (𝑁2 − 1) × 2𝑁 real space, where we impose 𝑁2 − 1 unit length constraints 〈𝑠𝑗|𝑠𝑗〉 = 1, 𝑗 = 1, … , 𝑁2 − 1. 

We use the modified update rule 𝐩(k+1) = proj[𝐩(k) − 𝜇(k)∇ξ(k)], where 𝐩(0) is chosen at random and proj(.) means that only 

the component of the gradient tangential to the constraints is employed (projected gradient descent) [7].  

3.  Results and discussion 

Fig. 1(a) shows plots of the SNR penalty vs the number of modes for four different vector sets. The SNR penalty is 

calculated using the ideal albeit infeasible case of orthonormal Stokes vectors �̂�𝑗 as baseline (in red). For N=20, we 

observe that there is a 4 dB noise reduction by using the optimal vector set (circles and stars) instead of the launch 

states proposed by Yang et al. [4] (in blue). In waveguides where the number of propagating modes N  is a power of 

a prime, selecting launch states from mutually unbiased bases (MUBs) [6], [8] (in green) yields better performance 

than using the launch states proposed by Yang et al. (in blue) [4]. Still, for N=19, there is a 1.26 dB noise reduction 

by using the optimal vector set instead of launch states from MUBs [8]. Finally, it is worth noting that, for N>2, 

orthonormal vector sets do not exist, as already mentioned in Sec. 2 [5]. For instance, for N=20, we observe that there 

is a 1.44 dB penalty for using the optimized states compared to the ideal case of orthonormal vectors. 

To exemplify the deviation of the optimal vectors from orthogonality, we compute the correlation matrix (after subtracting the 

identity matrix) for the vectors in the optimal set for N=10. Each pixel of the density plot shown in Fig. 1(b) depicts the absolute 

value of the corresponding dot product of two vectors of the optimal set. Notice that the absolute value of the off-diagonal elements 

spans a range reaching 0.12. This result implies that the optimum vectors deviate from orthogonality by up to ±6.7 deg. 

Finally, we can catch a glimpse of the optimum set of Stokes vectors using a 2D projection (e.g., see Fig. 1(c) for 𝑁 = 3). We 

know that the 𝑁2 − 1 Stokes vectors should be ideally orthonormal. It is possible to project orthonormal vectors onto a plane so 

that their projections have equal angular separations (dashed black vectors). Now we can superimpose on the same plane the 

projections of the actual optimal vectors given by the numerical optimization procedure (red vectors), as well as the projection of 

the manifold of allowed states on the surface of the Poincaré sphere (dark blue area) [5]. All vectors are bounded by the projection 

of the Poincaré sphere onto the plane (shaded circular disk with unit radius). 

In conclusion, we optimized the launch states used in the mode-dependent signal delay method for the measurement of modal 

dispersion in MDM MMFs. Since both numerical optimization algorithms presented here find local minima, the SNR penalty 

obtained by using the proposed launch states should be considered as an upper bound of the globally optimal solution. 

  
 

(a) (b) (c) 

Fig. 1 (a) SNR penalty compared to the ideal case vs the number of modes for four different vector sets (Symbols: Blue line: Yang’s vectors [4]; 

Green line: launch states selected from 𝑁 + 1 mutually unbiased bases (MUBs) in groups of 𝑁 − 1 vectors (𝑁 + 1 MUBs are known to exist only 
when the number of modes N  is a power of a prime) [6], [8]; Red line: Orthonormal Stokes vectors; Circles: unconstrained optimization algorithm; 

Stars: projected gradient descent algorithm; (b) Density plot of the optimum vector set correlation matrix minus the identity matrix for N=10; (c) 

2D projections of various vector sets for N=3 (Symbols: Dashed black vectors: ideal orthonormal vectors; Red vectors: actual optimal vectors given 
by the numerical optimization of Sec. 2; Dark blue area: projection of the manifold of allowed states on the surface of the Poincaré sphere). 
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