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Abstract Blind electronic polarization demultiplexing in coherent optical receivers using the constant modulus algorithm 
occasionally suffers from singularities. The introduction of constraints in the polarization demultiplexer’s transfer function 
compensates for this deficiency, greatly enhancing convergence speed. 

 

Introduction 
Polarization demultiplexing in polarization-diversity 
coherent optical receivers can be performed electronically, 
using a two-input/two-output adaptive filter with four 
complex taps [1]-[7]. The constant modulus algorithm 
(CMA) [8] is a good candidate for adaptation of the 
demultiplexer taps due to its low computational complexity 
and its robustness in the presence of intermediate 
frequency (IF) offsets and laser phase noise [5]. However, 
its major shortcoming is its possible erroneous convergence 
to the same polarization tributary [6]-[7]. 

To remedy this problem, Kikuchi [6] proposed an 
enhanced CMA polarization demultiplexer with constraints 
on its taps. Elaborating on Kikuchi’s idea, we propose a 
new zero-forcing constrained polarization demultiplexer. 
Its transfer matrix, in the absence of polarization mode 
dispersion (PMD) and polarization dependent loss (PDL), 
can be expressed as a function of only two real parameters 
(as opposed to two complex parameters in [6]). We study, 
by simulation, the convergence properties and the 
performance of the proposed polarization demultiplexer in 
PDM quadrature phase shift keying (QPSK) coherent 
optical systems. We prove that convergence is always 
guaranteed and is achieved considerably faster than with its 
conventional counterpart [5]. 

A rudimentary intradyne receiver with the proposed 
polarization demultiplexer can be used in order to 
theoretically estimate the tolerance of uncompensated 
coherent optical communications systems to PMD and 
PDL. Furthermore, it can be also used as a benchmark for 
comparing the performance of more sophisticated 
electronic adaptive PMD/PDL equalizers [9]. 

Constrained CMA polarization demultiplexer 
The block diagram of a polarization- and phase-diversity 
coherent intradyne synchronous receiver is shown in Fig. 
1(a) [10]. The receiver front-end is composed of a local 
oscillator (LO), two polarization beam splitters (PBS), two 
2×4, 90° optical hybrids, and four balanced detectors 
(BRx). The four photocurrents are low-pass filtered (LPF), 
sampled by an analog-to-digital converter, and processed 
using a digital application-specific integrated circuit (DSP).  

The received complex electric field vector  tE  can be 

written as           ,s s p pt E t e t E t e t E  in equivalent 

baseband notation. In the above,    ,s pE t E t  denote the 

complex envelopes of the PDM QPSK signals, and 

   ,s pe t e t , are slowly-varying normalized Jones 

vectors [11], [12] along two arbitrary orthogonal states of 

polarization (SOPs). The latter can be expressed in terms of 

the azimuth  t and ellipticity  t of   se t  [11]. 

The photocurrents at the output of the four balanced 
receivers are sampled at integer multiples of the symbol 
period snT and combined, via complex addition, to form 

discrete-time scaled replicas    1 2,x n x n of the received 

complex electric field vector. The combined action of 
polarization rotations in optical fibers and of the 
optoelectronic conversion at the polarization- and phase-
diversity coherent receiver front-end can be mathematically 

described by the equation        .n n n n X H U N  In 

the above, we defined the column-vectors of the scalar 

input signals           TT

1 2 s pn u n u n E n E n       U , 

of the complex photocurrents at the two polarization 

branches       T

1 2 ,n x n x n   X  and of the 

photocurrent noises       T

1 2 ,n n n n n   N  where T 

denotes transposition. The elements    1 2,n n n n  are 

independent, identically-distributed (i.i.d), complex 

Gaussian noises with zero mean and variance 2.  The 

channel transfer function  nH is a unitary matrix [11] 

depending on  ,t    ,t exclusively.  

The block diagram of the proposed CMA polarization 
demultiplexer is shown in Fig. 1(b). It performs a matrix 

multiplication      ,n n nY W X  where we have defined 

the column-vector of the output signals 

 T1 2( ) ( ) ( )n y n y nY and the transfer function of the 

polarization demultiplexer as a 2×2 matrix ( ).nW  We 

deliberately constrain the elements of ( )nW  to the form 
†( ) ( ),n nW H  where †  denotes the adjoint matrix. Thus, 

the elements of ( )nW  are functions of only two 

independent parameters ˆ ˆ( ), ( ),n n   which are estimates of 

( ), ( ).n n   In contrast, the unconstrained CMA 

polarization demultiplexer [5] has eight independent 

Fig. 1.  (a) Block diagram of a polarization- and phase-diversity
coherent intradyne synchronous receiver; (b) Block diagram of the
proposed CMA polarization demultiplexer.  
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parameters (i.e., four complex coefficients ,  , 1,2,ijw i j   

with independent real and imaginary parts).  
The parameters ˆ ˆ( ), ( ),n n   are estimated using the 

CMA as follows: First, we define two distinct error 

functions     2 ( )
2 ,   1,2,i

i ie n y n R i   where ( )
2 ,  1,2iR i   

are the sums of the average powers of the optical signals 
and the noise at each SOP, respectively. The cost function, 
which we seek to minimize, can be defined as the total 

mean-squared error [8]  2
1E    2 ,( )ie n  where .E  

denotes expectation. In matrix form, the error functions are 

written       ,n n n   Y YE  where star denotes the 

complex conjugate,   denotes the Hadamard product, and 
T(1) (2)

2 2 .R R      The instantaneous cost function is 

written T( ) ( ) ( ).n n n  E E  

For the adaptation scheme, we define an auxiliary 
column vector with elements equal to the independent 

parameters          T T

1 2 ˆ ˆ .n z n z n n n         Z  

The derivatives of the instantaneous cost function are 

 
 

 

T( ) / 2 ( ) ( ) ( ) / ( )

         ( ) ( ) / ( ) ,      1,2

j j

j

n z n n n z n

n n z n j

 

 

     

    

E Y W X

Y W X
 (1) 

The gradient of the instantaneous cost function is 

 T1 2( ) ( ) / ( ) / .n n z n z         Using the method of 

steepest descent [8], the recursive expression for updating 
the proposed CMA polarization demultiplexer coefficients 

is written      1 ,n n n    Z Z  where   is a 

positive real constant (step-size parameter). Using periodic 

boundary conditions, the parameters  ˆ n  and  ˆ n are 

confined within a unit cell, i.e., ˆ ˆ/ 2,  / 4.      

Results and discussion 
Fig. 2 (a), (b) show three-dimensional and Poincaré sphere-
contour plots, respectively, of the cost function   vs. 

ˆ ˆ,  ,  in the absence of noise. In Fig. 2 (a) we observe that, 

within the limits of the unit cell, denoted by a rectangle, 
there are two global minima. In Fig. 2 (b), these minima 
correspond to two antipodal points on the Poincaré sphere. 
This indicates that the proposed polarization demultiplexer 
suffers from an output permutation ambiguity, i.e., the 
ordering of polarization tributaries at the demultiplexer 
outputs is arbitrary. This is a common feature of all CMA 
polarization demultiplexers [6]. The area surrounding each 

minimum corresponds to a valley within the unit cell of 
Fig. 2 (a). The intersection of the plane with the sphere 
creates a rotated equator, which corresponds to the ridge in 
the unit cell of Fig. 2 (a). The proposed algorithm will 
converge to the minimum lying in the same hemisphere as 
the initialization point corresponding to    ˆ ˆ0 ,  0 .    

Fig. 3 (a), (b) show representative input/output 
constellation diagrams obtained by using the constrained 
and the conventional CMA polarization demultiplexers, 
respectively. We see that both polarization demultiplexers 
are able to transform the received amorphous constellation 
(drawn in blue) into four approximately circular points (in 
red) that resemble the transmitted constellation (green 
crosses). The recovered constellations immediately after 
the polarization demultiplexer might exhibit arbitrary 
rotations from their nominal position (rotation ambiguity) 
but this can be readily corrected by the feed-forward phase 
noise estimation circuit [10]. Fig. 3 (c) shows bit error rate 
(BER) curves as a function of optical signal-to-noise ratio 
(OSNR), for both CMA polarization demultiplexers. The 
BER is calculated using Monte Carlo simulation. 
Obviously, both CMA polarization demultiplexers exhibit 
almost identical performance with a small penalty of about 
0.5 dB relatively to the ideal case. However, the 
constrained CMA polarization demultiplexer is 
considerably faster than [5]. For example, the constrained 
CMA polarization demultiplexer requires less than 20 
symbol intervals to achieve ( ) 0n  , while its 

conventional counterpart [5] requires more than 60 symbol 
intervals, i.e., a three-fold increase in convergence speed.  

In summary, we proposed and studied, by simulation, a 
novel constrained CMA polarization demultiplexer for 
coherent optical receivers, which is superior to its 
conventional counterpart [5], in terms of convergence.  
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Fig. 2.  (a) Three-dimensional plot of the cost function vs.
estimated azimuth and ellipticity ˆ ˆ, .   (Symbols: A, B: Global

minima within the unit cell, Rectangle: Unit cell), (b)
Corresponding contour plot of the cost function on the Poincaré
sphere. (Symbols: White point (A): Minimum at ˆ ˆ   π/6). 
(Conditions: Received SOP parameters:    π/6). (Colors:
Black: Small values, White: Large values of the cost function). 

 
Fig. 3.  Representative constellations of the received (blue points), 
equalized (red points) and ideal (green crosses) signals for the X 
polarization, using (a) the proposed constrained CMA polarization 
demultiplexer, and (b) the conventional CMA polarization 
demultiplexer [5]; (c) BER vs. OSNR for the ideal (i.e., 
distortionless) case (blue curve), the constrained (red triangles) 
and the conventional (black circles) CMA polarization 
demultiplexer. (Conditions: Received SOP parameters:  =π/6 

and  =π/12, resolution bandwidth 1.25 /o sB T ). 
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