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Abstract: We propose a novel MIMO Volterra-based nonlinear equalizer. Simulation results 

revealed a ~0.8 dB Q2-factor improvement, after transmitting 6×32 Gbaud PM-16QAM signals 

carried by 6 spatial modes over 1,040 km of an FMF link. 
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1.  Introduction  

Space division multiplexing (SDM), utilizing few mode fibers (FMFs), has been considered as the method of choice 

for expanding the capacity of future systems [1,2]. Nonetheless, there is always a certain launch power above which 

the capacity will only degrade. This nonlinear Shannon limit can be mitigated by using digital nonlinear equalizers 

(NLEs) in the optical transceivers [3]. Contrary to single-mode fibers (SMFs), FMFs are inherently multiple input-

multiple output (MIMO) transmission media that exhibit both linear and nonlinear impairments. Thus, the 

development of MIMO-based equalizers is required in order to recover the signal quality and increase the maximum 

transmission reach. Recent publications have studied MIMO NLEs in the context of two-mode fiber system [4], 

whereas limited work has been done on the development of more scalable schemes. 

In this paper, we present a novel MIMO NLE, based on 3rd-order inverse Volterra series transfer function 

(IVSTF) [5]. The Volterra-based NLE was chosen due to its lower computational complexity and performance 

compared to the performance and complexity of the digital back-propagation NLE, in multi-channel equalization 

schemes [6]. In this work, first, we identify the optimum operating conditions of the 2M×2M 3rd-order IVSTF-NLE, 

where M denotes the number of spatial weakly-coupled modes, through a two-step optimization process. Second, 

for these optimum operating conditions, we evaluate its performance after the propagation of M×32 Gbaud 

polarization-multiplexed (PM)-16 quadrature amplitude modulation (QAM) signals through 1,040 km of an FMF. 

The results reveal a ~0.8 Q2-factor improvement, compared to maximum Q2 with linear equalization only, when a 

6×32 Gbaud PM-16QAM signal has been transmitted.  

2.  Operating principle of the MIMO IVSTF-NLE 

Similar to the 3rd-order IVSTF-NLE implementation in SMF systems [5], we start from the expanded Manakov 

equation which describes signal transmission over M spatial modes, each supporting two polarization states [7]:   
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where the variables t and z denote time and distance axes, respectively, while Ap(z,t) = [Ap,x, Ap,y]T and Aq(z,t) = 

[Aq,x, Aq,y]T are the Jones vectors of the slowly-varying optical signal envelopes for the pth and qth modes, with p,q = 

1,…,M. The total power per mode is given by the expressions |Ap(z,t) |2 = |Ap,x|2+|Ap,y|2 and |Aq(z,t) |2 = |Aq,x|2+|Aq,y|2. 

Furthermore, αp is the attenuation coefficient, β1,p and β2,p are the group delay per unit length and the chromatic 

dispersion (CD) parameters, respectively, of the pth mode, while γpp and γpq are the intra- and inter-modal nonlinear 

coefficients. Note that γpp and γpq do not exist in the SMF systems, therefore, their use justifies the MIMO extension 

of the 2×2 3rd-order IVSTF-NLE, as described in [5]. Following the rationale of [5], the solution of (1) can be 

expanded into IVSTF kernels up to the 3rd-order in order to form the 2M×2M IVSTF-NLE. The block diagram of 

the latter is depicted in Fig. 1(a). It is comprised of the linear and the nonlinear branches in a parallel structure for 

each mode. The linear compensation is completed in a single branch per polarization, accounting for the CD 

introduced by all the N fiber spans, in the frequency domain.  
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Fig. 1. (a) Block diagram of the 2M×2M 3rd-order IVSTF-NLE for 2M modes; (b) The operating principle of the kth nonlinear branch of the 

MIMO NLE for two adjacent spatial modes, p and q, each supporting two polarization states. (Symbols: Inverse Fast Fourier Transform (IFFT), 
Linearly Equalized (LE) and Fast Fourier Transform (FFT)). 

Each polarization tributary passes through a filter with transfer function (K1,p(ω))N, where Ls is the span length. On 

the contrary, the intra- and inter-modal nonlinear compensation is performed in a span-by-span basis through N 

separate branches, in the time domain. 

Fig. 1(b) describes the operating principle of the kth nonlinear branch, where k = 1,…,N,. It is divided into four 

stages instead of three, as it is the case for the 2×2 3rd-order IVSTF-NLE [5,8]. In the first stage, the received 

polarization tributaries, Xp, and Yp, are linearly compensated by the filter (K1,p(ω))k, in the frequency domain. The 

compensation of the intra-modal nonlinearities occurs in the second stage, where the linearly-compensated 

polarization tributaries, Xp
LE and Yp

LE, are multiplied, in the time domain, with the total power of the pth mode (i.e., 

|Xp
LE |2+|Yp

LE |2) and scaled by the adjustable intra-modal parameters cpp. Similar procedure is followed for the qth 

mode. The third stage is the one that extends the 2×2 3rd-order IVSTF-NLE to its MIMO version and where the 

inter-modal nonlinear compensation occurs, in the time domain. The polarization components of the pth mode are 

multiplied with the total power of the qth mode (i.e., |Xq
LE |2+|Yq

LE |2) and scaled by the inter-modal parameter cqp. 

The vice versa is realized for the qth mode using the cpq. Generally, for M ˃ 2, each polarization component of each 

mode is compensated by inter-modal nonlinearities when multiplied with the sum of the total powers of the rest of 

the modes, and only after each one of these power profiles has been multiplied with the corresponding inter-modal 

parameter. The cpp and cpq represent the optimized values of the products cintra,pp = kpp× γpp×Leff and cinter,pq
 = 

kpq×γpq×Leff, where Leff = (1-exp(-αLs))/α, achieved by sweeping the dimensionless parameters, kpp and kpq in a range 

from 0 to 1. Finally, in the fourth stage, the residual CD is compensated, in each nonlinear branch, by passing 

through the filter (K1,p(ω))N-k, in the frequency domain. 

3.  Simulation setup  

We numerically investigate the performance of the proposed MIMO 3rd-order IVSTF-NLE on the transmission of a 

single spatial super-channel of M weakly-coupled modes, each supporting two polarization states, after 13×80 km 

of an FMF link. The simulation setup is shown in Fig. 2 and the simulation parameters are given in Table Ⅰ.  

 

Fig. 2. Simulation setup. Symbols: Few Mode Erbium-Doped Fiber Amplifier (FM-EDFA), Analog-to-Digital converter (ADC). 

The signal propagation is described in (1). Each of the M spatial modes carries a PM-16QAM signal shaped by a 

square root raised cosine filter (raised cosine roll off equal to 0.1). The transmitted signal is M×32 Gbaud PM-

16QAM. For simplification, we use the same CD parameters, as well as intra- and inter-modal nonlinear 

coefficients for every mode. At the receiver, the super-channel is selected by an optical bandpass filter of 

rectangular shape and bandwidth equal to 1.2 times the symbol rate. After mode de-multiplexing and matched 

filtering, the received signals are down-sampled at 2 samples per symbol (SpS) and pass to the MIMO-NLE. Prior 

to demodulation, further down-sampling to 1 SpS. As a figure of merit, we use the Q2-factor as calculated by the 

relationship Q2 = 10log10(1/EVM)2, where EVM is the error vector magnitude. Also, the Q2-factor improvement is 

used and defined as ΔQ2 = Q2
max.w.NLE

 - Q2
max.wo.NLE, where Q2

max.w.NLE and Q2
max.wo.NLE are the maximum values of Q2 

with and without the use of the MIMO IVSTF-NLE, respectively, at the corresponding optimum powers. In the case 

where the MIMO NLE is not applied, linear equalization does occur. 
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Table Ⅰ: Simulation parameters. 

 

4.  Results and discussion 

Initially, a two-step optimization procedure is applied to achieve the optimum performance of the MIMO IVSTF-

NLE. Firstly, we identify the optimum input power. We sweep simultaneously the adjustable parameters kpp and kpq 

(i.e., kpp = kpq= c) and we perform a joint optimization of their single value with the average input power for each of 

the M spatial modes. The results of this parallel processing are shown in Fig. 3(a). Specifically, for M = 6, the 

2M×2M IVSTF-NLE provides ΔQ2 ≈ 0.737 dB at optimum input power equal to -5 dBm and kpp = kpq ≈ 0.5. 

Secondly, at the optimum input power (i.e., -5 dBm), we independently sweep kpp and kpq until we obtain the 

highest ΔQ2. In Fig. 3(b), we observe that when the values of kpp and kpq are equal to ~0.6 and ~0.5, respectively, 

then the maximum ΔQ2 is ~0.793. The same two optimization steps are repeated for M = 1 and M = 3. In Fig. 3(c), 

we show the absolute values of Q2 with and without MIMO NLE and as a function of the input power, after 

transmitting M×32 Gbaud PM-16QAM signals, where M = 1,3,6, over 13×80 km of an FMF. Every time the 

capacity is tripled, the optimum input power (i.e., the nonlinear threshold) is decreased by 1 dB while the maximum 

ΔQ2 also decreases from ΔQ2 ≈ 1.3 dB for M = 1, to ΔQ2 ≈ 1 dB for M = 3 and to ΔQ2 ≈ 0.8 dB for M = 6.  

   
Fig. 3. (a) Contour plot of ΔQ2 as a function of the input power and the kpp = kpq = c adjustable parameter for M = 6;  

(b) Contour plot of ΔQ2 as a function of the kpp and kpq at the optimum input power; (c) Q2-factor versus input power, with and without MIMO-
NLE, after transmitting M×32 Gbaud PM-16QAM signals, where M = 1,3,6 over 13×80 km. 

5.  Summary 

The performance of the proposed MIMO IVSTF-NLE is numerically studied after transmitting M×32 Gbaud PM-

16QAM signals, where M = 1,3,6, over 13×80 km of an FMF. The results reveal a ~0.8 dB Q2-factor improvement, 

compared to linear equalization case, after a 6 times spatial increase of the transmitted capacity. In this work, the 

2M×2M IVSTF-NLE is studied in a benchmarking case, whereas future work may focus on examining the 

statistical impact of differential group delay on the equalization performance. 
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# of weakly-coupled modes M 1,3,6 Symbol rate (Gbaud) 32 α (dB/km) 0.2 

Simulated symbols 32768 Noise figure (dB/km) 4.5 γpp (W-1km-1) 1.4 

Oversampling 16  Dispersion (ps/nm/km) 17 γpq (W-1km-1) 0.7 
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