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Abstract— We describe, in detail, the principles of the
multicanonical Monte Carlo method and its advantages for the
evaluation of the probability distribution function (pdf) of a
random variable, compared to the conventional Monte Carlo
method. We apply the multicanonical Monte Carlo in the
estimation of the tails of the pdf of the first - and second-order
polarization mode dispersion in fiber -optic communications
systems. It is shown that an improvement of several orders of
magnitude in the accuracy of the pdf estimation is achieved with
the multicanonical Monte Carlo method, compared to its
conventional counterpart.

Index Terms— Monte Carlo methods, optical fiber theory,
optical fiber polarization, polarization-mode dispersion (PMD).

I. INTRODUCTION

Polarization-mode dispersion (PMD) [1], [2] is one
of the most fundamental limitations for the deployment of
ultra-high data rate fiber-optic communications systems and
networks. PMD stems from the prese nce of birefringence
along optical fibers caused by imperfections in
manufacturing, cabling, and fiber deployment. Due to
birefringence, different spectral components of the
transmitted signal propagate in optical fibers with different
phase and group velocities depending on their state of
polarization. Consequently, at the receiver, the signal spectral
components recombine out of phase and their superposition
results in pulses exhibiting time spreading and distortion,
which, in turn, can lead to severe pow er outages.

Fiber birefringence varies as a function of ambient
temperature and environmental vibrations and, therefore,
PMD-induced outages occur randomly over time. In a well-

designed optical communications system, the probability of
occurrence of PMD-induced outages is smaller than 10 -5.
Therefore, the theoretical evaluation of the performance of
fiber-optic communications systems, in the presence of PMD,
requires the use of computationally efficient Monte Carlo
techniques for fast PMD simulation (e.g., importance
sampling [3], multicanonical Monte Carlo method [4], [5]).

The guiding principle behind these techniques is the
following: PMD outages, which are of main interest in the
simulation, occur for certain rare combinations of the
magnitude of local birefringence and orientation of principal
axes along the optical fiber. If thes e rare combinations can be
artificially made to occur more frequently, compared to the
conventional Monte Carlo method, then the execution time
required for the evaluation of the performance of fiber -optic
communications systems can be reduced. Hence, the basic
methodology is to choose "biased" distributions for the
magnitude of local birefringence and orientation of principal
axes along the optical fiber, in order to artificially generate
more PMD outages. The simulation results are appropriately
weighted to correct for the use of the biased input
distributions and to ensure that the estimation of the outage
probability is unbiased.

This paper reviews the principles of the
multicanonical Monte Carlo method and its application in the
numerical evaluation of PMD statistics in optical fibers. A
salient feature of the multicanonical Monte Carlo method is
that the optimal biased distributions of the magnitude of local
birefringence and orientation of principal axes along the
optical fiber are determined iteratively and need not be
calculated a priori. Within each single iteration, the method
employs the Metropolis algorithm [6] to produce new
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instances of the magnitude of local birefringence and
orientation of principal axes along the  optical fiber.

The rest of the paper is organized as follows: Section
2 describes the computer model used for PMD simulation,
which is based on the representation of the fiber as a
concatenation of birefringent waveplates. This section also
summarizes key analytical relationships from the previous
literature regarding the probability distributions of different
PMD orders [7]. In Section 3, the principles of the
multicanonical Monte Carlo method are described in detail
and they are applied in the evaluation of PMD statistics.
Finally, Section 4 presents sample results for the numerical
evaluation of the pdf of the first - and second-order
polarization mode dispersion. It is shown that the numerical
results are in excellent agreem ent with the respective
analytical probability distributions over at least fifteen orders
of magnitude.

II. PMD EMULATION

A. The PMD emulator model
A widely used computer model of long single mode

fibers with PMD [1], is shown in Fig. 1. It is composed of
NS  short birefringent fiber segments with constant fast and
slow principal axes (called principal states of polarization
(PSPs)), denoted in Stokes space by ˆmp   and ˆmp ,

1,....,m NS , respectively. The difference in propagation
delay between the principal axes is called differential group
delay (DGD). Each individual fiber segment is characterized
by its PMD vector, defined as ˆm m mp    

 , 1,...,m NS .
[2].

Fig. 1. (a) A long single mode optical fiber can be modeled as a
concatenation of 1,...,m NS  short birefringent fiber segments, with
randomly aligned fast ˆmp   and slow ˆmp  principal axes, respectively, and

DGD m  following a Gaussian distribution. (b) Propagation of a pulse
through such a series of birefringent waveplates yields, at the output  of the
optical fiber, a multitude of pulses which combine coherently. To a first -
order approximation, the fiber can be approximated by a single birefringent
waveplate with input PSPs ˆ sp  , ˆ sp , output PSPs p̂  and p̂ , and total
DGD  .

We assume that the principal axes of adjacent fiber
segments are randomly misaligned. More specifically, we
assume that the slow axes are uniformly distr ibuted on the
Poincaré sphere, as shown in Fig. 2. The DGDs of individual
segments are independent, identically distributed random
variables, following a Gaussian distribution with mean value
  and standard deviation  , to be specified below.

Fig. 2. Uniform distribution of the slow principal axes of 10 4 individual fiber
segments on the Poincaré sphere. The points at the intersection of the
Poincaré sphere with the Stokes axes S1, S2, S3 correspond to h orizontal,
linear +45o and right-circular polarization, respectively.

At the input of each fiber segment, the optical signal
is decomposed into two components, traveling at different
group velocities, along the fast and slow principal axes of the
segment. In a first-order approximation, the optical signal at
the fiber output can be considered as the weighted sum of two
replicas of the input signal traveling along two orthogonal
states of polarization, i.e., called principal states of
polarization (PSPs). Mathematically, the PSPs are defined as
two eigenmodes whose state of polarization does not change
during propagation through the optical fiber to the first order
with frequency [2]. The group delay difference b etween the
PSPs is called total DGD and is denoted by  . We define
the total PMD vector  , in the right-circular Stokes space, as
[2]:

ˆ  ,p  
 (1)

In (1), both  and p̂  are functions of the angular frequency
deviation   from the signal carrier frequency. Different
PMD orders are defined as successive derivatives of the PMD
vector with respect to angular frequency deviation  ,
evaluated at the signal’s carrier frequency ( 0)  [2]:
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 For instance, the first-order PMD vector is defined as

       (0) ˆ0 0 0 0 .p    
  (3)



Similarly, the second -order PMD vector is the derivative of
the first-order PMD, with respect to angular frequency
deviation  and is given by

(1) (0) ˆ ˆ(0) (0) (0) (0) (0) (0)p p         
  , (4)

where the subscript   indicates the first derivative with
respect to  . The first term, in (4), p̂  , is parallel to 



and causes polarization–dependent chromatic dispersion,
while the second term, p̂  , is orthogonal to 

  and
causes signal depolarization [7].

The total PMD vector 
 of the concatenation of a

series of birefringent fiber segments can be computed by
adding the PMD vectors m

 , 1,...,m NS  of individual
segments using a concatenation rule [2]. The latter is a
recursive relation between the output PMD vectors of the m–
th and (m+1)–th fiber section:
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where 1m 
  , ,  1m 

  are the total first–and second–order PMD
vector after the (m+1)–th section, 1m 

  is the contribution
of the (m+1)–th section, and 1mM  is the Müller matrix
associated with the (m+1)–th section.

The matrix mM  is the product of two terms: (i) a
3 3  orthogonal matrix mR , representing a rotation of the
state of polarization (SOP) by a polar ization controller, and
(ii) a diagonal 3 3  matrix mD , representing the
birefringence of each fiber section. Each rotation matrix

mM is written as

( , ) ( , ),  1,....m m m m m m m NS     M D R (6)

where m is the azimuth and m  is the ellipticity of each
fiber segment. In (6), ,m mD R  are expressed as [2]
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In (6), each birefringent section’s DGD, denoted by ,m
1,.., ,m NS  follows a Gaussian distribution with mean value

3 (8 )NS     and standard deviation 0.2  ,

where   is the mean total DGD of the PMDE and angled
brackets denote ensemble average [3].  The choice of
Gaussian DGDs for the individual fiber segments offers
significant computational advantages in comparison with
fixed-DGD fiber sections, since it leads to a Maxwellian total
DGD distribution, for even a small number of fiber segments,
in agreement with experimental measurements. For uniformly
distributed slow PSPs on the Poincaré sphere, the azimuth 
and the ellipticity   in (6) follow the distributions below [8]
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( ) cos(2 ) ,
4
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In the following, the first - and second-order PMD, at a given
frequency, are estimated using the multicanonical Monte
Carlo method. In order to valida te the model, we compare the
simulated and the analytical probability density functions
(pdfs) for the first- and second-order PMD vectors’
magnitude [7]
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and angled brackets denote ensemble average.

III. THE MULTICANONICAL MONTE CARLO METHOD

A. General principles
Let ( )Xf x  be the joint pdf of the input random

variables 1{ ,....., },mx x x
  which are defined on a space .X

In our case, X  is the set of all possible configurations of the
birefringent sections of the PMD emulator (PMDE). For each
configuration, we wish to estimate the total instantaneous
DGD of the PMDE (referred to, in the following, as the
control parameter). The total instantaneous DGD is a
complicated function of the input parameters, denoted by

( )DGD Y x
 . If we define the event kR  to contain all

realizations of ,X  for which { }k ky Y y y    , then the
probability of  the event kR  is simply

( ) ( ) ( )
kY k R X

X

p y y r x f x dx  
   , (13)

where ( )Yp y  is the pdf of ,Y k is the index of the current bin
of the state space of ,Y y  is the width of each bin, and

( )
kRr x  is an indicator function of the event ,kR  defined as
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The pdf ( )Y kp y  can be estimated by simulation, using the
conventional Monte Carlo (MC) method

1

1ˆ ( ) ( )
k

N
MC
Y k R i

i
p y r x

yN 


   , (15)

where   1

N
i ix



  are N  samples, randomly drawn from space
,X  according to the joint pdf ( )Xf x . Equation (15) indicates

that the MC estimator simply evaluates the occurrence
frequency of random samples corresponding to the event kR .

A reduction of the variance of ˆ ( )MC
Y kp y  can be

achieved by using importance sampling [9]. First, equation
(13) is rewritten as

*( ) ( ) ( ) ( ) ,
kY k R X

X

p y y r x w x f x dx  
    (16)

where *( ) ( ) ( )X Xw x f x f x
    is a weight function and * ( )Xf x

is a biased distribution. The corresponding importance
sampling (IS) estimator of the pdf ( )Y kp y  is given by

1

1ˆ ( ) ( ) ( )
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N
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Y k R i i

i
p y r x w x
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
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In (17), the input samples ix  are drawn from an arbitrary
biased distribution * ( )Xf x . In order to minimize the variance
of the IS estimator, the optimal biased distributi on is [11]
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( )

( )( ) ( )
k k

k

R X R X
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f x
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   (18)

Since equation (18) depends on the unknown pdf ( ),Y kp y  it
is impossible to know, a priori, the optimal distribution

* ( ).optf x  Hence, the major drawback of importance sampling

techniques is that they require an approximation of * ( )optf x  as
a starting point.

The main idea behind the MMC algorithm is to start
from a suboptimal initial distribution and, through successive
iterations, to converge towards the optimal biased distribution

* ( )optf x . During the j–th iteration, the estimate of the optimal

biasing distribution * ( ) ( )j
optf x  is given by

* ( )
( 1)

( ) ( )
( ) ,

( )
kR Xj

opt j
Y k

r x f x
f x

p y dy
 

 (19)

where ( 1) ( )j
Y kp y  is the estimate of the pdf of ,Y obtained in

the (j-1)–th iteration. The suboptimal distribution * ( ) ( )j
optf x

tends to converge at the optimal biasing distribution * ( ),optf x

as the iteration number j increases. As an initial guess for
(0) ( )Y kp y , one can use a histogram of the output random

variable Y calculated by the conventional Monte Carlo
method, based on the equation (15).

B. Random Sample Generation
Within the j–th MMC iteration, the Metropolis

algorithm [6] is used to generate samples ix  from * ( ) ( )j
optf x .

In each Metropolis step, a candidate sample ix  is created
from the previous accepted sample ,ix  by adding a small
random perturbation x 

,i ix x x  
   (20)

where x   is drawn from an arbitrary symmetric pdf. It is
worth noting that the appropriate choice of this symmetric
distribution is important for fast convergence towards

* ( )optf x . Here, we assume that the elements of x   follow a
uniform distribution. The range of x   is defined by
perturbation coefficients ² . These coefficients are set by
trial-and-error. A useful criterion for the selection of the
perturbation coefficients is the acceptance ratio, defined as
the ratio of the accepted Metropolis steps to the total number
of Metropolis steps. As a rule of thumb, ² should be selected
in such a way that the acceptance ratio is about 30~50% [10].
The perturbation coefficients play a significant role, both for
the number of samples required for each iteration and for the
rate of convergence of the estimated pdf. An inappropriate
choice of these coefficients can lead to fluctuations of the
estimated pdf  ( )j

Y kp y  or to slow convergence.

The candidate sample ix  is accepted with
probability
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j
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
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Otherwise, the procedure is carried out again until a sample is
accepted.

C. Evaluation of the output pdf
The final step is the evaluation of the pdf  ( )j

Y kp y
of the control parameter, at the j–th iteration. We represent
the current value of ky  as an initial state A, and the newly
estimated state, * ,ky  as a candidate state B. The new variable

*
ky  causes a transition from the old state A to the candidate

state B. This transition is accepted with a probability given by



( )

( )min 1,
j

stateA
j

stateB

p
p

 
 
 

(22)

 where ( )j
stateAp , ( )j

stateBp are the pdfs evaluated at states A and B,
respectively at the j–th iteration [11], [12].

If the candidate transition is rejected, the old state is
employed, instead, in the subsequent step. After a specified
number of generated states at the j–th iteration, a histogram,

( )j
kH , of the control parameter, is constructed. This histogram

is used to bias the subsequent iteration [12].
The pdf ( ) ( )( )j j

Y k kp y p is updated at the end of each
iteration, through a recursive relation, so that the num ber of
samples in each bin of the control parameter’s histogram
becomes approximately equal, as the iteration number
increases. The recursion algorithm is given by [12]:

( )ˆ( 1) ( ) ( )
( 1) 1 1

1 ( ) ( ) ,

j
kgj j j

j k k k
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k k

p p H
p

p H
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
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 
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where ( )ˆ j
kg  is the relative statistical significance of the k–th

bin in the j–th iteration and is defined as [12]
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The relative statistical significance ( )ˆ j
kg  coefficient (or

confidence interval) indicates how likely an interval (bin) is
to contain the candidate value of the control parameter. If

( ) ( )
1 0j j

k kH H    in (23), at a given iteration, then the k–th bin
has no statistical significance in this iteration and w e set

( ) 0.j
kg  This results in ( )ˆ 0j

kg  . The exponent ( )ˆ0 1j
kg  in

(23) depends on the previous bins and iterations, introducing
a significant coupling between the estimated pdf va lues ( )j

kp
at each MMC iteration. Finally, the ( )j

kp  is normalized so that

( )

1
1

N
j

k
k

p


 . As the number of iterations increases, the

number of hits in each bin will asymptotically be the same
( ( ) ( )

1 / 1j j
k kH H  ), and the relative statistical significance will

asymptotically converge to zero ( ( )ˆ 1j
kg  ) [13]. As a

consequence, during the last MMC iteration, the estimated
pdf will asymptotically converge to the true pdf of the control
parameter. The efficiency of the MMC algorithm is based on
the appropriate choice of the following parameters:

1. The pdf of the perturbation x 

2. The perturbation coefficients ²
3. The number of Metropolis steps
4. The number of MMC iterations

5. The number of bins that the sample space of Y is
partitioned.

The selection of these parameters is performed
empirically, by trial– and–error. If the parameters are chosen
correctly, then the convergence of the estimated pdf to the
desired probability distribution is efficiently achieved.

D. Application to PMD
In this subsection, we present an implementation of

the MMC method for the study of PMD in fiber –optic
communication systems using the PMDE model of section
IIA. The possible configurations of the PMDE’s fiber
segments are determined by the azimuth  ma , the ellipticity

 m , and the value of each section’s DGD  m ,
1,....,m NS . Each Metropolis step within the j–th MMC

iteration is implemented as follows: Assume that the l–th
value of each random parameter is  ,m la ,  ,m l , and

 ,m l , 1,....,m NS  and 1,....,l Nsamples , where

Nsamples  is the number of samples for each parameter
generated in each iteration. Next, we add a small perturbation
to these values  , 2, 2m ld U  ² ,

 , 4, 4 ,m ld U  ²  and  , ,m ld N   ² ,

respectively. In the above,  ,U    denotes the uniform

distribution in the interval  ,   and  ,N    denotes the
Gaussian distribution with mean   and standard deviation

.  The perturbation coefficients ² , ,²  and ²  are
selected according to the acceptance ratio rule of thumb,
explained in the previous subsection.

Next, we independently accept or reject each one of
tentative values ,m la , , ,m l   and ,m l   with probability

, , ,

, , ,

( ) ( ) ( )
min 1, ,  min 1, , min 1, ,
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m l m l m l

m l m l m l
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p a p p
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          
(25)

respectively. If each one of these equations (25) is true, then
the new value of the rand om parameters is accepted
independently. Then, we calculate the first – and second–order
total PMD vectors of the PMDE based on the concatenation
rule (5), and we accept the new instantaneous value lDGD 

with probability
( )

( )

( )
min 1, ,

( )

j
DGD l

j
DGD l

p DGD
p DGD 

 
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(26)

where ( ) ( )j
DGD lp DGD   is the pdf estimated from the

histogram of the control parameter for the l–th sample
computed at the j–th iteration, lDGD  is the old value and

lDGD   is the new proposed value. In our simulation process,



the PMDE model consists of 100 birefringent fiber sections
with mean total DGD 10 ps. We have initialized all histogram
elements (0)

kH  to unity.

IV. RESULTS

Fig. 3 shows the pdfs of the first– and second–order
PMD obtained after 8 iterations of the MMC simulation
method. The circles correspond to the first it eration, the
dotted line corresponds to the 4 th iteration, and the dashed-
dotted line corresponds to the 8 th iteration. The results of the
conventional MC method for 10 5 samples (dashed line) and
the corresponding theoretical pdfs (black thin solid lines),
given by (11) and (12), respectively, are also shown for
comparison.

Fig. 3. Estimated pdfs of (a) the first - and (b) the second-order PMD, for a
100-sections PMD emulator, after 8 iterations of MMC method (Symbols:
circles: first iteration, dotted line: 4 th iteration, dashed-dotted line: 8 th

iteration, dashed line: a conventional MC method, and black thin solid lines:
analytical relations (11), (12) . Conditions: 100NS  , 105 realizations in
each iteration).

For each MMC iteration, 10 5 realizations are
employed and the acceptance ratio is ~40%. The diagrams
indicate that the multicanonical Monte Carlo method greatly
increases the accuracy in the tail region estimated pdf,
compared the conventional MC technique. The accuracy of

the estimation increases approximately by one order of
magnitude for each MMC iteration. An improvement of
several orders of magnitude in accuracy is eventually
achieved using eight iterations of the MMC method
compared to the conventional MC method. These results are
in agreement with the previous literature [4], [5].

In Fig. 4, we show contour plots of the joint pdf of
the first–and the second–order PMD. The variance of the
estimates of the multicanonical Monte Carlo method is
almost the same over a wide region of the plot parameters
after the 8th iteration.

Fig. 4. Probability contours of the joint pdf of the first– and the second–
order PMD after the 8th iteration of MMC method. (Conditions: 100NS  ,
105 realizations in each iteration. The magnitudes of the contours are, from
left to right, 10-2d where 0 9d   ).

V. SUMMARY

We reviewed the mathematical principles of  the
multicanonical Monte Carlo method and applied it in the
evaluation of first– and second–order PMD statistics in fiber
optic communication systems. We showed that the
multicanonical Monte Carlo method can estimate very rare
values of the aforementioned  effects with a relatively small
number of simulation runs, compared to the conventional
Monte Carlo method.
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