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ABSTRACT

This paper proposes an accurate computer model of the nonuniform FM response of semiconductor lasers, to
be used in the computer-aided design of coherent optical communication systems. The model is communications
engineer oriented and does not involve the physical insight of the device. The main idea of this approach is that
the FM response of the laser can be approximated by a recursive digital filter based directly on measurements
of the FM response. The procedure is divided into two steps : First, measurements of the FM response are
fitted by a rational interpolant using the theory of multi-point Padé approximants. Then, the impulse invariant
transformation is used to calculate digital filter coefficients. The procedure is applied in the case of a conventional
single-electrode distributed-feedback (DFB) laser. The calculated digital filter is used to study the influence of the
nonuniform FM response on the performance of a coherent heterodyne CPFSK system with differential receiver
operating at 1 Gb/s. The sensitivity penalty is given as a function of signal-to-noise ratio, phase noise and
sequence length by a semi-analytical technique. Theoretical and experimental results are in excellent agreement

1 INTRODUCTION

Coherent optical communication systems are promising candidates for long-haul high density multichannel
transmission. A suitable modulation format for these systems with respect to the actual technological limitations
is the Continuous Phase Frequency Shift Keying (CPFSK).' Its principle advantages are the possibility of direct
laser modulation, the tolerance to phase noise and the compactness of spectrum allowing dense optical frequency
division multiplexing (OFDM).

Direct CPFSK modulation can be obtained by biasing the semiconductor laser with a DC current far above
threshold and adding a small modulation current. The modulation current changes periodically the refractive
index of the laser cavity. We can distinguish two different mechanisms which contribute to the refractive index
changes, the temperature modulation effect and the carrier density modulation effect.2 The temperature modu-
lation effect dominates at low frequencies and the carrier density modulation effect at high frequencies. The two
effects have a phase difference and their vectorial addition results, in general, in a nonuniform FM response.

The exact form of the FM response depends mainly on the structure of the device. As light source in the
transmitter of coherent optical CPFSK systems, conventional single-electrode and three-electrode distributed
feedback (DFB) lasers are most often used. The FM response of a conventional single-electrode DFB laser
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typically presents a magnitude dip in the 10 kHz to 10 MHz region and a phase transition from 180 deg to less
than 0 deg as the frequency increases.3

The nonuniform FM response of the lasers causes intersymbol interference (1ST) which deteriorates the perfor-
mance of coherent optical systems. This effect has been studied via digital simulation by several authors.4-8 In
these works, physical models4'5 or analytical approximations68 of the FM response were used for the calculation
of the instantaneous frequency of the laser.

The diversity of these previous approaches shows that there exists no general formal procedure for computer
modeling of the nonuniform FM response. Obviously, modeling depends on the application. Here we are interested
in a model suitable for integration in a software package for computer aided design of coherent communication
systems. For this purpose, an abstract, communications engineer oriented model, which does not involve the
detailed physical theory of the laser is desirable. The model must be accurate, to allow for the calculation of low
error probabilities and fast, to allow for the simulation of long sequences.

This paper proposes an algorithm for accurate computer modeling of the nonuniform FM response. The main
idea of this approach is that the FM response of the 'aser can be approximated by a recursive digital filter based
directly on measurements of the FM response. The procedure is divided into two steps : First, measurements of
the FM response are fitted by a rational interpolant using the theory of multi-point Padé approximants. Then,
the impulse invariant transformation is used to calculate digital filter coefficients.

The procedure is applied in the case of a conventional single-electrode DFB laser. The calculated digital
filter is used to study the influence of the nonuniform FM response on the performance of a coherent heterodyne
CPFSK system with differential receiver operating at 1 Gb/s. The simulation includes both laser phase noise
and shot noise and makes use of a semi-analytical technique in order to evaluate low error probabilities ( iO).
The experiment verifies the theoretical results.

The paper is organized as follows: In section 2, the computer modeling procedure of the nonuniform FM
response is described. In section 3, a design example is given. In section 4, the simulation model of a cohe-
rent heterodyne CPFSK system with differential receiver is presented. In section 5, the experimental set-up is
described. Finally, in section 6, the influence of the nonuniform FM response on the system's performance is
studied both theoretically and experimentally.

2 DIGITAL FILTER DESIGN

We are concerned in this section with the design of a recursive digital filter representing the nonuniform FM
response. In the general case the design procedure can be divided into two parts, the approximation problem and
the digitization problem.

In the following subsections, each problem is treated separately.

2.1 Approximation problem: modified Thacher-Tukey algorithm

The approximation problem can be stated as follows: Given a set of N distinct values of the amplitude and
phase of the laser FM response, find a rational interpolant which passes from these points (the restriction to a
rational interpolant is implied by the digitization problem, as it will be explained in the next subsection).

A rational interpolant which fits given function values at N points is called a N-point Fade approximant.9
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Obviously, the N-point Padé approximant will tend to the real FM response as N —* oo. However, it will be
shown in the following that it is convenient for the simulation to keep the number of points N sufficiently low.
For this reason, we must take care that the N-point Padé approximant possesses at least some of the properties
of the true solution.

From a physical point of view, the interpolant can be viewed as the transfer function of an analog filter whose
entry is the laser injection current and whose output is the instantaneous optical frequency. Consequently, it
should satisfy the following requirements in order to correctly simulate the laser behavior:

i) The filter should exhibit a conjugate symmetry around the origin (i. e. H(s*) H*(s)). The physical
interpretation of this requirement is that the impulse response of the filter should be real.

ii) The filter must be lowpass (i. e. the order of the denominator polynomial must be greater than the
order of the numerator polynomial so that the transfer function of the filter vanishes as s —+ oo).

iii) The filter must be stable (i. e. the poles of the denominator must be located at the left half of the
s-plane).

For the calculation of a multi-point Padé approximant specific to the above requirements, we can use a highly
efficient, always convergent computational scheme which is known as the modified Thacher-Tukey algorithm.9
According to this scheme, consider the continuous fraction interpolant rN(s)

rN(s) = a0 +
ai(s — 50)

(1)
1+ a2(s—si)

1+ a3(s—s2)
1+

1 + aN_l(s — N—2)

In the above expression, So = {5, . . . , 5N1 } is the set of the complex frequency points where the nonuniform
FM response is known and a, i = 0, . . . , N — 1 are the coefficients we have to calculate. (The point 8N1 does
not appear explicitely in (1) but it is used in the following for the calculation of aNl).

In order to preserve the property (i), the s0 , . . . , SN_i should be chosen symmetrically around the origin (i.
e. N/2 measurements of the nonuniform FM response and their complex conjugates at the negative frequencies
should be used). Thus the number of points N in our case is always even. Obviously, for an even number of
points, the order of the denominator polynomial of the rN (s) is always smaller than the order of the numerator
polynomial.

The evaluation of the coefficients a , i = 0, . . . , N — 1 is done in order to satisfy the constraints

rN(sZ)=H(sZ) i=O,...,N—1 (2)

The reason for which we approximate the inverse of the FM response H' (s) and not the FM response H(s)
itself, is that the ç'(s) has the desired property (ii).

The solution of the system of equations (2) is straightforward and can be done in analytical form by successive
substitutions. The expressions for the a become intricate as i increases, so we give here only the three first
coefficients in closed form:

a0 = rN(so) = H'(so)
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a1 =
rN(sl) —ao = H(s)— a0

I ai(s2 — so) —1 ai(s2 — so)a2= —1 (s2—si) = 1 (s2—si)
LrN(82) — a0 H (s2) — a0

After the evaluation of the coefficients a, i = 0, . . . , N — 1, rN(s) can be transformed into a simple fraction
by a simple recursive procedure (theorem of Euler, 1757).

Notice that the procedure converges only when the coefficients a, i = 0, . . . , N — 1 are finite and non-zero.
This condition is always satisfied in practice. However, a somewhat subtler constraint is the stability requirement
(property (iii)). The user must choose (by a trial and error procedure) the optimum number and location of the
complex frequency points in order to obtain an approximant whose denominator poles are located at the left half
of the complex frequency plane. As a rule of thumb, more points must be selected from the regions of the FM
response which vary rapidly.

The same procedure with slight modifications could be used, at least in principle, to obtain a simple analytical
expression for the transfer function of an FM equalizer.

The modified Thacher-Tukey algorithm is one of the numerous fitting procedures that we can apply to the
approximation problem. Its advantages are that it is fast and accurate (it fits exactly the given points). Its
drawback is that it does not give the minimum number of poles. This is equal to N/2, so it depends on the
number of points chosen. Obviously, we could give some degree of freedom to the rational interpolant to diverge
slightly from the measurements (using a minimum error criterion) in order to gain in number of poles.

2.2 Digitization problem: Impulse invariant transformation

The digitization problem can be stated as follows: Given the rational transfer function of an analog filter,
design a digital filter whose transfer function approximates the analog one as closest as possible, at least at the
region of interest.

Filtering is usually performed in the frequency domain by means of the fast Fourier transform (FFT). Un-
fortunately, in our case this approach is not efficient. The region of interest of the nonuniform FM response
extends between i04 — 1010 Hz. If we choose i04 Hz as the fundamental frequency of the FFT, we need as
many as 106 samples for simulating the whole FM response. In addition to that, double precision arithmetic is
required to preserve the accuracy of the numerical calculations (a rule of thumb for choosing the precision of the
arithmetic for the FFT routine, is to examine whether the first term in the Fourier series, i. e. cos(2ir/N), is
correctly evaluated. Since cos(2ir/N) 1 — (2ir/N)2 and N = 106, we need at least 12 significant digits for the
computer representation). Clearly, these requirements in computer memory storage and CPU time, make FFT
quite impractical for a fast simulation of long sequences.

An alternative way to perform filtering is to use a recursive digital filter working, of course, in the time
domain. This filter will be a computer implementation of the analog filter whose transfer function was found in
the previous section by use of the modified Thacher-Tukey algorithm. This procedure is known as digitization.
Digitization of an analog filter corresponds to a transformation of the continuous time operation to discrete time
operation. This transformation inevitably introduces distortion.

Several methods for digitizing an analog filter exist in the literature.1t"2 We have used a technique called
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impulse invariani fransformalion. This technique is treated in detail in the above references. Here we describe
only its basic features.

Impulse invariant transformation is based on the principle that the impulse response of the digital filter must
be a sampled version of the impulse response of the analog filter. Sampling of the time domain results in spectral
overlap and aliasing in the frequency domain. In consequence, the digital filter has the same impulse response as
the analog one but not the same FM response. However, the digital FM response can coincide with the analog
one at least at the region of interest iO — 1010 Hz by proper choice of the sampling rate. The most attractive
property of the impulse invariant transformation is that it preserves both magnitude and phase characteristics in
the region where no aliasing occurs.

The object of the impulse invariant transformation is to calculate the coefficients of a recursive filter simulating
the nonuniform FM response. The evaluation procedure is given by the following algorithm'2

i) Expansion of the nonuniform FM response in partial fractions

N/2

rN(s)=> (3)

where N is the number of complex frequency points which were used in the modified Thacher-Tukey
algorithm.

ii) Calculation of the impulse response by inversion of the Laplace transform

N/2
h(t) = rje1)it

iii) Calculation of the impulse response of the digital filter by sampling the analog one at sample intervals
T8

N/2

hd(fl) h(nT8) = rje1mnTs (5)

iv) Calculation of the z-Transform of the digital filter

00 N/2
Hd(z) =h(n)z = > — eiTsz_1 (6)

v) Evaluation of the instantaneous optical frequency f(nT8 ) by the following recursive relations

N/2

f(nT3) =Tf(nT8) (7)

f(nT8) = ri(nT3) + ePiTsfj[(n 1)T3J (8)

where i(nT8) is the instantaneous injection current and f(nT3) are auxiliary parameters. The scaling
factor T8 is added in (7) to compensate the gain induced by the sampling of the analog impulse
response in Eq. (5).12 With this adjustment Hd(Z)Iz.eiT,

In fact, the steps (ii)-(iv) are implicit to the procedure and can be omitted. They are used to establish a
mapping relation between the step (i) and the step (v).

The relations (fl (8) can be viewed as a digital filter consisting of N/2 first order filters in parallel form
(fig. 1).
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3 EXAMPLE OF DIGITAL FILTER DESIGN

The design method outlined in the previous section, has been applied to the synthesis of a recursive filter
representing the nonuniform FM response of a double-channel planar buried heterostructure (DCPBH)'3 DFB
laser of our laboratory. The measurements are summarized in Table 1.

The values of the Table 1 and their complex conjugates at the negative frequencies were used in the modified
Thacher-Tukey algorithm to calculate a 26-point Padé approximant in the continuous fraction form (1). The
algorithm is fast (typically, a program written in double precision arithmetic needs 10 ms of CPU time on a
DEC/uVAX computer).

The amplitude and the phase of the interpolant r26(s)18iw (curves) are plotted in fig. 2 together with the
measurements (points). The approximation of the nonuniform FM response is exact at the given points (precision
of fifteen decimal digits) and very good in the frequency intervals between them (precision of three decimal digits).
This accuracy is sufficient for the study of the influence of the nonuniform FM response on the performance of
coherent optical systems.

A symbolic calculation package (Mathematica'4) was used to convert the approximant to a simple fraction
form and then to rewrite the simple fraction function in a partial fraction expansion like (3). The poles p and
the residues r of r26(s) are summarized in Table 2.

From the values of the Table 2, it is straightforward to program the digital filter by using the relations (7),
( 8). The sampling rate was chosen equal to 1 THz in order to avoid aliasing. For this sampling rate Hd(Z)IzeuTs
was equal to '26(8)ISiW up to 10 GHz.

To test the validity of the model, the simulated impulse and step response of the digital filter were compared
with the theoretical ones and were shown to be in excellent agreement.

In the following, the DFB model of this example is used to study the performance degradation of a coherent
heterodyne CPFSK system with differential receiver operating at 1 Gb/s.

4 SIMULATION MODEL FOR A COHERENT HETERODYNE
CPFSK SYSTEM WITH DIFFERENTIAL RECEIVER

A block diagram of the computer model of a coherent optical CPFSK system with differential receiver is shown
in Fig. 3. The input data consists of a pseudorandom binary sequence of variable length (periods from 2 —1 to
215 1) The sequence represents a non-return to zero (NRZ) current of amplitude 1o which is injected into the
digital filter of the previous section. The output of this filter represents the instantaneous optical frequency f(i).

It is well known'5 that the instantaneous optical frequency of a semiconductor laser presents fluctuations 5(t).
The frequency fluctuations qS(t) are simulated as a white gaussian noise with two side power spectral density
equal to 2rLv, where /.v is the 3-dB spectral linewidth. This modeling does not take into account the 1/f noise
behavior at low frequencies and the laser resonance peak.

The sum 2irf() + ql(t) is integrated by use of the trapezoidal rule to obtain the instantaneous phase ç(t)
of the transmitted optical signal. The amplitude of the optical signal is considered as constant. This is only
approximately true. In direct modulation, even for small modulation currents, there is a residual amplitude
modulation (AM) of the optical signal coexisting with the FM. Its contribution at 1 Gb/s is not expected to
be important, as it will be shown by the agreement between theoretical and experimental results. However, it
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is possible to incorporate this spurious effect in the calculations, simulating the AM response by an additional
digital filter with the procedure developed in section 2.

Fiber and polarization dispersion and fiber nonlinearities are not included in the model. The local oscillator
is assumed to have negligible phase noise.

The microwave current after the photodiode resulting by the mixing of the received and the local oscillator
optical signals, can be written in equivalent baseband signal notation as

2ph(t) = AIF exp {ij [2f(') + (t')] dt/} + (9)

where AIF 2R/P3P10, R is the responsivity of the photodiode, P8 is the received optical power from the
transmitter, P0 is the received optical power from the local oscillator and fl(t) is the sum of shot and thermal
noises, which can be approximated as an additive white gaussian noise. Tilde denotes the complex envelope of
the signals.

In Fig. 3, the transmitter, the local oscillator and the photodiode do not appear like separate units. The
program generates directly the signal given by the relation (9).

The bandpass filter (BPF) and lowpass filter (LPF) bandwidths are chosen large in comparison to the signal
bandwidth (20 and 10 GHz respectively). Thus the only contribution of the bandpass filter is to reduce noise and
of the lowpass filter to eliminate the high frequency component produced by the multiplication. Their influence
on the signal is negligible.

The differential delay was chosen equal to r = Tb/2. This is the optimum value of the delay for a modulation
index of in = 1 when the laser's FM response is fiat.'6 However this is not the case when the FM response is
nonuniform. In order to optimize the system's performance, the amplitude Io of the injection NRZ current was
modified until the achievement of a maximum eye opening at the output of the receiver for a sequence length
2 — 1.

The degradation of the system's sensitivity in prior works is estimated by calculation of the amount of eye
closure at the receiver output.4'5'8 This approach takes into account only the signal distortion and does not
consider the phase noise and the non gaussian shot noise statistics at the receiver output. Moreover, for long
sequences and high phase noise levels, bit error rate floors can appear and the estimations of sensitivity penalty
given by this method do not hold (cf. fig. 7).

In a more accurate approach, the error probability must be used as performance criterion. For the evaluation
of the error probability we dealt with a semi-analytical 718 According to this method, the signal is
simulated in the absence of noise in order to compute the distortion induced by the nonuniform FM response.
The nonuniform FM response changes the phase difference AG, between the two entries of the microwave mixer.
Then we can use the relation (10) of Jacobsen et al.6 to evaluate the conditional error probability P172 of the n-th
bit of the sequence

Pen = - 6
[1k () + 'k+l

2

e(21)27T cos[(2k + 1)M] (10)

where p,2 is the instantaneous signal-to-noise ratio at the entries of the microwave mixer, 'k (x) are the modified
Bessel functions of the first kind and Lv is the 3-dB spectral linewidth of the transmitter.
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The total error probability can then be estimated by averaging over all the output samples M

Pe = e1n (11)

where M denotes the sequence length.

The semi-analytical approach is advantageous in comparison with the analytical method proposed by Jacobsen
et al.6 because it takes into account the whole sequence and not only the parts where several repeated marks or
spaces occur. It was already used with success for the study of the influence of the bandpass filter (BPF) on the
system's 19

For the simulations, we used TOPSIM,20'21 a software package for simulation of analog and digital communi-
cation systems.

5 EXPERIMENT

For the verification of the theoretical evaluations, the experimental arrangement shown in Fig. 4 was used.
The DCPBH DFB laser diode of the Table 1 was used as CPFSK transmitter. Its wavelength was 1520 nm and
its 3-dB linewidth for the bias current chosen was about 29 MHz. The laser was directly modulated at a bit rate
Rb 1 Gb/s and the optical signal was launched into a single-mode fiber. An optical isolator providing more
than 60 dB isolation was used at the laser output to avoid undesired feedback.

A tunable 10 KHz-linewidth external cavity laser was used as local oscillator. The local oscillator power
received at the photodetector was P10 = —5.3 dBm. This power was not sufficient to produce shot noise limited
operation and the contribution of the thermal noise was significant. A polarization controller was used to match
the state of polarization of the two lasers. The two optical fields were combined with an 1 : 1 fiber coupler and
detected by a PIN photodiode. The photodiode bandwidth was 13 GHz and its responsivity R =0.8 A/W. The
IF frequency was fixed at 3 GHz. The IF signal was amplified by a three stage wide-band preamplifier. After
the first stage of amplification, the signal was filtered by a bandpass filter with bandwidth BIF =2 GHz. The
delay-line discriminator had a 3 GHz zero crossing and delay r = Tb/2. The lowpass filter (LPF) had a 3-dB
cut-off frequency equal to O.8Rb.

As for the simulation, the amplitude of the modulation current was adjusted to achieve a maximum eye
opening at the output of the receiver for a sequence length 2 —1. The same amplitude was conserved for all the
other sequences during the measurements of the bit error rate (BER).

6 RESULTS AND DISCUSSION

Fig. 5(a) and (b) compare respectively theoretical and experimental spectra of the CPFSK in the presence of
phase noise. An ideal CPFSK spectrum for a modulation index in =1 consists of a central lobe 3Rb large. Two
discrete spectral lines appear at MHz around the central frequency.22 The effect of the nonuniform FM
response is that the discrete lines have been smeared and the separation between the central and the secondary
lobes has disappeared.

The agreement between the two spectra verifies that the modulation index was almost the same for the
simulation and the experiment. Note that the experimental spectrum is asymmetric. This is due to the residual
AM modulation of the optical signal which enhances the spectrum at lower frequencies.
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The effect of the nonuniform FM response on the waveform at the output of the receiver is illustrated in the
Fig. 6. The transmitted sequence was 1O1O1O1-32x0-1O1O1O1O-O11. Each bit of the sequence was transmitted
consecutively 10 times (It is equivalent to say that the bit rate for this measurement was equal to Rb = 100 Mb/s
and the modulation index in was ten times higher than at 1 Gb/s to yield the same frequency deviation). The
solid line shows the waveform predicted in the theory and the dashed one shows the waveform measured in the
laboratory. The theoretical waveform was plotted without phase noise. The experimental one was averaged.

For an ideal CPFSK system, the amplitude of the theoretical output signal in the Fig. 6 should take the
values V. The nonuniform FM response causes a reduction of the amplitude of the output signal whenever
a long sequence of consecutive 1 or 0 is transmitted.

Finally, fig. I shows the estimated probability of error as a function of the signal-to-noise ratio for three
different sequences (1010, 2 — 1, and 215 1) together with the experimental points. For comparison, the error
probability for a coherent DPSK or CPFSK system with a uniform FM response is plotted (curve 1). This curve
is obtained by the formula (12) of Nicholson.23 The sensitivity penalties at iO are 2.8 dB for the sequence
1010, and 4 dB for the sequence 2 — 1. A probability of error equal to i09 can not be achieved with a sequence
of 215 1 because of the appearance of an error floor.

To account for the phase noise filtering, the phase noise variance in the simulations of fig. 7 was chosen so that
the slope of the theoretical curves fits the slope of the experimental data. A 3 dB linewidth after filtering equal
to O.3Vmeasured (8.7 MHz instead of 29 MHz) seems to provide the closer approximation. This approximation
is necessary since, to the authors knowledge, no theory exists which considers the phase noise filtering done by
the two filters. Indicatively, we report that the formula (13) of Jacobsen and Garrett25 predicts a phase noise
variance reduction at O.68Liijnjtjal due to the bandpass filter only, for in = 1 and BIF = 2Rb. In addition to that,
expressions (51), (52) of Kazovsky'5 predict a sensitivity improvement of 1.76 dB due only to the lowpass filter.

The difference between the experimental and theoretical results can be attributed to the residual AM modu-
lation, the 1ST induced by the narrow experimental filters and the non-ideal characteristics of the receiver.

The above results show that the proposed technique for the modeling of the nonuniform FM response, together
with an accurate semi-analytical method can be a very efficient tool in the computer-aided design of the coherent
optical systems. The semi-analytical method is very general and permits to incorporate other effects as well, like
chromatic dispersion and signal distortions due to filtering in the study. However, the phase noise filtering is not
accurately calculated and is a subject of further study.

7 SUMMARY

This paper presented an accurate computer model of the nonuniform FM response of the semiconductor lasers,
to be used in the computer-aided design of coherent optical communication systems. The theory of multi-point
Fade approximants and the impulse invariant transformation were used to conceive a digital filter simulating the
laser's operation. The influence of the nonuniform FM response on the spectrum, the waveform at the output
of the receiver, and the probability of error of a coherent optical CPFSK system were studied both theoretically
and experimentaly. The agreement of theoretical and experimental results confirms the validity of the approach.
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fm (MHz) [H(s) (GHz/mA) arg[H(s)] (rad) ]
0.010 0.386 2.341
0.032 0.285 1.765
0.102 0.304 1.027
0.312 0.405 0.591
1.013 0.523 0.354
3.153 0.622 0.224

10.223 0.705 0.130
31.826 0.769 0.026

103.180 0.801 -0.218
200.000 0.738 -0.487
400.000 0.558 -0.843
700.000 0.377 -1.104

1000.000 0.278 -1.232

Table 1: Measurements of the nonuniform FM response H(s) of a double-channel planar buried heterostructure
(DCPBII) DFB laser.

vi (MHz) r (GHz MHz/mA)
-34121.348 12.252

-7408.376 11.517
-2137.558 1847.214
-1528.305 66.472

-512.503 -56.793
-184.971 -11.309

-63.383 -4.572
-20.928 -2.010
-6.745 -0.874
-2.118 -0.362
-0.640 -0.139
-0.176 -0.047
-0.034 -0.013

Table 2: Poles p and residues r of the 26-point Padé approximant r26 (s) which fits the measurements of the
Table 1.
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Figure 2: Comparison of the measurements of Table 1 and their fitting by the 26-point Padé approximant
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Figure 3: Block diagram of the simulation model (Abbreviations used: AWGN=additive white gaussian noise,
BPF=bandpass filter, LPF=lowpass filter, T=delay).

Figure 4: Experimental set-up (Abbreviations used: OI=Optical Isolator, PC=Polarization controller,
BPF=bandpass filter, LPF=lowpass filter, r=delay).
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Figure 5: (a) Theoretical and (b) experimental spectrum of the CPFSK in the presence of phase noise. (Conditions
A mixed-radix FFT with 800 points was used for the calculation of the theoretical spectrum. The resolution

bandwidth was 125 MHz and the transmitted sequence length was 2' — 1. The resolution bandwidth of the
experiment was 3 MHz and the sequence length was 223— 1. Both curves were obtained by averaging over 100
spectra).
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Figure 7: Influence of the sequence length on the probability of error (Symbols used : Curve 1 : coherent DPSK
or CPFSK system with a uniform FM response, Curve 2 : Seq. 1010, Curve 3 : 2 — 1, Curve 4 : 215 1, o
Measurements with the Seq. 1010, . : Measurements with the Seq. 2 — 1, 0 : Measurements with the Seq.
2' — 1).

233

0.2

0.1

0

-0.1

-0.2

I I I I I I

I'
I

i :

I

y—

10-s

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx


