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ABSTRACT

Laser phase noise deteriorates the high sensitivity of heterodyne optical receivers. To reduce phase noise
influence, the intermediate frequency (IF) signal resulting from the coherent detection is filtered by a narrow
bandpass filter (BPF). The phase noise at the input of the BPF generates an amplitude and phase noise at the
output of the BPF. The joint probability density function of these noises is evaluated in the case of a first order
(RC) filter by numerical resolution of a Fokker-Planck equation. A finite difference operator splitting scheme
is used. The accuracy of the numerical solution is checked comparing numerically and analytically calculated
moments. In addition, a new very efficient method for the analytical calculation of moments is developed.

Contour plots of the probability density for both a finite time integrator and a first order filter are compared
in order to show the impact of different filter types on phase noise filtering. The marginal pdf of the amplitude
and phase noise at the output of the above filters are also calculated.
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1 INTRODUCTION

Coherent optical communication systems are attractive candidates for OFDM (Optical Frequency Division
Multiplexing) networks because of their increased selectivity in comparison with direct detection schemes. In such
networks, lasers with significant phase noise may be used in order to reduce the cost of the implementation. For
this reason, it is interesting to study the impact of the IF filtering on phase noise in coherent optical communication
systems.

Several papers have been published on this subject (see for example the article by Garrett et a!.1 and its
references). It was shown that IF filtering reduces the phase noise variance but also generates an amplitude noise
at the output of the IF filter. The joint probability density function of the amplitude and phase noise at the
output of the IF filter can be obtained by resolution of a Fokker-Planck equation.2

This equation has been resolved numerically1'3'4 and, more recently, analytically5 for a finite time integrator
filter (or I&D, for Inlegraie & Dump). However, the finite time integrator is a mathematical model that does not
have any physical counterpart. Therefore, the numerical method proposed by Waite and Lettis4 is generalized

228 ISPIE Vol. 2399 O-8194-1746-7/95/$6.OO

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



here for a first order filter, which enables a more realistic analysis of the system performance.

The remainder of the paper is organized as follows : The second section presents the mathematical model
which leads to a Fokker-Planck equation for a first order filter; the third section is devoted to the numerical
resolution of this equation and the development of an initial condition useful for the numerical calculations; the
fourth part presents a new, very efficient method for the evaluation of the theoretical power moments. The
moments are used to check the accuracy of the numerical solution. The two last sections present the results and
the conclusions respectively.

2 THEORY

A block diagram of a heterodyne optical receiver is given in fig. 1 . The optical signal from the transmitter
is combined with the signal of the local oscillator on a PIN photodiode. The resulting photocurrent is amplified
and filtered by a narrow bandpass filter (BPF) in order to select the desired channel, reject the direct detection
component, and reduce shot and phase noise.

The intermediate frequency (IF) component of the photocurrent can be written as

iph(i) = {ph(t)ciw1F} (1)

where IF 2ir(v, — vi) is the angular intermediate frequency (IF) and ph (t) is the complex envelope, which, in
the absence of modulation, can be expressed as

Zph(t) = Aet) + n(t) (2)

where A = 2R/KPj is the amplitude of the IF photocurrerit, P3 is the received average optical power, P, is the
average optical power of the local oscillator, R is the photodiode sensitivity, 4(t) is the IF phase noise, and ñ(i)
is the complex envelope of the shot and thermal noise.

Phase noise is due to the spontaneous emission in semiconductor lasers. It can be modelled by the following
integral equation

(T)dr (3)

where (i) represents the instantaneous angular frequency fluctuations.

It is customary to model (t) as a white Gaussian noise with zero mean and two-sided power spectral density
equal to

S(w) = D = 27rL\z1 (4)
where D is the phase diffusion coefficient and .u is the full width at half maximum (FWHM) of the non-modulated
optical field at the intermediate frequency (IF).

The above assumptions for () make the phase noise defined by (3) a Wiener process. The properties of the
Wiener process are well known6'7

i) q5(i) is Gaussian, with zero mean and autocorrelation

R(i1,2) = Dmin{t1,i2} (5)

ii) (i) has independent increments in nonoverlaping time intervals, i.e. (i2) — (i1) and (i4) —
are independent if t4 > i > > i.
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iii) ç5(t) has stationary increments, i.e. the probability density of zç5 = qS(11) — 4(i2) is Gaussian with
zero mean and variance D(1 —12).

The mathematical definition of the problem that we are going to address here is as follows : if ii(i) is the
equivalent Iowpass impulse response of the IF filter, we want. to calculate the probability density function (pdf)
of the complex envelope (t) at the IF filter output

(i) = r(t)e° = J 1(i — 1') i7m (1')dI' = i(i — iI)e2t')diF (6)

In the above expression, the shot and thermal noise terms are omitted since we are interested uniquely in the
study of the phase noise filtering.

The stochastic process z(i) is shown to be a diffusion process.2 The transition probability density p(r, 0, 1) of
the diffusion processes from a state (i) = (ro,e0; i) to a state (i) = (r, 9; 2), can be calculated by resolution
of partial differential equations called Fokker-Planck equaiions.8'9

Bond2 has shown that the Fokker-Planck equation corresponding to (6) is given by:

DO2 0 1 0 0
8, t) — cos8h(t) —p(r, 0, t) + — sin Oh(t) p(r, 0, t) = -p(r, 0, t) (7)

satisfying the initial condition
= S(r,0) (8)

The equivalent lowpass impulse response of a first order filter is written as

( ce'° O<t<T1
(9)

1. 0 otherwise

In (9) we have implicitly assumed that h(1) is truncated in time, in order to avoid intersymbol interference
and noise correlation.

The normalization constant c is calculated in order to obtain f°° h(t)di = 1. Consequently

(10)1 — eT'

It is worth noting from (9), (10) that when a — 0, the first order filter becomes equivalent to the finite time
integrator.

The equivalent noise bandwidth of the first order filter is given by

f H(f)I2df a ar
Beq =

rnaxlH(f)12
= coth —--

(11)

Fig. 2 shows the equivalent noise bandwidth Beq normalized to the filter impulse response duration r1 as
a function of ari/2. It is worth noting that for small or1 the equivalent noise bandwidth tends to 1/ri. By
increasing the value of ar1 the equivalent noise bandwidth becomes almost equal to a/2.
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where lo is the odd term indicator sequence (i.e. 1o = 1, 0, 1, 0 . . .), and K, X are arrays with elements K, X,
respectively.

The moment generating function of 0(1) can be written in terms of the Laplace transform

.211K112L = E {e.°()} (17)

The initial marginal phase distribution p(O, i) can be calculated by the inversion of the moment generating
function and is shown to be Gaussian with variance

= = 11K112 = ( + at + a2t2) Di (18)

4 THEORETICAL MOMENTS

4.1 General formalism

To check the accuracy of the numerical solution, it is necessary to define a criterion. Garrett et al.' compared
numerically and analytically calculated moments for a finite time integrator filter. Analytical moments are
calculated by a recursive expression developed by Bond.2

Here, we develop a new method for the analytical calculation of moments that presents two advantages: (i)
it has an almost negligible computational complexity allowing to obtain moments of much higher order than
previous methods2"3; (ii) it is applicable to a wide class of filter types.

The power moments j(t) = E{(i)"} are defined by

00 "00 00

(i) E { (/ (i
—s)e

ds)
} = E . . . J(f — s,) . . . — s) e k1 ds, . . . ds (19)

Note the symmetry of the integrand with respect to a permutation of the integration variables s1,.. .,s,. This
symmetry can be exploited to impose a particular integration order in (19), i.e. S >s > S3 > ...> > s,
in order to obtain

I
00 3 fl1

— )= E 1n!JJ . . .J h(i — s,). . .h(/ — S) e k1 ds . .

.ds,J
(20)

As h(.) is a deterministic function, the expectation is taken over the exponential of the integrand in (20)

00 S 'flI
— I i(s,))

n(t)n!JJJ
h(i—s,)...h(i—s)E1e

k=i

Jds.•.ds,
(21)

The sum in (21) can be written in the form:

(Sk) = [(s,) — (S2)] + 2 {(S2) - (S3)] + . . . + (n —1) [(s_) - (s)] + fl [(sn) —0]

232 ISPIE Vol. 2399

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



From the properties (ii), (iii) of the Wiener process. the phase differences in the brackets zj= [5(sk)
—

5(Sk+1)] are independent Gaussian processes with zero mean and variances o= D(Sk — 8k+1 ). The expectation
of (21) is now easily evaluated by8

I iE(sk))
E e k1 = exp [i(Si — S2) + 2(s2 _ 83) + . . . + n_(S_i — s) + —

0)] (22)

where we used the shorthand notation . = —D k2/2.

By substituting (22) in (21), and aft.er some rearrangement, we obtain the final expression for the power
moments, up to now independent of the filter impulse response. as

= n! Jdsfl (i — s)e3Jds_i (t — .Jdsi (i — si)eel(51_s2) (23)

4.2 First order filter

By substituting (9) in (23), we obtain

= n!c e0t ea Jdsn_i e(en_i+(n_1)a)(sn_1_sn)
.Jdsi

e(e1)(31_32) (24)

This form is similar to the kernel of a Laplace transform. Taking the transform L = f etpn(t) dt and
changing the integration order, we obtain

L = n!c fds Jdsn_i ee_1+ _1)a)(s_i_s) ... Jsi e +)(8132) Jdt e(__)t

We separate the variables:

L = n!
cnfdsn

Jds_i e_1 _a)
.Jdsi e1_(n_1_(u1_82) Jdie__xt_31

and calculate each integral separately

ntcn n
L =n!c' 2

fJ[7+(n—i)a—ej]

= n!c cj J a+) di =
J n! c eje "__i edi

p(t)

The coefficients c are defined by

= fi [_(k_j)a÷ -ek]. (25)
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By substituting D r2/2, we obtain the final expression for the power moments at the output of the first
order filter

E {z(t)} = n!c Cj exp
[_(n

— j)at — %.D1] (26)

with

cl=(l)ij!(nj)!fl [_a+L±1D] (27)

For the finite time integrator filter, a = 0 and the expressions (26), (27) are written

E {:(t)'1} = n!c cj exp [_çDi] (28)

with

2'D
CO =

(n!)2
(29a)

(—1)i2"1D= . . (29b)(n—j)!(n+)!

The five first power moments for a first order filter are shown below (where we introduced the shorthand

notation [x] (—a + -x)/c and d D/2)
—2at 2 (—a--d)t —4dt

E{z} =
—a+ d

— e_dt) E{z2) =
2]

— +
3]

e3t 3e_2 3e(_0_4 e92E'31— +Z —
[1}[2}[3]

—
[1][3][4] [2][3][5] {3][4][5]

e_4' 4e(_3a_d)i 6e(_2a_4d)t 4(_a_9d)t e161t
E{z } =

[1][2}[3]{4]
-

[1][3]{4][5]
+

[2][3][5][G]
-

[3][4][5][7]
+

[4][5][6}[7]

5 _____________ 5e(_4d)i 1Oe3'_ 1Oe_2°_9 5c(_a_ 16d)i
E{z }

[1]{2][3][4]5]
—

[1][3][4][5][6] [2][3][5][6][7]
—

[3][4][5][7][8]
+

[4][5][6][7][9] [5}[6][7][8][9

We also compared the moments at the output. of the finite time integrator filter as given by (28) with those
obtained by Bond's expression2

= exp (—n2Dt/2) J n p (r) exp (n2Dr/2) dr (30)

satisfying the initial condition po(i) = 1.

Our method is clearly more efficient, as depicted in fig. 3.
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5 RESULTS

In the following, the pdf P(r, 0, 1) is calculated numerically. for two types of filters : (i) a finite time integrator;
(ii) a first order filter.

In order to do a meaningful comparison, it is assumed that the same phase noise (i.e. characterized by the
same diffusion coefficient D) is applied at the input of both filters. In addition, both filters have the same
equivalent noise bandwidth. In the following, the equivalent noise bandwidth of the finite time integrator filter
is denoted by B' and the equivalent noise bandwidth of the RC filter by BC . We will examine the special
case when Drf" = 1, rf'/rf'' = 3. From (11), it. is straightforward to see that aRC'r1RC' 5.97 in order to have
pFI pRC

eq eq

Fig. 4 shows contour plots of P(r, 9, 2) at the instant I = rf' for a finite time integrator filter. Contours
(a)-(d) correspond to values of P equal to 0.05, 0. 1 ,0.5,1 . At small times, all the pdf is concentrated on a circle
around the origin. At t = r(', the contours have propagated along the direction of 0 = 0 and the maximum of
P is located at about r = 0.95. Note that the contours are narrower in the direction 9 = 0 and become wider as
8 increases. The reason for this phenomenon is that the advect.ion velocity is greater along the direction 0 = 0
than in the other directions, so the circular contours are deformed during their propagation.

Fig. 5 shows contour plots of P(r, 9, i) at the instant I = rc for a finite time integrator. In contrast with
the contours of fig. 4, the contours present almost a circular symmetry around the origin. On the other hand,
the angular diffusion is larger for the RC filter under study due to the fact that. DTjC 3. For this reason the
pdf is less concentrated in the angular direction and the attenuation of the pdf peak is larger.

The amplitude noise resulting from the conversion phase-amplitude due to the IF filtering is almost the same
for both filter types (fig. 6). This justifies the statement of Foschini and Vannucci'2 that the phase noise filtering
is not affected in a fundamental way by the filter shape hut. only by the filter equivalent noise bandwidth.

A probability distribution that presents a particular interest for phase and frequency modulation schemes is
the marginal phase noise pdf p(9, t) at the output. of the IF filter. Fig. 7 shows p(O, ) as a function of 0 for
the two different filter types. We observe that. the phase error is much larger in the case of an RC filter. This is
due to the fact that the statistics of the phase noise after IF filtering are determined by the product Dr1 rather
than the ratio D/Beq. As in this particular example we assumed that Drr' = I and DTf?C 3, it is clear that
phase noise is enhanced in the case of an RC filter. However, it is difficult to conclude whether the finite time
integrator filter is more efficient in phase noise filtering than an RC filter. For example, in a differential receiver,
the linewidth-delay line product .vr determines the system performance. Therefore, one has to examine whether
it is better to filter the phase noise with a finite time integrator filter having an impulse response duration r('
less than the delay r of the differential demodulator, or it is better to use an RC filter having the same equivalent
noise bandwidth as the finite time integrator filter, but an impulse response duration TC equal to the delay r of
the differential demodulator. This is an interesting subject for further study.

6 CONCLUSION

This paper accurately evaluates the joint probability distribution of the amplitude and phase noise resulting
from the IF filtering of phase noise by a first order (RC) filter. The study is based on the numerical resolution of
a Fokker-Planck equation.

A new method for the analytical evaluation of the power moments at the output of the IF filter is also
developed. This method is applicable to a wide class of filters and presents a very low computational complexity.
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Here it is used to check the accuracy of the numerical results.

Finally, a particular example is given in order to illustrate the impact of a finite time integrator and a first
order filter on phase noise.

The study of the phase noise filtering by means of the Fokker-Planck equation is a powerful and promising
method and it can be generalized in the future for other filter types and modulation schemes (i.e. CPFSK).
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Figure 1: Block diagram of a heterodyne optical receiver.
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Figure 2: Equivalent noise bandwidth normalized to the filter impulse response duration r1as a function of ar1/2.
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Figure 3: Computing time (in seconds) with Bond's method and our approach. Computations were performed
by Mathematica'4 on a Macintosh Quadra 700.
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1

Figure 4: Contour plot of P(r, 9,2) at the instant 1 = rf' for a finite time integrator filter. Contours (a)-(d)
correspond to values of P equal to 0.05, 0.1, 0.5,1 respectively. (Conditions : Dr1'1 = 1, grid 1000 x 500).

1

Figure 5: Same as previously for a first order (RC) filter (Conditions: DrfW = 3. ar1 = 5.97, grid 1000 x 500).
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0 0.2 0.4 0.6 0.8 1

Figure 6: Marginal amplitude probability distribution at the output of a finite time integrator (full line) and a
RC filter (dashed line). (Conditions: Dr-f" = 1, DrjW = 3, ar = 5.97, grid 1000 x 500).

0

Figure 7: Marginal phase probability distribution at the output of a finite time integrator (full line) and a RC
filter (dashed line). (Conditions : Dr-f" = 1, Drfw = 3, arf'C' = 5.97, grid 1000 x 500).
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