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ABSTRACT

Laser phase noise deteriorates the high sensitivity of heterodyne optical receivers. To reduce phase noise
influence, the intermediate frequency (IF) signal resulting from the coherent detection is filtered by a narrow
bandpass filter (BPF). The phase noise at the input of the BPF generates an amplitude and phase noise at the
output of the BPF. The joint probability density function of these noises is evaluated in the case of a first order
(RC) filter by numerical resolution of a Fokker-Planck equation. A finite difference operator splitting scheme
is used. The accuracy of the numerical solution is checked comparing numerically and analytically calculated
moments. In addition, a new very efficient method for the analytical calculation of moments is developed.

Contour plots of the probability density for both a finite time integrator and a first order filter are compared
in order to show the impact of different filter types on phase noise filtering. The marginal pdf of the amplitude
and phase noise at the output of the above filters are also calculated.
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1 INTRODUCTION

Coherent optical communication systems are attractive candidates for OFDM (Optical Frequency Division
Multiplexing) networks because of their increased selectivity in comparison with direct detection schemes. In such
networks, lasers with significant phase noise may be used in order to reduce the cost of the implementation. For
this reason, it is interesting to study the impact of the IF filtering on phase noise in coherent optical communication
systems.

Several papers have been published on this subject (see for example the article by Garrett et al.! and its
references). It was shown that IF filtering reduces the phase noise variance but also generates an amplitude noise
at the output of the IF filter. The joint probability density function of the amplitude and phase noise at the
output of the IF filter can be obtained by resolution of a Fokker-Planck equation.?

This equation has been resolved numerically!-34 and, more recently, analytically® for a finite time integrator

filter (or 1&D, for Integraie & Dump). However, the finite time integrator is a mathematical model that does not
have any physical counterpart. Therefore, the numerical method proposed by Waite and Lettis* is generalized
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here for a first order filter, which enables a more realistic analysis of the system performance.

The remainder of the paper is organized as follows : The second section presents the mathematical model
which leads to a Fokker-Planck equation for a first order filter; the third section is devoted to the numerical
resolution of this equation and the development of an initial condition useful for the numerical calculations; the
fourth part presents a new, very efficient method for the evaluation of the theoretical power moments. The
moments are used to check the accuracy of the numerical solution. The two last sections present the results and
the conclusions respectively.

2 THEORY

A block diagram of a heterodyne optical receiver is given in fig. 1. The optical signal from the transmitter
is combined with the signal of the local oscillator on a PIN photodiode. The resulting photocurrent is amplified
and filtered by a narrow bandpass filter (BPF) in order to select the desired channel, reject the direct detection
component, and reduce shot and phase noise.

The intermediate frequency (IF) component of the photocurrent can be written as :

ipn (1) = R{ipn (1)1} )

where w,, = 27(vs — 1) is the angular intermediate frequency (IF) and 7, () is the complex envelope, which, in
the absence of modulation, can be expressed as :

pa(t) = A 4 @i(2) (2)

where A = 2R\/P, P, is the amplitude of the IF photocurrent, P; is the received average optical power, P; is the
average optical power of the local oscillator, R is the photodiode sensitivity, ¢(t) is the IF phase noise, and #(t)
is the complex envelope of the shot and thermal noise.

Phase noise is due to the spontaneous emission in semiconductor lasers. It can be modelled by the following
integral equation

t
o) = [ étr)ar e
where ¢(t) represents the instantaneous angular frequency fluctuations.

It is customary to model d)(t) as a white Gaussian noise with zero mean and two-sided power spectral density
equal to
Si(w) =D =27Av 4)

where D is the phase diffusion coefficient and Av is the full width at half maximum (FWHM) of the non-modulated
optical field at the intermediate frequency (IF).

The above assumptions for q.S(t) make the phase noise defined by (3) a Wiener process. The properties of the
Wiener process are well known®7 :

i) #(t) is Gaussian, with zero mean and autocorrelation :
Ry(t1,t2) = Dmin{t;, 1} (5)

il) #(t) has independent increments in nonoverlaping time intervals, i.e. ¢(f2) — ¢(¢1) and ¢(t4) — é(t3)
are independent if 13 > t3 > t2 > t;.
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iii) #(¢) has stationary increments, i.e. the probability density of A¢ = &(t;) — ¢(2) is Gaussian with
zero mean and variance D(t; — t2).

The mathematical definition of the problem that we are going to address here is as follows : if h(t) is the
equivalent lowpass impulse response of the IF filter, we want to calculate the probability density function (pdf)
of the complex envelope £(t) at the IF filter output :

£(t) = r(t)e?™ = /oo h(t — ') ipn(1")dt' = /oo h(t — t")e () dr’ (6)
0 0

In the above expression, the shot and thermal noise terms are omitted since we are interested uniquely in the
study of the phase noise filtering.

The stochastic process Z(t) is shown to be a diffusion process. The transition probability density p(r,0,t) of
the diffusion processes from a state Zp(fo) = (7o, fo;t0) to a state 2(t) = (r,8;1), can be calculated by resolution
of partial differential equations called Fokker-Planck equations.®°

Bond? has shown that the Fokker-Planck equation corresponding to (6) is given by:

b&
3 567

satisfying the initial condition

N 1. ... 90 8
p(r,0,t) — cos Oh(t)-a-;p(r, 0,t) + - sin 0h(t)-5§p(r, 6,t) = -a—tp(r, 6,t) )

p(r,6,0) = &(r.0) 8)

The equivalent lowpass impulse response of a first order filter is written as

ce”® 0<t<n

h(t) = 9)

0 otherwise

In (9) we have implicitly assumed that h(t) is truncated in time. in order to avoid intersymbol interference
and noise correlation.

The normalization constant ¢ is calculated in order to obtain [ o h(t)dt = 1. Consequently

e=— 2 (10)

T 1 —emam

It is worth noting from (9), (10) that when a — 0, the first order filter becomes equivalent to the finite time
integrator.

The equivalent noise bandwidth of the first order filter is given by

© |H(f)*d
Beq é —f—oo I (f)l f = i1-'(:0tll an

maz|H(f)|? 2 2 (11)

Fig. 2 shows the equivalent noise bandwidth B., normalized to the filter impulse response duration 7, as
a function of ar;/2. It is worth noting that for small a7, the equivalent noise bandwidth tends to 1/n. By
increasing the value of a7, the equivalent noise bandwidth becomes almost equal to a/2.
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By substituting (9) in (7), we obtain:

2 .
—?gﬁp(r, 0,t) — ccosfe™ %p(r, 6,t)+ csinf

0 ls)
e""é—o—p(r,ﬂ,t) = Ep(r, 6,t) (12)

r

It is convenient to write (12) in dimensionless form by setting ¢’ = t/m, ¢/ = ¢y, @’ = amy, D' = Dry. The
equation (12) is written :

' 52 ) 1,18in @
%%ﬂ)(r, 6,t') —c'e”®" cos O%p(r, 6,y +c'e”?? ill:.—i_—%p(r, 6,t') = %p(r, 6,t) (13)

In the following, for the sake of clarity, we will drop the primes and use the notation a, ¢, D, p(r,6,t) instead
ofd, d, D, p(r,0,1).

Finally, by substituting P = rp, the equation (13) is reduced to the more compact form of a conservation law:

DoP oP

a —at 6 -—atP H —_
- E(ce Pcosf) + 8—0-(ce TSmB + 7%-) == (14)

satisfying the initial condition (8).

3 NUMERICAL RESOLUTION

In order to resolve numerically the above equation, the finite-difference scheme by Waite and Lettis? is used.
The algorithm is based on a finite difference method called operator splitting.!° Equation (14) is divided into
two sub-equations, each one containing variations only in the radial or the angular direction. The principle of
the method is the following: during the first half of each timestep, the radial sub-equation is solved using a
non-linear explicit scheme which is highly accurate and free of numerical oscillations.!! During the second half
of each timestep, the angular sub-equation is solved using an implicit scheme.

3.1 Initial condition

Rather than using (8), which is difficult to approximate numerically, an approximation to the real solution for
small times is derived and used as initial condition.

By developing the exponential in (6) in Taylor series we obtain for small times (t — 0)

r(t) =~ a (15a)
T
6(t) =~ /0 t é(t)dt' — a /0 t t'¢(t")dt’ (15b)

From (15a) we note that the initial distribution P(r,6,t) is concentrated on the circle r ~ ct/7,.

According to Foschini et Vannucci!? the integrals of (15b) are decomposed in the ortho-normal base X, =
V2 f sin nwTd¢. It is straightforward to show that

8(t) = \/E; [g (1 + %f) + at(i%zo] X, = z_:l K. X, =KX (16)
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where [ is the odd term indicator sequence (i.e. Ip = 1,0,1,0...), and K, X are arrays with elements K,, X,
respectively.

The moment generating function of () can be written in terms of the Laplace transform

L= E{e"’(’)} = Ul a7

The initial marginal phase distribution p(6,t) can be calculated by the inversion of the moment generating
function and is shown to be Gaussian with variance

oL

2 _
70 = 552

3 12 15

) 1 2,2
= |IK|? = (- +2aty 3a-z-> Dt (18)

s=0

4 THEORETICAL MOMENTS

4.1 General formalism

To check the accuracy of the numerical solution, it is necessary to define a criterion. Garrett et al.! compared
numerically and analytically calculated moments for a finite time integrator filter. Analytical moments are
calculated by a recursive expression developed by Bond.?

Here, we develop a new method for the analytical calculation of moments that presents two advantages : (i)
it has an almost negligible computational complexity allowing to obtain moments of much higher order than
previous methods®!3; (ii) it is applicable to a wide class of filter types.

The power moments p,(t) = E{3(t)"} are defined by

oo~ ‘ n o0 oo- ) iicﬁ(s;‘)
Hn(t) =) /h(t—s)e“”(’)ds = E /--~/h(f—sl)~-h(t—sn) e k=1 dsy---dsp (19)
0 0 0

Note the symmetry of the integrand with respect to a permutation of the integration variables si,...,s,. This
symmetry can be exploited to impose a particular integration order in (19),i.e. 53 > s2 > 83> -+ > Sp—1 > g,
in order to obtain

Rt 5 i3 8(sn)
pn(t) = E n'/// R(t—s1)--F(t=sp) e b5t dsp---dsy (20)
0 0

0

As h(-) is a deterministic function, the expectation is taken over the exponential of the integrand in (20) :

® s St 5 P37 Ber)
p,,(t):n!v//w-/ h(t —s1)---h(t —sp) E{ e =1 dsp ---ds; (21)
00 0

The sum in (21) can be written in the form:

3 6lsr) = [(51) — 8(62)] +2[6(52) = 6(52)] + -+ -+ (0 = 1) [8(6n-1) = 8(6)] + 7 [(s) ~ 0]
k=1
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From the properties (ii), (iii) of the Wiener process. the phase differences in the brackets A¢r = [¢(si) —
#(s141)] are independent Gaussian processes with zero mean and variances 6 = D(s; — sg4+1). The expectation
of (21) is now easily evaluated by®

iid’(u)
Edex=1 = exp [fl(sl —82)+&a(s2 —s3) + -~ '+£n—l(3n-—1 —5n) +&n(sn — 0)] (22)

where we used the shorthand notation & = —D k?/2.

By substituting (22) in (21), and after some rearrangement, we obtain the final expression for the power
moments, up to now independent of the filter impulse response, as

oo (o] oo
pa(t) = n!/ds,, h(t — s,) €én*n /ds,,_l h(t — sp_y) efn-1(sn=1=sn) .. -/dsl h(t — s1) efa(e1=22) (23)
0

Spn 2

4.2 First order filter
By substituting (9) in (23), we obtain

t t t
I‘n(t) - nl Cn e—nat /dsn e(fa +na)s, /dsn—l e(fn—l"‘("—l)a)(’n-l'-‘n) .. ‘/dSl e(€l+a)(81—82) (24)
0 $2

Sn

This form is similar to the kernel of a Laplace transform. Taking the transform L = [J° e~ pup(t)dt and
changing the integration order, we obtain :

e o) oo oo o0
L = n!c"/dsne(f"""‘“)"' /ds,._le“"""""'”")"n-l—’n) .../dS1 elér+al(s1—s2) /dte('"“‘7)‘
0

Sn 2 S1

We separate the variables :

o0 (<] oo o]
L=n!c" /dsn eln=7)sn /ds,,_l el€nm1=a=7)(sn1=2a) -/d31 e(§1=(n=Da=7)(s1~52) /dt e(—na=7)(t-21)
0 Sn s2 L3
and calculate each integral separately :
L = — n!c? — plen = &
Afrmmg] | Emiro-iG
J—o n o0 ' o n
= n! c”ZcJ-/e'”te(("'j)‘“+€i)'di = / n!c”che«""j)"““’Ef)' e~"dt
i=0 3 5 J=0 )
u:t)
The coefficients c; are defined by
n
Gl =TI [-tk-ia+&-&] (25)
i
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By substituting £, = —D r%/2, we obtain the final expression for the power moments at the output of the first
order filter :

E{z(t)"} = n! C"Z:O ¢j exp [—(n - j)at — %Dt] (26)
with n )
cJ'-'1 = (—l)j JH(n—=j) H [—a+ J—;—kD] (27)
P

For the finite time integrator filter, a = 0 and the expressions (26), (27) are written

[~(1)") = ple® : L o _Z._?_
E{:()"} nlc Z(:) ¢j e.\p[ 5 Dt] (28)
with
2nD—n
Co W (293)

(_1)1' gn+1 p-n

T E (29b)

The five first power moments for a first order filter are shown below (where we introduced the shorthand
notation [z] £ (—a+ %z)/c and d £ D/2)

—2at 26(—a—d)t e-4dt

A — ¢ o=t _ o—dt PR3 _
Be} = g ) EEY =~ Tt Es
3y _ e—3t _36(-—2a—d)t 36(-—0—4:1)1_ e—9dt
)} = mem - mem T REE B
E 4 e—4at 46(-3a—d)t 66('2a-4d)t 4¢(—a—9d) e—16dt
) = TeEE T TEEE T EEee | BEe T @ne
e—5at 5e(-4a-d)t 106(—3a-—4d)t 106(—20—9d)t 56(-a—16d)t e—25dt

E{*} = - =+ T — == + TS AT
(12)3]4(5]  [1][31[41516] ~ [21BIBNENT]  BIMIBITIE) - [4l(s)i6)(IIe]  [(6](7(e]Ie]

We also compared the moments at the output of the finite time integrator filter as given by (28) with those
obtained by Bond’s expression?

t

n(t) = exp (—n>Dt/2) /np.,,_l(f) exp (n2D7/2) dr (30)
0

satisfying the initial condition po(t) = 1.

Our method is clearly more efficient, as depicted in fig. 3.
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5 RESULTS

In the following, the pdf P(r,8,t) is calculated numerically, for two types of filters : (i) a finite time integrator;
(i1) a first order filter.

In order to do a meaningful comparison, it is assumed that the same phase noise (i.e. characterized by the
same diffusion coefficient D) is applied at the input of both filters. In addition, both filters have the same
equivalent noise bandwidth. In the following, the equivalent noise bandwidth of the finite time integrator filter
is denoted by BI! and the equivalent noise bandwidth of the RC filter by BR®. We will examine the special
case when DT =1, 7€ /rfT = 3. From (11), it is straightforward to see that a®C 8¢ = 5.97 in order to have
BF! = BRC.

Fig. 4 shows contour plots of P(r,8,t) at the instant ¢t = 7f7 for a finite time integrator filter. Contours
(a)-(d) correspond to values of P equal to 0.05, 0.1, 0.5,1. At small times, all the pdf is concentrated on a circle
around the origin. At ¢ = rf/, the contours have propagated along the direction of # = 0 and the maximum of
P is located at about » = 0.95. Note that the contours are narrower in the direction § = 0 and become wider as
# increases. The reason for this phenomenon is that the advection velocity is greater along the direction 8 = 0
than in the other directions, so the circular contours are deformed during their propagation.

Fig. 5 shows contour plots of P(r,8,t) at the instant ¢ = 7R for a finite time integrator. In contrast with
the contours of fig. 4, the contours present almost a circular symmetry around the origin. On the other hand,
the angular diffusion is larger for the RC filter under study due to the fact that D¢ = 3. For this reason the
pdf is less concentrated in the angular direction and the attenuation of the pdf peak is larger.

The amplitude noise resulting from the conversion phase-amplitude due to the IF filtering is almost the same
for both filter types (fig. 6). This justifies the statement of Foschini and Vannucci!? that the phase noise filtering
is not affected in a fundamental way by the filter shape but only by the filter equivalent noise bandwidth.

A probability distribution that presents a particular interest for phase and frequency modulation schemes is
the marginal phase noise pdf ps(6,t) at the output of the IF filter. Fig. 7 shows pg(f,t) as a function of § for
the two different filter types. We observe that the phase error is much larger in the case of an RC filter. This is
due to the fact that the statistics of the phase noise after TF filtering are determined by the product D7, rather
than the ratio D/Be,. As in this particular example we assumed that Drf7 = 1 and Drff€ = 3, it is clear that
phase noise is enhanced in the case of an RC filter. However, it is difficult to conclude whether the finite time
integrator filter is more efficient in phase noise filtering than an RC filter. For example, in a differential receiver,
the linewidth-delay line product Avr determines the system performance. Therefore, one has to examine whether
it is better to filter the phase noise with a finite time integrator filter having an impulse response duration 77/
less than the delay 7 of the differential demodulator, or it is better to use an RC filter having the same equivalent
noise bandwidth as the finite time integrator filter, but an impulse response duration 7€ equal to the delay 7 of
the differential demodulator. This is an interesting subject for further study.

6 CONCLUSION

This paper accurately evaluates the joint probability distribution of the amplitude and phase noise resulting
from the IF filtering of phase noise by a first order (RC) filter. The study is based on the numerical resolution of
a Fokker-Planck equation.

A new method for the analytical evaluation of the power moments at the output of the IF filter is also
developed. This method is applicable to a wide class of filters and presents a very low computational complexity.
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Here it is used to check the accuracy of the numerical results.

Finally, a particular example is given in order to illustrate the impact of a finite time integrator and a first
order filter on phase noise.

The study of the phase noise filtering by means of the Fokker-Planck equation is a powerful and promising
method and it can be generalized in the future for other filter types and modulation schemes (i.e. CPFSK).
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Figure 1: Block diagram of a heterodyne optical receiver.
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Figure 2: Equivalent noise bandwidth normalized to the filter impulse response duration 7; as a function of ary /2.
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Figure 3: Computing time (in seconds) with Bond’s method and our approach. Computations were performed
by Mathematical? on a Macintosh Quadra 700.
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Figure 4: Contour plot of P(r,6,t) at the instant t = rf/ for a finite time integrator filter. Contours (a)-(d)
correspond to values of P equal to 0.05, 0.1, 0.5,1 respectively. (Conditions : DrfT = 1, grid 1000 x 500).

Figure 5: Same as previously for a first order (RC) filter (Conditions : Drff¢ = 3. arfi¢ = 5.97, grid 1000 x 500).
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Figure 6: Marginal amplitude probability distribution at the output of a finite time integrator (full line) and a
RC filter (dashed line). (Conditions : DrfT =1, Drf¢ = 3, arfi¢ = 5.97, grid 1000 x 500).
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Figure 7: Marginal phase probability distribution at the output of a finite time integrator (full line) and a RC
filter (dashed line). (Conditions : Drf! =1, Drfi¢ = 3, arf¢ = 5.97, grid 1000 x 500).

SPIE Vol. 2399 / 239

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



