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pumped at 980 or 1480 nm which are not self-saturated by amplified
spontaneous emission noise. The second part of this paper reviews the
wavelength-domain representation of optical signals and network compo-
nents at the optical transport layer of multiwavelength optical networks. This
representation stems from the spectrally resolved model of erbium-doped
fiber amplifiers. Optical signals are represented by their carrier wavelength
and average power exclusively and not by their temporal waveform, as is
customary in simulation of analog and digital communication systems. In
addition, network components are fully characterized by their loss or gain as
a function of wavelength. The wavelength-domain representation is adequate
for efficient steady-state and transient power-budget computations; i.e., it
can be used to evaluate the optical signal, amplified spontaneous emission
noise, and linear optical crosstalk average powers at all points in a multi-
wavelength optical network. To illustrate the capabilities of the spectrally
resolved erbium-doped fiber model by Saleh, Jopson et al. and the wave-
length-domain representation, transient power fluctuations caused by the
dynamic interaction of saturated erbium-doped fiber amplifiers and servo-
controlled attenuators in a bidirectional ring composed of four wavelength
add]drop multiplexers are studied. The mechanisms responsible for this
oscillatory behavior are identified and remedies are proposed. Q 1999 Telecor-

dia Technologies, Inc.

I. INTRODUCTION

The rapid growth and the future commercial importance of multiwavelength
optical networking create strong incentives for the development of efficient soft-

w xware tools for the design of the optical transport layer 3, pp. 580]581 .
Ž .The choice of the model of erbium-doped fiber amplifiers EDFAs is a key issue

for the efficient performance evaluation of multiwavelength optical networks
because EDFAs are an essential part of most network elements. Accurate EDFA

w xmodeling presents a high degree of computational complexity 3, chap. 1; 4 . To
reduce computation time, several approximate models are proposed in the litera-

w xture, e.g., 1]17 .
The first part of this paper reviews the spectrally resolved erbium-doped fiber

Ž . w xEDF model by Saleh, Jopson et al. 1, 2 . This model is adequate for simulation of
EDFAs pumped at 980 or 1480 nm which are not self-saturated by amplified

Ž .spontaneous emission ASE noise. The model can compute the gain and ASE
noise of EDF based on the numerical solution of a small number of transcendental
equations. The formalism for the evaluation of EDF gain has been extensively

w xpresented before 1]10, 12 and is briefly summarized here for the sake of
completeness. The method for the evaluation of EDF ASE noise was presented

w xbefore only in Refs. 2, 12 and is analyzed here in more depth. In particular, the
implications of the deliberate nonconservation of particles of this model are
investigated. The paper also discusses a variant extending the validity of the basic

w xsteady-state model to the ASE self-saturation regime 12 . Finally, emphasis is
given to issues related to the numerical solution of the transcendental equations
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and to the importance of the initial guess of the solution for the speed of
calculation and potential overflow.

For the study of large-scale networks with a large number of wavelengths, it is
also necessary to adopt a simplified representation of the optical signals and
network components. The second part of this paper reviews the key concepts of the
wavelength-domain representation of optical signals in the optical transport layer
w x18 . According to this method, optical signals are represented by their carrier
wavelength and average power exclusively and not by their temporal waveform, as

w xis customary in simulation of analog and digital communication systems 19 . In
addition, the constituent parts of the network are fully characterized by their loss
or gain as a function of wavelength.

This representation is similar to that of an optical spectrum analyzer and is an
extension of the spectrally resolved EDF model to other transparent network
element components. The term ‘‘wavelength-domain’’ implies a coarse resolution
bandwidth compared to the frequency-domain representation used in waveform-
level simulation. The wavelength-domain representation is adequate for the study
of power-budget related problems in transparent optical networks.

A general purpose simulation tool for both steady-state and transient analysis
w xwas implemented based on this representation 18 in the context of the multiwave-

Ž . w xlength optical networking MONET project 20 . This tool can be used to compute
the optical signal, ASE noise, and linear optical crosstalk power spectra at all
points in the network. The system performance can be evaluated in terms of optical

Ž .signal-to-noise ratio SNR . In addition, information provided by wavelength-do-
main simulation can be used to simplify and accelerate waveform level simulations
w x18 .

In this article we give an example of effective use of the wavelength-domain
simulation in the study of transient effects due to abrupt changes of the signal

Žpower levels i.e., during network reconfiguration, failures, protection switching,
.and so forth in a bidirectional multiwavelength optical ring topology. It is shown

that wavelength-domain simulation can be a very powerful tool to address power-
budget related problems in multiwavelength optical networks.

The rest of the paper is organized as follows: Section II reviews the accurate
homogeneous two-level EDF model and explains in detail its approximate solution

w xin the steady-state regime by Saleh, Jopson et al. 1, 2 . In addition, this section
w xshows that the model in Refs. 1, 2 does not conserve the number of particles and

presents variants that correct this flaw. Section III describes the operation princi-
ples of wavelength-domain simulation. Section IV presents sample simulation
results for the transient power fluctuations in a bidirectional wavelength add]drop

Ž .multiplexer WADM optical ring network caused by the dynamic interaction of
servo-controlled attenuators and saturated EDFAs. In the Appendix, the servo-
controlled attenuator model used in the simulations is presented and analyzed.

II. EDF MODEL

w xIn this section, the EDF model presented in Refs. 1, 2 is reviewed. The
w xcomplete homogeneous two-level EDF model 3, chap. 1; 4 is used as a starting
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w xpoint. Then the model in Refs. 1, 2 is derived and analyzed incorporating
elements of the most recent literature.

A. Homogeneous Two-Le¨el EDF Model

In the following, all optical powers are expressed in photonsrs.
Consider a strand of EDF of length L. An arbitrary number M of optical beams

of carrier wavelength l and average input power P in, 1 F k F M, enter the EDFk k
Ž . Ž .and propagate along the fiber axis z-axis , either in the forward positive z or

Ž .backward negative z direction. These beams can represent signals, pumps, or
ASE noise coming from the modules surrounding the EDF and their wavelengths
l , 1 F k F M are not necessarily distinct. The ASE noise power spectrumk

generated in the EDF covers a continuum of wavelengths but for simulation
purposes the wavelength axis is discretized in N wavelength bins. The forward and
backward ASE noise are represented by N optical beams with carrier wavelengths

" Ž .l , bandwidths Dn centered around l , and average powers denoted by P z, t ,l l l n, l
Ž . Ž .1 F l F N, where the superscript " indicates forward q or backward y

direction of propagation. In general, M / N. Without loss of generality, the
wavelengths of the M input optical beams are assumed to coincide exactly with
some of the N nodes of the wavelength grid used for the discretization of the ASE
noise generated internally in the EDF, i.e., l , 1 F k F M is a subset of l ,k l

1 F l F N.
w xCommon modeling assumptions are summarized in 3, chap. 1; 4, 7 : under 1480

w xor 980 nm pumping with pump power less than about 1 W 4 , the erbium ions can
Ž .populate two atomic energy levels referred to as a two-level model ; the perma-

nent electric field in the glass host induces Stark-splitting of these atomic energy
levels but atomic transitions can still be described by a two-level model due to fast

w xthermalization of the manifolds; inhomogeneous broadening 3, chap. 1 , tempera-
w xture dependence of the absorption and emission spectra 4 , excited state absorp-

w x w xtion, upconversion 21, 22 , Rayleigh scattering 23]25 , background loss, and
w xpolarization effects 24, 26, 27 are neglected. In addition, following the description

w xof 4 , the erbium ion distribution is assumed radially symmetric and confined to
the center of the transversal electric field of the optical signals. The populations of

Ž . Ž .the erbium ions in the ground and upper state are denoted by N z, t , N z, t ,1 2

respectively, and they are normalized to the peak erbium ion density r so that
Ž . Ž . Ž . Ž .N z, t q N z, t s 1. In this case N z, t , N z, t represent average values1 2 1 2

w xobtained by integration over the transverse plane 4 .
Based on the above assumptions, a semi-classical phenomenological model is

w xderived 3, chap. 1; 4 . A rate equation describes the decay rate of the fractional
Ž .population of the erbium ions in the upper state N z, t as a function of the total2

t o tŽ .powers P z, t at each point z in the EDF. In addition, M q 2 N partialk
Ž .differential equations describe the rate of change of the average power P z, t ofk
�" 4Ž .the input optical beams and of the forward and backward ASE noise P z, tn, l

during propagation due to the interaction between the light beams and the erbium
ions. The model is summarized by the following set of coupled nonlinear partial
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Ž . w xdifferential equations PDEs 3, chap. 1; 4 :

N­ N z , t 1 N z , tŽ . Ž .2 2t o ts y g N z , t y a N z , t P z , t yŽ . Ž . Ž .Ý k 2 k 1 k­ t r A tks1

1Ž .

­ P z , tŽ .k
u s g N z , t y a N z , t P z , t 1 F k F M 2Ž . Ž . Ž . Ž .k k 2 k 1 k­ z

­ P �" 4 z , tŽ .n , l �" 4u s g N z , t y a N z , t P z , t q P z , t g N z , tŽ . Ž . Ž . Ž . Ž .l l 2 l 1 n , l 0, l l 2­ z

1 F l F N 3Ž .

where r is the peak erbium ion density, A is the effective doping area, u , u arek l

propagation-indicating flags taking the value q1 for forward propagating beams
and y1 for backward propagating beams, t is the fluorescence lifetime of the
upper level, a and g are the absorption and emission coefficients at wavelengthk k

l , respectively, P s 2Dn is the average power of the initial spontane-k 0, l l
t o tŽ . t o tŽ .ous emission noise at point z in the fiber, and P z, t is given by P z, t sk k

Ž . q Ž . y Ž .P z, t q P z, t q P z, t .k n, k n, k
Ž . Ž . w xThis set of coupled nonlinear PDEs 1 ] 3 can be solved numerically 28 . A

wdiscussion about the adequacy of different numerical methods was given in 3,
xchap. 1 . The convergence of the numerical methods depends on the initial guess of

boundary conditions, pumping configuration, and input powers. Techniques to
w xfacilitate convergence were proposed in 29 . In any case, integration over fiber

length and time makes any numerical procedure computationally intensive. Tech-
Ž . Ž .niques to reduce the number of PDEs in 1 ] 3 and speed-up calculations by using

w xnonuniform sampling of the ASE spectrum were proposed in 4, 30, 31 . In
w xaddition, a number of simplified models were proposed in the literature 1]17 .

w xHere, we limit our interest to the simplified EDF model of Refs. 1, 2 .

[ ]B. Steady-State Noise-Free EDF Model 1

In low-gain strongly saturated EDFAs, ASE noise can be neglected in a first
Ž .approach. In this case, by setting in 1 the time derivative equal to zero, combining

Ž . Ž .1 , 2 , and integrating over the entire fiber length, it can be shown that input and
w xoutput optical powers in the EDF are related by the following set of equations 1 :

P out s P ineya k LeŽPi nyP o ut .r Pk
IS

1 F k F M , 4Ž .k k

where P in, P out are the input and output optical powers, respectively, at wave-k k
IS IS Ž .length l , P is the intrinsic saturation power at l defined as P J zr a q g ,k k k k k k

where z is the fiber saturation parameter defined as z J r Art , and P and Pin out
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are the total input and output powers, respectively:

M
inP s P 5Ž .Ýin j

js1

M
outP s P . 6Ž .Ýout j

js1

Ž .It is worth noting that Eqs. 4 are valid both for forward and backward
propagating signals.

Ž .Relations 4 define a nonlinear set of equations. By summing over k, the set of
Ž .equations 4 can be reduced to a single transcendental equation;

M
yB Pk o utP s A e , 7Ž .Ýout k

ks1

where now A , B are defined as follows:k k

A s P ineya k Le Pi n r Pk
IS

8Ž .k k

1
B s . 9Ž .k ISPk

Ž . Ž .Since A , B are known, Eq. 7 can be solved numerically see subsection II-F .k k
out Ž .Once P is known, P can be calculated by substitution in 4 .out k

[ ]C. Steady-State Refined EDF Model with ASE Noise 2

In the above steady-state noise-free EDF model, ASE noise generated in the
w xEDF can be added a posteriori 2 . The ASE noise power is evaluated by resolution

Ž .of the set of ordinary differential equations 3 :

dP �" 4 zŽ .n , l �" 4u s g N z y a N z P z q P g N z 1 F l F N.Ž . Ž . Ž . Ž .l l 2 l 1 n , l 0, l l 2dz
10Ž .

Ž . Ž . Ž .It is assumed that N z , N z are functions of the signal powers P z ,1 2 k
�" 4Ž .1 F k F M only and do not depend on the ASE noise powers P z , 1 F l F Nn, l

Ž .i.e., there is no ASE noise self-saturation . Then each equation of the above set
Ž .10 is a first order linear ordinary differential equation that can be solved

w xindependently and exactly using integrating factors 32 . The ASE noise powers are
given by

Lq qP L s dP z G z , L 11Ž . Ž . Ž . Ž .Hn , l l l
0

Ly yP 0 s dP z G 0, z , 12Ž . Ž . Ž . Ž .Hn , l l l
0
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w xwhere we made use of the notation of 2

dP z s P g N z dz 13Ž . Ž . Ž .l 0, l l 2

LqG z , L s exp g N x y a N x dx 14Ž . Ž . Ž . Ž .Hl l 2 l 1½ 5
z

z
yG 0, z s exp g N x y a N x dx . 15Ž . Ž . Ž . Ž .Hl l 2 l 1½ 5

0

Ž .In the above, dP z is the power of the ASE noise generated in an infinitesimall
qŽ . yŽ .EDF segment of length dz centered around point z, and G z, L and G 0, zl l

w x w xare the gain coefficients for the fiber segments z, L and 0, z for forward and
backward propagating signals, respectively.

Ž . Ž .For the evaluation of integrals 11 , 12 , it is necessary to compute the fractional
Ž . qŽ . yŽ .upper state population N z and the gain coefficients G z, L and G 0, z .2 l l

Ž . Ž . Ž .Setting in 1 the time derivative equal to zero and replacing N z, t s N z s1 1
Ž . Ž .1 y N z , the fractional upper state population N z can be expressed as an2 2

t o tŽ .explicit function of the total powers P z at each point z in the EDF,k

ÝN a P t ot z ÝM a P zŽ . Ž .ks1 k k ks1 k k
N z s , , 16Ž . Ž .2 N t o t IS M ISz 1 q Ý P z rP z 1 q Ý P z rPŽ . Ž .ks1 k k ks1 k k

t o tŽ . Ž .where it is assumed that ASE noise self-saturation is negligible so P z , P z ,k k

1 F k F M.
Ž . Ž .For the calculation of 16 it is necessary to compute the powers P z at eachk

Ž .point z in the EDF. This can be done using the set of equations 4 . We observe
Ž .that relations 4 for a length of fiber z can be rewritten in the form

P z s P 0 eyu k ak zeukw SŽ0.ySŽ z .xr Pk
IS

1 F k F M , 17Ž . Ž . Ž .k k

where

M

S z J u P z . 18Ž . Ž . Ž .Ý k k
ks1

By multiplying both members with the propagation indicating flags u andk
Ž .summing over k, the set of equations 17 can be reduced to a single transcenden-

Ž .tal equation similar to Eq. 7 ,

M
yu B SŽ z .k kS z s C z e , 19Ž . Ž . Ž .Ý k

ks1

where we defined the auxiliary variables

C s u P 0 eyu k ak zeuk Bk SŽ0. . 20Ž . Ž .k k k

Ž . ŽThe transcendental equation 19 can be solved numerically see subsection
. Ž . Ž . Ž .II-F . Once S z is known, P z can be computed by substitution in 17 . Thenk
Ž .Eq. 16 can be calculated.
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Ž . Ž . Ž .Finally, from 17 it is straightforward to show that the gain coefficients 14 , 15
can be calculated by

Gq z , L s eya lŽLyz .ew SŽ z .ySŽL.xr Pl
IS

21Ž . Ž .l

Gy 0, z s eya l zew SŽ0.ySŽ z .xr Pl
IS

. 22Ž . Ž .l

Ž . qŽ . yŽ . Ž . Ž .Once N z, t , G z, L , G 0, z are known, integrals 11 , 12 are computed2 l l
Ž .numerically see subsection II-F .

w xThe major advantage of the model by Saleh, Jopson et al. 1, 2 is the high
Ž . Ž .execution speed compared to the numerical solution of 1 ] 3 . Another advantage

of this model is that it requires only a small number of parameters a , P IS, Lk k
w xwhich can be easily measured 1, 2 . All other parameters of the model can be

derived by the above measurements.
The model can be extended to take into account arbitrary mode field profiles

w x w xand dopant distributions 4, 5 , ASE self-saturation 3, pp. 379]382; 12 , transient
w x w xeffects 7]10 , or other rare-earth-doped fibers 33 .

D. Nonconser̈ ation of Particles

In this subsection, it is shown that the major implication of neglecting the ASE
Ž . Ž . Ž . Ž . Ž . Ž . Ž .noise self-saturation in the derivation of relations 4 , 11 , 12 , 16 , 17 , 21 , 22

w xis that the number of particles in the EDF model by Saleh, Jopson et al. 1, 2 is not
conserved. The gain and consequently the output power of the signals and the ASE
noise are larger than in reality. The error increases with the EDF gain. In high gain
EDFs, this leads to dramatically false results.

Ž . Ž . Ž .Adding 2 , 3 , substituting in 1 , and integrating over the fiber length L, it is
straightforward to derive the following accurate relation for the conservation of

Ž . w xparticles, which is similar to the expression 7 in 34 ,

M N­ r tŽ .
in out q ys P t y P t y P L, t q P 0, tŽ . Ž . Ž . Ž .Ý Ýk k n , l n , l­ t ks1 ls1

Nr t g PŽ . l 0, ly 1 y 2 , 23Ž .Ý ISt g q a Pl l lls1

Ž . L Ž .where r t s r AH N z, t dz is the total number of the Erbium ions at the upper0 2
Ž w x.state also referred to as reser̈ oir 10 . The sum in the last term in the right hand
Ž .side of 23 represents the spontaneously emitted photons that are guided.

Ž .Assuming ASE noise is negligible, then relations 3 can be ignored and,
following a similar procedure as above, it is straightforward to derive the following
approximate relation for the conservation of particles, which is the same as the

Ž . w x Ž . w xexpression 24 in 7 or expression 4 in 10 :

M­ r t r tŽ . Ž .
in outs P t y P t y . 24Ž . Ž . Ž .Ý k k­ t tks1
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Ž .Obviously, the approximate expression 24 can be also derived from the relation
Ž .23 by setting the term representing the spontaneously emitted photons that are

q Ž . y Ž .guided as well as the ASE noise terms P L, t , P 0, t to zero.n, l n, l
Ž . Ž .By comparison of 23 , 24 the physical meaning of the approximations in the

w xmodel presented in Refs. 1, 2 is revealed. All available input photons are
exchanged between the input signals and the pump. The output photons of the

Ž . Ž .ASE noise as evaluated by 11 , 12 are not included in the approximate conserva-
Ž .tion equation 24 . This is a consequence of the assumption that the ASE

self-saturation is negligible. In addition, a fictitious number of ASE noise photons
Ž . Ž .is added at the output by 11 , 12 . The violation of the conservation of particles is

w x Žthe reason that the model in Refs. 1, 2 fails to describe high gain EDFs e.g., in
. w x wpreamplifiers . Variants of the model in Refs. 1, 2 that correct this flaw exist 3,

xpp. 379]382; 12 . The latter is the most accurate and is examined in detail below.

E. Extension to the Steady-State ASE Self-Saturated Regime

w xA variant of the model by Saleh and co-workers 1, 2 which is adequate for ASE
w x w xself-saturated EDFAs was proposed initially by 2 and examined in detail by 12 . It

consists of dividing a long ASE noise self-saturated EDF into shorter segments that
are not ASE noise self-saturated and applying the model of subsection II-C to each
segment. The output signals from each EDF segment are used as feedback input
signals to the adjacent EDF segments. Several iterations must be performed to
achieve convergence. By increasing the number of segments, the accuracy at the
evaluation of ASE noise increases at the expense of efficiency.

w xThe drawback of the model by 12 is that the number of operations that are
necessary to compute the EDF gain increases nonlinearly with the number of
segments. The reason for this increase is two-fold: first, dividing the EDF into K
segments is like cascading K EDFs in the place of one so the number of
operations increases by a factor K ; second, due to the feedback from adjacent
segments, one needs several iterations to achieve convergence. The number of
iterations increases with the number of segments. The execution time is estimated

w xby 12 to increase by at least a factor of 10K compared to the basic ASE noise
w xmodel by 2 . In all cases studied by the present authors, the execution time

w xrequired by the model of 12 even for K s 2 was comparable to the execution time
Ž . Ž .required for the full numerical solution of 1 ] 3 to achieve the same accuracy.

Therefore, the practical value of this model remains ambiguous.
w xApart from the variants by 3, pp. 379]382; 12 , a number of alternative EDF

wmodels were proposed for the modeling of ASE noise self-saturated EDFAs 11,
x13]17 . A comparison of these models is out of the scope of this paper.

F. Numerical E¨aluation Issues

Ž . Ž .Transcendental equations 7 , 19 must be solved numerically. This corresponds
Ž .to the numerical computation of the roots of the generalized function f x s x y

M Ž .Ý a exp b x for different sets of the generalized coefficients a , b . Since theks1 k k k k
Ž .function f x varies exponentially with respect to x, arithmetic overflow can occur
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Ž .for x away from the root f x s 0 for high input powers. Therefore, a good initial0
w xguess of the root is essential. An approximate evaluation of the root is given by 6

for a certain range of input powers. For WDM applications, this range of input
powers must be expanded. Once the neighborhood of the root has been identified,

w xthe Newton]Raphson method 28, pp. 362]367 is used for root refinement.
Newton]Raphson is the method of choice here since it converges quadratically
near the root, i.e., the number of significant digits doubles at each iteration.

Ž . Ž .Integrals 11 , 12 are evaluated numerically by use of the Gauss]Legendre
w x Ž . Ž .method 28, pp. 147]161 . The computation of Eq. 24 can be arbitrarily used as

a criterion to determine the number of nodes that are necessary for the numerical
integration. It is found that ten nodes are sufficient for a relative error in the

Ž . y4evaluation of r t less than 10 .
w xWhen the EDF model of Refs. 1, 2 is used in the simulation of multiwavelength

optical networks, error-monitoring is essential. If the relative error in the evalua-
tion of gain or ASE noise exceeds a certain threshold value, the model should

w x wautomatically switch to the variant by 12 or the alternative EDF models of 11,
x w x13]17 . As a rule of thumb, the model in Refs. 1, 2 is usually considered

w xreasonably accurate for gains less than 20 dB 4 . This criterion is not strict. It is
Ž . Ž .obvious from relation 16 that when the average powers of the input beams P z ,k

1 F k F M are large compared to the output ASE noise power at every point z
into the fiber, the error must be small even for gains higher than 20 dB.

Finally, the execution time per EDF module increases linearly with the size of
the wavelength grid. Nonuniform resolution can be used to reduce the execution

w x Ž .time 30, 31 see Section III below .

III. WAVELENGTH-DOMAIN SIMULATION PRINCIPLES

The EDF model of Section II can be used for the study of the optical transport
layer of multiwavelength optical networks. For this purpose, a library of models of
other optical devices and components must be developed. These models must be
sufficiently fast to enable the study of large-scale networks. There is a trade-off
between accuracy of representation and execution speed. Abstract, phenomenolog-
ical models of the optical signals and network components, not necessarily based
on a detailed physical description, are more adequate for network simulations.

To simplify the representation of the optical signals and network components
and to reduce the number of numerical operations, it is assumed that the network
components do not alter the shape of the signal waveforms, i.e., signal distortion
due to linear or nonlinear effects is ignored. Based on the above assumption, the
modulation of optical signals is ignored since it is not influenced by the WDM
optical network element components. Furthermore, optical signals are represented
by their carrier wavelength and average power exclusively and not by their
temporal waveform, as is customary in simulation of analog and digital communica-

w xtion systems 19 .
For the computer representation of the optical signals, the wavelength axis is

discretized into N wavelength bins. The choice of the wavelength bin size is
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Ž .arbitrary and depends on the desired accuracy see below . Typically, the wave-
length bin size is several times the bit-rate. The central wavelengths of these
wavelength bins define a grid.

The representation of the optical signals differs depending on whether or not
Žthey occupy one or several wavelength bins defined as narrowband or wideband

.optical signals, respectively . We distinguish two different types of optical signals,
Ž .namely, optical signals produced by laser sources narrowband and ASE noise

Ž . Ž .wideband . Each type is represented separately. 1 Optical signals produced by
Žlaser sources are represented by a pair of numbers carrier wavelength, average

. Ž .power . 2 Forward and backward ASE noises are represented by N = 2 matrices
Ž Ži.e., N pairs of numbers wavelength node, average ASE power at this node of the

..wavelength grid .
The above representation can be extended to include, for each optical signal, all

interfering terms originating from the same laser source as the signal and recom-
Žbining with it after propagation through different optical paths i.e., multipath

. w xoptical crosstalk 18 . Since the modulation, phase, and polarization of all optical
signals are ignored in the wavelength-domain, it is not correct to simply add the
average power of each signal and its corresponding multipath interference. There-
fore, for simulation purposes, multipath interferers are represented separately as
distinct narrowband optical signals in the same wavelength bin as the optical signal.

For example, Fig. 1a shows the computer representation of an optical signal
produced by a laser source contaminated by ASE noise and six multipath interfer-
ers. Without loss of generality, only five nodes of the wavelength grid are shown.

Ž .All signal power is concentrated into the third wavelength bin black column . ASE
Ž .noise power is distributed into all five wavelength bins white columns . The six

multipath interferers, denoted by Px ]Px , are represented by distinct gray columns1 6

in the same wavelength bin as the optical signal.
A WDM signal composed of M individual optical signals is represented in the

wavelength-domain by a set of M graphs similar to Fig. 1a, one for each different
laser source.

ŽAn example of transmittance transfer function of an optical component e.g.,
.optical filter is shown in Fig. 1b. Similar to Fig. 1a, only five nodes of the

wavelength grid are shown. The transmittance transfer functions are described by
Ž ŽN = 2 matrices i.e., N pairs of numbers wavelength, values of the gainrloss at

..the nodes of the grid . These can be given either by an analytical relationship or as
a table of measured values. The gain or loss is assumed to be approximately
constant within a single wavelength bin but may be different for signals at adjacent
wavelength bins. The gain or loss may also vary as a function of time but this

Ž .variation is slow compared to the bit period quasistatic components . The phase
transfer functions of the network components are discarded.

As optical signals, ASE noise, and optical crosstalk pass from one module to the
other, their average powers at the N grid nodes are multiplied by the correspond-
ing values of the gainrloss of the modules. It is thus possible to evaluate the
average powers of optical signal, ASE noise, and optical crosstalk at every point of
the network.
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Ž .FIG. 1. a Wavelength-domain representation of an optical signal produced by a laser source
Žcontaminated by ASE noise and six multipath interferers. Symbols: signal, black column; ASE noise,
. Ž .white columns; multipath interferers, Px ]Px , gray columns . b Transmittance transfer function of an1 6

optical component.
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In the following, this computer representation is referred to as wavelength-do-
main representation. It can be used for efficient steady-state and transient optical
signal, ASE noise, and optical crosstalk power-budget computations in the optical
transport layer of multiwavelength optical networks.

An important issue of the wavelength-domain simulation is the choice of
Ž .resolution bandwidth i.e., the size of the N wavelength bins . In order to accurately

evaluate the gain and ASE spectrum of the EDFAs, wavelength-domain resolution
w xbandwidth must be typically on the order of 0.1]1 nm 4 . Higher resolution

provides better precision at the expense of computation time and required storage
memory. There are some practical considerations in the choice of resolution
bandwidth. For easy visualization, it is convenient to set the size of the wavelength
bins larger than the individual signal bandwidth in order to restrict all signal power
in one bin. This requirement implies a lower limit to the value of the resolution
bandwidth. An upper limit is implied by the requirement that two adjacent optical
signals must occupy separate wavelength bins. In practice, a more stringent upper
limit is necessary in order to describe in detail the shape of the filtered ASE noise
power spectra. Similarly to EDF modeling, it is not necessary to use a uniform bin
size in the wavelength-domain. Nonuniform bin size can be used to further reduce

w xmemory storage requirements and execution time 30, 31 .
ŽAnother important issue is the choice of simulation bandwidth i.e., optical

.bandwidth because, together with resolution bandwidth, it is related to the
number of wavelength bins N that must be simulated. To adequately model ASE
noise, the simulation bandwidth should include the spectral range 1450]1650 nm.
In addition, since pumps at wavelengths around 980 and 1480 nm are used, some
extra bins at the pump wavelengths must be anticipated.

The wavelength-domain representation is advantageous in terms of execution
w xspeed compared to the waveform-level representations 19 . Its main disadvantage

Žis that several transmission impairments that result in signal distortion e.g.,
.chromatic dispersion, nonlinearities, polarization effects, etc. are not considered

here. There are several commercial simulation software tools taking into account
Ž w x w xthe above transmission impairments e.g., OPALS and GOLD 35 , BNeD 36 , HP

w x w x w x w x w x.EEsof 37 , OptSim 38 , FOCUSS 39, 40 , COMSIS 41 , LinkSIM 42 .
Simulation tools based on the wavelength-domain representation can be imple-

mented in a variety of ways. Desirable features of such implementations for the
Žstudy of different optical transport layer topologies include user-friendliness e.g.,

.graphic user input and output interfaces, minimum programming , modularity,
w xhierarchical organization, etc. For the MONET project 20 , the wavelength-do-

Ž .main simulation tool was implemented using Signal Processing Worksystem SPW
w x43 , a communication-systems-oriented commercial software product, as a simula-
tion environment.

Figure 2 shows the organization of the optical library of the MONET wave-
length-domain simulation tool. An indicative list of modules is given on the right
side in Fig. 2. The modules of the optical library are divided into three hierarchical
categories, namely network elements, network element components, and elemen-
tary units. Each module is implemented using different designs, technologies, and
simulation models and can have uni- or bidirectional fiber interfaces, steady-state
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FIG. 2. Schematic overview of the MONET optical transport layer simulation tool. The right
column shows an indicative list of WDM topologies, network elements, network element components,
and elementary units. On the top left the block diagram of a bidirectional four WADM ring is shown. In

Ž .the insets, the layouts of a simplified wavelength add]drop multiplexer WADM and of a single-stage
Ž . Ž Ž . Ž . Ž .forward-pumped EDFA are shown, respectively. Symbols: 1 EDFAs, 2 MUXrDMUX, 3 optical
Ž . Ž . Ž .2 = 2 switches, 4 variable attenuators for power equalization, 5 optical isolator, 6 laser diode,

Ž . Ž . Ž . .7 WSC, 8 EDF, 9 ASE rejection filter .

or dynamic properties, and so forth. Modules can be combined in any order to
simulate various WDM network topologies. A modeling example is shown on the
left side of Fig. 2 and is discussed in greater detail in Section IV.

The MONET wavelength-domain simulation tool was used in the past to study
w x wautomatic gain control in EDFAs and EDFA chains 44 , network topologies 45,

x w x46 , and network functionalities 47 . To further illustrate the capabilities of the
MONET wavelength-domain simulation tool, an additional example of use is
presented below.

IV. SIMULATION EXAMPLE

Power transients due to network reconfiguration, failures, protection switching,
etc. are among the most important effects in multiwavelength optical networks that
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can be studied efficiently using wavelength-domain simulation. Power transients
occur at time scales typically in the range of ms]s so the use of conventional
waveform-level simulation is impractical. This section presents a brief theoretical
study of the transient power fluctuations in a bidirectional wavelength add]drop
multiplexer ring.

A. Network Description

Multiwavelength self-healing rings composed of wavelength add]drop multiplex-
Ž .ers WADM have been proposed as efficient fiber sharing network architectures

Ž w x .see, for example, 48 and the references therein .
The bidirectional four WADM ring topology under study is shown on the top left

of Fig. 2. The network elements are represented by circles numbered 1]4. 1 q 1
w xpath protection is assumed 49 . For simplicity, only the equipment in one direction
Ž .of propagation is shown e.g., clockwise . At the next hierarchical level, the

w xarchitecture of a simplified wavelength add-drop multiplexer 20 is shown. The
Ž .depicted WADM consists of two EDFAs 1 , a multiplexerrdemultiplexer

Ž . Ž . Ž .MUXrDMUX pair 2 , 2 = 2 optical switches for signal addingrdropping 3 ,
Ž .and servo-controlled attenuators for power equalization 4 . At the lowest hierar-

chical level, the structure of the EDFAs is shown. In this particular example, the
EDFAs are identical single-stage forward-pumped amplifiers composed of two

Ž . Ž . Ž . Ž .isolators 5 , a laser diode 6 , a wavelength selective coupler WSC 7 , and a
Ž .strand of EDF 8 .

Due to the nonuniform spectral response of the network element components in
the ring and to the fact that signals do not originate at the same point, different
channels experience different gainsrlosses and have different power and optical

w xSNRs at their receivers 50 . The role of the servo-controlled attenuators is to
prevent the accumulation of average power and optical SNR spread between

w xchannels 51 .
Network reconfiguration, failures, protection switching, etc. may cause abrupt

changes of the power levels at the input of the servo-controlled attenuators.
Depending on their design, servo-controlled attenuators can exhibit transient
oscillations before reaching the equilibrium. Transient oscillations caused by power
variations of one wavelength channel can be coupled to other wavelength channels
due to the cross-saturation effect of the EDFAs. This mechanism is responsible for
sustained power fluctuations observed experimentally in large scale networks with

w xclosed loops 52 .
For the study of transient power fluctuations, a generalized theoretical model of

the servo-controlled attenuators is derived and validated experimentally. Using this
model, it is shown that the network transient response depends on the magnitude
of the initial optical power perturbation, the speed of servo-controlled attenuators,
the design of EDFAs, the network topology, and the addrdrop scenario. Elimina-
tion of the coupling of transients between wavelength channels can be achieved
using gain-clamped EDFAs or fast servo-controlled attenuators.
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B. Ser¨o-controlled Attenuator Model

Different technologies and designs can be used for the implementation of
Ž w x.servo-controlled attenuators e.g. 53]62 . An exhaustive study of servo-controlled

attenuator circuitries is beyond the scope of this paper. A generalized model that
captures the essential features of the servo-controlled attenuator’s behavior is

Ž .assumed Fig. 3 .
Ž . Ž .The generalized model is composed of an optical tap TAP , a photodetector P ,

Ž . Ž . Ž .a lowpass electronic filter LPF , a comparator CMP , a control mechanism CM ,
Ž .and a variable optical attenuator VOA . A small portion of the light at the output

of the variable optical attenuator is tapped and detected by the photodiode. The
photodiode is followed by a lowpass filter that eliminates fast power variations. The

Ž .signal at the output of the lowpass filter is compared with a reference value REF .
The resulting error signal is used to drive the variable optical attenuator through a
control mechanism.

For simulation purposes, the control mechanism is modeled by a gain K and the
variable optical attenuator is modeled by an integrator. This representation stems

Ž .from the arbitrary assumption that the rate of change of the attenuation is a
Ž .linear function of the error signal e t at the output of the comparator; i.e.,

Ž . Ž .da t rdt s Ke t . It is worth noting that K is related to the speed of the attenua-
tor. The above relationship can be rewritten in the more eloquent integral form
Ž . t Ž X.a t s H Ke t dt9 which indicates that, only when there is a nonzero errory`

signal, the value of the attenuation changes. In the absence of an error signal, the
variable optical attenuator maintains its previous value. The ends of the attenua-
tion range are set by upper and lower limit parameters. When the integration
result would otherwise exceed the upper limit or fall below the lower limit, the
output is set equal to the upper-limit or lower-limit value.

The step response of the servo-controlled attenuator model is derived in the
Appendix, assuming that the lowpass filter is modeled as a finite time integrator
with impulse response of duration t . It is shown that the step response of the
servo-controlled attenuator depends on the choice of the design parameters K and
t and on the level of the input power jump. Different combinations of the above

ŽFIG. 3. Block diagram of a generalized servo-controlled attenuator. Symbols: TAP, optical tap; P,
photodetector; LPF, lowpass electronic filter; CMP, comparator; REF, reference signal; CM, control

.mechanism; VOA, variable optical attenuator .
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ŽFIG. 4. Step response of a commercial servo-controlled attenuator Solid line, experiment; broken
.line, simulation .

quantities result in completely different behavior of the output power that varies
from exponentially damped to underdamped oscillations and clipping, when the
ends of the attenuation range are reached.

To test the validity of the servo-controlled attenuator model, measurements of
the step response of a commercially available opto-mechanical servo-controlled
attenuator are compared with simulation results below.

Ž . Ž .Figure 4 shows the measured solid line and the simulated broken line optical
power at the output of the servo-controlled attenuator when the input power is
suddenly increased by 3 dB at the time instant t s 0. The overshoot of the output
power is instantaneous. After the overshoot, the output power oscillates and
eventually reaches a constant reference value. Although not visible in the time
scale of the graph, it is found that the oscillation frequency decreases gradually
during the step as the output power approaches the equilibrium value. It is also
observed that the level of the discontinuity and the oscillation frequency vary for
different input power jumps. Despite the simplicity of the theoretical model, there
is a good qualitative agreement between theory and experiment. This result
justifies the use of the generated servo-controlled attenuator model for the study of
the transient response of multiwavelength optical networks.

C. Other Modules

The servo-controlled attenuators used in the WADM ring under study are
assumed to respond much more slowly to changes in input power than the EDFA
gain. Therefore, in the simulation the static spectrally resolved EDF model by

w x 1Saleh, Jopson et al. 1, 2 is used. In reality, the output power variations consist of

1For a recent experimental validation of the static spectrally resolved EDF model by Saleh, Jopson et
w x w xal. 1, 2 , the interested reader is referred to 63 .
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a fast component due to EDFA response that decays in a time scale on the order
of millisecond and a slow component due to the attenuator response that is
assumed to last for several tens of milliseconds. The results of the following section
do not include the fast component due to EDFA response.

Different technologies can be used for the implementation of MUXrDMUXs
depending on the specifications of insertion loss, bandwidth, passband shape,
passband ripple, stopband response, and other considerations. In this example, the
MUXrDMUX are hierarchical blocks composed of elementary optical filters in
parallel. The transmittance transfer functions of the elementary optical filters are

Žassumed identical and have ideal rectangular shape i.e., uniform insertion loss
.within the passband and perfectly opaque stopbands .

The 2 = 2 optical switches are characterized exclusively by their state and
insertion loss. The switching speed is not taken into account.

The numerical values of the parameters used in the simulation are the following:
ŽFiber links between WADMs 1]4 are assumed to have 21 dB flat attenuation i.e.,

.the fiber length is assumed 60 km with attenuation 0.35 dBrkm . The length of the
fiber link between the fourth and the first WADM is assumed 3000 km. It consists
of 50 fiber spans of 60 km length each. Forty nine EDFAs are used to amplify
the optical signals between fiber spans. A single-stage EDFA model is used
that provides approximately flat gain 21.7 dBrchannel when the input power is
y8 dBmrchannel. The MUXrDMUX elementary filters bandwidth is 100 GHz.
The insertion loss of a MUXrDMUX pair is 10 dB per channel. The optical
2 = 2 switches are assumed to have 3 dB insertion lossrchannel. The servo-
controlled attenuators are set to equalize the signal power at a reference value
y8 dBm per channel at the input of the power booster EDFA in each WADM.
The insertion loss of the servo-controlled attenuators is 2 dB. They are operated at
6 dB additional attenuation. The servo-controlled attenuator design parameters K
and t are chosen so that the output power presents slightly oscillatory behavior for
a 3 dB change of the input power level, similar to the commercially available
opto-mechanical servo-controlled attenuator of Fig. 4.

All modules are unidirectional, assuming there is strong optical isolation be-
tween blocks. Reflections and backward propagating ASE noise are completely
eliminated. Transmission impairments are neglected. The information provided
by the wavelength-domain representation on optical crosstalk is not taken into
account.

The following add]drop scenario is studied: Without loss of generality, it is
assumed that only two channels are present at the MONET wavelengths 1549.315

Ž .and 1550.918 nm, respectively 200 GHz spacing . Wavelength channel 1 is used to
establish a duplex connection between the first and the third WADM. Wavelength
channel 2 is used to establish a duplex connection between the second and the
fourth WADM. It is assumed that all wavelength channels are added at t ª y` so
that the network has reached equilibrium at t ª 0y. It is also assumed that the
power of wavelength channel 1 in the first WADM is increased or decreased
suddenly by 3 dB at the instant t s 0.
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D. Results and Discussion

Figures 5a and 5b show the output powers of wavelength channels 1 and 2,
respectively, at the output of the first and fourth WADMs for a 3 dB rise in the
power of channel 1 at the WADM 1. For t - 0, the optical power at the output of
all WADMs is a constant 13.7 dBmrchannel. At the instant t s 0, the optical
power at the output of the servo-controlled attenuator corresponding to wave-
length channel 1 in the first WADM instantaneously increases and then oscillates
with decreasing amplitude around its initial value. After the WDM signal passes
through the power booster EDFA of the first WADM, power variations in channel

Ž .1 induce complementary power variations in channel 2 solid lines . In the second
WADM, channel 2 is dropped and a new channel at the same wavelength is added.
After the WDM signal passes through the power booster EDFA of the second
WADM, power variations in channel 1 induce complementary power variations in
the newly added channel 2. This procedure is repeated in the subsequent WADMs.
In each WADM, one of the two channels is dropped and a new channel at the

FIG. 5. Optical power fluctuations at the output of the first and fourth WADMs of the bidirectional
Ž . Ž . Ž .ring Fig. 2 due to a 3 dB rise of the power of channel 1 at the WADM 1. a Channel 1; b channel 2

Ž .Solid line, first WADM; broken line, fourth WADM .
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same wavelength is added. Each new added channel is physically disjointed from
channel 1 where the initial perturbation occurs. However, the power transient of
channel 1 is transferred to the new channel through the complementary power
transients acquired by the other channel which is not dropped. After the WDM
signal passes through the four WADMs, the magnitude of the discontinuity

Ž .decreases and the oscillation frequency increases broken lines . Between the
fourth and the first WADM, the propagation delay of the power perturbation is
assumed 15 ms. Due to the delay in the feedback loop, the duration of the settling
time is about 30% longer than in the case of an individual servo-controlled
attenuator. It is worth noting that polarization effects are not considered here.

Similar results are shown in Figs. 6a and 6b for the output powers of wavelength
channels 1 and 2, respectively, at the output of the first and fourth WADMs for
a 3 dB drop in the power of channel 1 at the WADM 1. The small jump at the
solid curves at the instant 15 ms is caused by the feedback.

These results indicate that the cascade of N WADMs is equivalent to 2 N
Ž . Ž .oscillators i.e., servo-controlled attenuators coupled at 2 N nodes i.e., EDFAs .

This system has modes of oscillation which can be excited through different

FIG. 6. Same as Fig. 5 for a 3 dB drop of the power of channel 1 at the WADM 1.
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2 Ž .add]drop scenarios . The result is a progressive wave i.e., power perturbation
that propagates in the network. If closed loops of sufficient length exist, standing
waves can be formed depending on the propagation delay. Therefore, the servo-
controlled attenuators and the EDFAs must be properly designed in order for the
oscillations to be damped.

To avoid coupling of power variations from one channel to other channels, the
w xuse of gain-clamped amplifiers was proposed 52 . Preliminary simulations show

that the coupling between wavelength channels will be negligible or very small in
this case. Only the wavelength channel that experienced the initial perturbation is
affected. For this channel, the perturbation evolves as it propagates through a
transparent chain of cascaded network elements.

Another solution for avoiding coupling of power variations from one channel to
other channels is to use servo-controlled attenuators which respond much faster to
changes in input power than the EDFA gain. Again, only the wavelength channel
that experienced the initial perturbation is affected.

In the above example, 57 EDFAs are used in the ring. If the sampling interval is
1 ms, the total number of calls to the erbium-doped fiber function for the 200 ms
window shown in Figs. 5 and 6 exceeds 11,000. This fact shows the importance of
the choice of the EDF model and of the wavelength-domain representation. For
simulation of larger and more complex networks, even the efficient spectrally

w xresolved EDF model by Saleh, Jopson et al. 1, 2 might be inadequate and a
w xsimpler black-box model like, e.g., 16, 17 might be necessary.

V. SUMMARY

A growing trend in the optical communications field is the ability to model
large-scale multiwavelength optical networks. The size and complexity of these
networks impose limitations in execution speed and raise the need of efficient
modeling approximations. The adequate choice of the model of EDFAs and of the
computer representation of the optical signals and other network components are
discussed here.

The first part of this paper reviews the spectrally resolved erbium-doped fiber
w xmodel by Saleh, Jopson et al. 1, 2 . The second part of this paper reviews the

wavelength-domain representation of optical signals and systems at the optical
transport layer of multiwavelength optical networks. As a simulation example,
transient power fluctuations caused by the dynamic interaction of servo-controlled
attenuators and saturated erbium-doped fiber amplifiers in a bidirectional ring of
wavelength add]drop multiplexers are studied. The mechanism responsible for this
oscillatory behavior are identified and remedies are proposed.

2 The use of the term ‘‘mode’’ here is not strict. According to the conventional definition found in the
w xcontext of linear oscillating systems 64, chap. 6 , normal modes correspond to constant oscillation

frequencies, identical for all oscillators. The servo-controlled attenuator is not a linear component. Its
oscillation frequency depends on the power level at its input and the step response is slightly chirped
Ž .see Appendix .
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APPENDIX

Servo-controlled Attenuator Step Response

This Appendix provides an analytical derivation of the step response of the
servo-controlled attenuator model of Fig. 3.

To simplify the analysis, we limit our interest in the case where the variable
Ž Ž .optical attenuator does not reach the ends of its position range i.e., a - a t -min

.a . In this case, the variable optical attenuator is modeled as an ideal integrator.m a x
Ž .For mathematical convenience, several additional simplifications are made: i It is

assumed that all output power is detected by the photodiode. In practice, the tap
scales the signal incident at the photodiode, but the scaling factor is included in the

Ž .gain coefficient K. ii Similarly, the photodiode is omitted since it only makes a
Žlinear conversion from total output power to current assuming that the responsiv-
.ity is constant for the wavelength range under study . The responsivity is included

in the gain coefficient K. As a result, all signals in the control circuit are expressed
in units of power except for the signal from the control mechanism to the variable
optical attenuator, which has no units. The gain coefficient K is expressed in units

Ž .of inverse power. iii The optical signal noise and the thermal noise of the receiver
Ž .and the electronic circuit are neglected. iv The lowpass filter is modeled as a

finite time integrator with impulse response

1¡
0 F t F t~h t s 25Ž . Ž .t¢

0 elsewhere.

iŽ . oŽ .The input and output total powers are denoted by P t , P t , respectively. The
reference power is denoted by P .r

The servo-controlled attenuator is described by an integrodifferential equation:

da t 1Ž . t X X Xis K P y a t P t dt . 26Ž . Ž . Ž .Hrdt t tyt

Ž .Differentiating again each member of 26 yields

2d a t KŽ .
i is ya t P t q a t y t P t y t . 27Ž . Ž . Ž . Ž . Ž .2 tdt

A step signal is applied at the input

P t G 01iP t s 28Ž . Ž .½ P t - 0.0

Ž .It is assumed that a 0 s a and that the attenuator has reached the equilibrium0
y Ž .for t ª 0 so a P s P . In addition, it is assumed that the da 0 rdt , 0. The last0 0 r

Ž . Ž . t Ž X. iŽ X . X Ž .condition implies that the integral I t s 1rt H a t P t dt in 26 does nottyt

change significantly at t s 0 due to the discontinuity of the input signal and so
Ž .I 0 , a P s P .0 0 r
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Ž . iŽ . Ž .Due to the term a t y t P t y t , the delay differential equation 27 has a
Ž .different form at different time intervals. Equation 27 can be solved using various

Ž w x .methods e.g., see 65 and the references therein . However, the analytic solution
w . w .is cumbersome and is given here only at the time intervals 0, t , t , 2t .

w .The attenuation in the interval 0, t is given by

P Pr r
a t s a y cos v t q , 29Ž . Ž .0ž /P P1 1

where v s KP rt .' 1
Ž .Relation 29 describes a simple harmonic motion with angular oscillation

frequency v. This oscillation lasts only for a time period t . Then the feedback acts
w .as a force that can damp the oscillatory behavior. For t g t , 2t the attenuation is

given by

1 Pr
a t s a y 3 cos v t q cos v t y 2t q 2v t y t sin v t y 2tŽ . Ž . Ž . Ž . Ž .0ž /4 P1

Prq . 30Ž .
P1

The output power is given by

¡ a P y P cos v t q P t g 0, tŽ . .0 1 r r
1o ~ a P y P 3 cos v t q cos v t y 2tŽ . Ž . Ž .P t s 31Ž . Ž .0 1 r4¢ q2v t y t sin v t y 2t q P t g t , 2t .Ž . Ž . .r

As a special case, assume that the bandwidth of the lowpass filter is very large
Žcompared to the bandwidth of the output signal power variations i.e., the filtering

. Ž .time t ª 0 . Then, the integrodifferential equation 26 is reduced to a first-order
ordinary differential equation:

da tŽ .
is K P y a t P t . 32Ž . Ž . Ž .rdt

The attenuation is given by

P Pr ryK P t1a t s a y e q . 33Ž . Ž .0ž /P P1 1

The output power is given by

P o t s a P y P eyK P1 t q P . 34Ž . Ž . Ž .0 1 r r

The following observations can be drawn:

v For narrowband LPF, the output power jumps instantaneously at t s 0 by
< <a P y P and then exhibits oscillations around the position of equilibrium P .0 1 0 r
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The oscillation frequency depends uniquely on K, P , and t . It increases with the1

increase of K, P and decreases with the increase of t . Consequently, the1

oscillation frequency is larger for power rises than for power drops by the same
amount. In addition, it can be shown that the settling time of the relaxation
oscillations is longer when K, P , and t increase.1

v For wideband LPF, no oscillations are observed. The jump in output power
< <is instantaneous at t s 0. The level of the discontinuity is a P y P . The output0 1 0

power after the jump decreases or increases exponentially with a time constant
Ž .1r KP to the reference value P , depending on if P ) P or P - P , respec-1 r 1 0 1 0

tively. Since the time constant is dependent on the input signal power, a rise and a
drop by the same amount in the input power are not characterized by the same
time constant.

Ž .To study the step response of more realistic lowpass e.g., Butterworth filters or
Ž .the effect of clipping, numerical solution of the delay differential equation 27 is

Ž w x .required see, for example, 66 and the references therein .
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