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Abstract—Spectrally-efficient optical communications systems
employ polarization division multiplexing (PDM) as a practical
solution, in order to double the capacity of a fiber link. Polar-
ization demultiplexing can be performed electronically, using
polarization-diversity coherent optical receivers. The primary
goal of this paper is the optimal design, using the maximum-likeli-
hood criterion, of polarization-diversity coherent optical receivers
for polarization-multiplexed optical signals, in the absence of
polarization mode dispersion (PMD). It is shown that simulta-
neous joint estimation of the symbols, over the two received states
of polarization, yields optimal performance, in the absence of
phase noise and intermediate frequency offset. In contrast, the
commonly used zero-forcing polarization demultiplexer, followed
by individual demodulation of the polarization-multiplexed trib-
utaries, exhibits inferior performance, and becomes optimal only
if the channel transfer matrix is unitary, e.g., in the absence of
polarization dependent loss (PDL), and if the noise components at
the polarization diversity branches have equal variances. In this
special case, the zero-forcing polarization demultiplexer can be
implemented by a 2 X 2 lattice adaptive filter, which is controlled
by only two independent real parameters. These parameters
can be computed recursively using the constant modulus algo-
rithm (CMA). We evaluate, by simulation, the performance of
the aforementioned zero-forcing polarization demultiplexer in
coherent optical communication systems using PDM quadrature
phase shift keying (QPSK) signals. We show that it is, by far,
superior, in terms of convergence accuracy and speed, compared
to conventional CMA-based polarization demultiplexers. Finally,
we experimentally test the robustness of the proposed constrained
CMA polarization demultiplexer to realistic imperfections of
polarization-diversity coherent optical receivers. The PMD and
PDL tolerance of the proposed demultiplexer can be used as a
benchmark in order to compare the performance of more sophis-
ticated adaptive electronic PMD/PDL equalizers.

Index Terms—Coherent communications, polarization demulti-
plexing, constant modulus algorithm.
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1. INTRODUCTION

ECENT progress in fast data acquisition, in combination
R with the decreasing cost of high-speed digital electronics,
is currently rendering the digital implementation of coherent
optical receiver functionalities commercially viable at symbol
rates equal to 10 GBd and beyond [1]. A growing number of re-
search papers focuses on the evaluation of the performance of
digital signal processing (DSP) algorithms, which can success-
fully counteract various transmission impairments that typically
affect the performance of coherent optical receivers (see tuto-
rials [2], [3], and references therein).

Among all transmission impairments, it would be difficult to
overstate the importance of the impact of polarization effects
on the performance of coherent optical receivers. For instance,
random polarization rotations, caused by the birefringence of
optical fibers, can be detrimental, since the states of polariza-
tion (SOPs) of the received optical signal and the local oscil-
lator are not identical, as required. Polarization diversity [2], [3]
is a practical means to detect all signal power, independent of
the received SOP, by using a coherent optical receiver with two
identical branches, one for the z- and one for the y-polariza-
tion component, respectively. The photocurrents at the output
of the receiver branches must be appropriately combined using
a two-input/one-output adaptive filter (electronic polarization
combiner) [3], in order to retrieve all the information carried by
the received signal.

The increased complexity and cost of polarization-diversity
coherent optical receivers can be better justified when simulta-
neous polarization division multiplexing (PDM) is used at the
transmitter, in order to double the spectral efficiency of the op-
tical communications system. In this case, the electronic polar-
ization combiner, used in the single-channel case, is replaced
by a two-input/two-output adaptive filter, which separates the
PDM channels into their respective outputs (electronic polar-
ization demultiplexer) [4]-[12]. In addition, by increasing the
number of adaptive filter coefficients, the polarization demulti-
plexer can also perform equalization of the intersymbol inter-
ference caused by polarization mode dispersion (PMD), polar-
ization dependent loss (PDL), residual chromatic dispersion and
other effects [13]-[17].

There is no unanimous agreement in the optical commu-
nications community regarding the merit of different DSP
algorithms for electronic polarization demultiplexing and
equalization. For example, depending on their operating mode,
proposed algorithms can be distinguished into two categories:
1) Data-aided (requiring a training sequence to achieve con-
vergence, e.g., [8]); and ii) Blind, either decision-directed
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(employing estimates of the received symbols for adaptation,
e.g., [13]) or based on other attributes of the received optical
signal, which are affected by intersymbol interference, without
attempting to recover the data. In the latter category, the constant
modulus algorithm (CMA) [18]-[21] has been proposed for
blind adaptive feed-forward polarization demultiplexers [10],
[11] and equalizers [15]. The popularity of these CMA-based
modules [22]-[24] is due to their low computational complexity
and their robustness in the presence of intermediate frequency
(IF) offsets and laser phase noise. The second feature allows
for decoupling between polarization demultiplexing and carrier
frequency/phase recovery, so the latter two impairments can
be addressed by separate DSP modules. A disadvantage of
CMA-based modules is their possible erroneous convergence
to the same PDM channel [11], [12].

This article focuses on the issue of optimal polarization de-
multiplexing exclusively, in the absence of PMD. The purpose
of the present study is the optimal design, using the maximum-
likelihood criterion [25]-[27], of polarization-diversity coherent
optical receivers, for the detection of polarization-multiplexed
optical signals with orthogonal, albeit unknown, SOPs. In the
absence of laser phase noise and IF offset, it is shown that simul-
taneous joint estimation of the symbols, over the two received
orthogonal SOPs, yields optimal performance. In contrast, the
commonly used zero-forcing polarization demultiplexer usually
yields sub-optimal performance [26], [27]. The latter first em-
ploys an electronic polarization demultiplexer, in order to fully
invert the Jones matrix of the optical fiber, followed by indi-
vidual demodulation of the polarization-multiplexed tributaries.
Jones matrix inversion can be achieved using a lattice adaptive
filter with four complex taps [4]-[12]. Similar to [4], [11] we
introduce constraints between the taps, in order to avoid conver-
gence into the same PDM channel. The constraints take advan-
tage of the fact that polarization rotations in optical fibers can
be represented by unitary transformations. Then, the transfer
matrix of the adaptive filter, in the absence of PMD and PDL,
is expressed as a function of only two independent real pa-
rameters. These parameters can be estimated using either data-
aided or blind channel estimation techniques. For their estima-
tion, we use the CMA. We evaluate, by simulation, the per-
formance of the proposed constrained CMA polarization de-
multiplexer in coherent optical communication systems using
PDM quadrature phase shift keying (QPSK) signals. We show
that it is, by far, superior, in terms of convergence accuracy and
speed, compared to previously proposed, conventional CMA-
based polarization demultiplexers [10]. A salient feature of the
proposed constrained CMA polarization demultiplexer is that
convergence is always guaranteed. Finally, we experimentally
test the tolerance of the proposed constrained CMA polariza-
tion demultiplexer to realistic imperfections of polarization-di-
versity coherent optical receivers.

Despite its apparent simplicity, the proposed constrained
CMA electronic demultiplexer, can be used as a benchmark
in order to compare the performance of more sophisticated
adaptive electronic equalizers in the presence of PMD and
PDL. Since it does not possess any PMD/PDL compensation
capabilities, it can be used as a reference for the PMD and PDL
tolerance of uncompensated coherent optical systems.
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It is worth mentioning at this point that our polarization de-
multiplexer is almost identical to the one proposed by Kikuchi in
a recent paper [11]. The latter came to our attention only after
the submission of our manuscript to the Journal of Lightwave
Technology, by one of the reviewers. Despite their similarities,
the two papers approach the issue of polarization demultiplexing
from different angles. Kikuchi’s main goal was to elucidate the
physics behind the operation of the CMA-based polarization de-
multiplexers. In contrast, in our paper, we first derive the op-
timal polarization demultiplexer’s structure, based on the max-
imum-likelihood criterion. Then, we prove that the performance
of a zero-forcing polarization demultiplexer, in the absence of
PMD and PDL, is optimal. Finally, we express the transfer ma-
trix of the zero-forcing polarization demultiplexer, in the ab-
sence of PMD and PDL, as a function of only two real parame-
ters (as opposed to two complex parameters in [11]), which are
subsequently computed recursively using the CMA.

The rest of this paper is divided into three major sec-
tions, namely, theoretical model (Section II), simulation
results and discussion (Section III), and experimental vali-
dation (Section IV). In Section II, we develop an equivalent,
discrete-time model of a representative coherent optical com-
munications system, using matrix formulation. Then, we
apply the maximum-likelihood criterion, in order to derive
an optimal decision metric for the joint estimation of the
symbols, over both received SOPs. Based on the optimal de-
cision metric, it is shown that, under certain ideal conditions,
a zero-forcing linear receiver yields optimal performance. The
final part of Section II is devoted to the proposed constrained
polarization demultiplexer and the application of CMA for
the blind adaptive estimation of its adjustable parameters. In
Section III, we evaluate, by simulation, the performance of
the proposed constrained CMA polarization demultiplexer,
in terms of convergence properties and error probability. Fi-
nally, in Section IV, we experimentally test the capability of
the proposed constrained CMA polarization demultiplexer in
separating 2 GBd PDM QPSK optical signals. The details of
the theoretical calculations are presented in the Appendices.

II. THEORETICAL MODEL

A. System Description

Fig. 1 shows the block diagram of a PDM QPSK optical
communications system with a polarization- and phase-di-
versity coherent optical receiver. The modules of the optical
transmitter are shown in detail in Fig. 1(a). The optical signal
from a CW semiconductor laser diode (SLD) is equally split
and fed into two parallel quadrature modulators (QM). Two
independent pseudo-random bit sequences (PRBS), at a bit rate
Ry, each, are differentially encoded (DE) and transformed into
pulse sequences, which, in turn, change the driving voltage of
each QM. Two optical, differentially-encoded QPSK signals
are generated, at a symbol rate R, = R each, at the output of
the QMs. The two optical QPSK signals are superimposed with
orthogonal SOPs, using two polarization controllers (PC) and
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Fig. 1. Block diagram of a representative coherent optical system. (a) PDM QPSK transmitter (Symbols: PRBS: Pseudo-random bit sequence, DE: Differential
encoding and pulse shaping, SLD: Semiconductor laser diode, CPL: 3-dB coupler, QM: Quadrature modulator, PC: Polarization controller, PBC: Polarization beam
combiner.); (b) Polarization- and phase-diversity coherent optical receiver (Symbols: OA: Optical preamplifier, BPF: Optical bandpass filter, PBS: Polarization
beam splitter, LO: Local oscillator, BPD: Balanced photodetectors, LPF: Lowpass filter, ADC: Analog-to-digital converter, ASIC: application specific integrated
circuit.); (c) ASIC architecture (Symbols: QI comp.: Quadrature imbalance estimation and compensation, Pol. DMUX: Polarization demultiplexer, DD: Differen-
tial decoding, Demod.: Demodulation, BER: Bit error rate counter.); (d) Proposed constrained polarization demultiplexer (Symbols: a4, (n): input photocurrents,
yr(n): output photocurrents, wy;, k, I = 1,2: Complex taps, {&(n), é(n)}: Estimated azimuth and ellipticity).

a polarization beam combiner (PBC), to form a PDM QPSK
signal, which is transmitted through an optical fiber.

The block diagram of an optical polarization- and phase-di-
versity digital coherent homodyne synchronous receiver is
shown in Fig. 1(b). The optical receiver front-end is com-
posed of an optical preamplifier (OA), an optical bandpass
filter (BPF), a laser diode, acting as a local oscillator (LO),
two polarization beam splitters (PBSs) with aligned principal
axes, two 2 x 4 90° optical hybrids, and four balanced pho-
todetectors (BPDs). The received optical signal is optically
preamplified and filtered by the optical BPF, in order to reject
the out-of-band amplified spontaneous emission (ASE) noise.
The x- and y-polarization components of the received optical
signal and the local oscillator are separately combined and de-
tected by two identical phase-diversity receivers composed of a
2 x 4 90° optical hybrid and two BPDs each, at the upper and
lower polarization branches, respectively. The photocurrents at
the output of the four balanced detectors are low-pass filtered
(LPF), sampled at integer multiples of the symbol period T,
using an analog-to-digital converter (ADC), and fed to an
application specific integrated circuit (ASIC) for DSP.

Fig. 1(c) shows the ASIC’s architecture. The four sampled
photocurrents are processed in pairs. Each pair corresponds to
the in-phase and quadrature components of the coherent beating
between the received signal and the signal of the LO. Initially,
the quadrature imbalance (QI) occurring at each phase-diver-
sity receiver is estimated and corrected [28]-[31]. The two

quadratures are then combined, via complex addition, to form
discrete-time, scaled replicas of the received complex electric
field vectors at the x- and y-polarizations, respectively. Sub-
sequently, polarization demultiplexing is performed [4]-[12],
possibly combined with transmission impairments equalization
[13]-[17]. The block diagram of the proposed constrained
CMA polarization demultiplexer is shown in Fig. 1(d). The
polarization demultiplexer attempts to counteract the channel
effect by forming a linear superposition of the photocurrents.
It has two inputs and two outputs and is composed of four
complex multipliers wg;, k,! = 1,2, which are connected in
a butterfly structure. The multipliers are iteratively adjusted,
using the CMA. The rationale behind the structure of the
proposed polarization demultiplexer is explained in detail in
Section II-C.

Referring back to Fig. 1(c), after polarization demultiplexing,
the complex envelopes of the electric fields of the PDM QPSK
tributaries are recovered separately, at the upper and lower
branches of the ASIC. The non-zero IF offset, due to the carrier
frequency difference between the transmitter and the local
oscillator lasers, is estimated and removed, using a feed-for-
ward carrier recovery algorithm [32], [33]. A feed-forward
phase noise removal circuit estimates and removes laser phase
noise, e.g., [34]. Subsequently, the two waveforms are demodu-
lated independently. Each symbol sequence is recovered using
a decision circuit, is differentially decoded and transformed
into two bit sequences, which are used for error counting.
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B. Mathematical Formulation

In this subsection, an equivalent, discrete-time model of the
coherent optical system of Fig. 1 is derived.

For mathematical convenience, an equivalent baseband repre-
sentation [25] of the optical signals and components is used. In
addition, the following notations are adopted: (i) To distinguish
vectors from scalars, we identify vector quantities with bold-
face type; (ii) Matrices are also denoted by boldface type (the
distinction should be clear from the context); and (iii) Dirac’s
bra and ket vectors denote normalized Jones vectors [35].

It is assumed that the electric fields of the two QPSK mod-
ulated waveforms, at the output of the QM, have orthogonal
polarizations |z) and |y), respectively. It is also assumed that
the optical fiber induces arbitrary, random, time-varying polar-
ization rotations but maintains the orthogonality between the
SOPs of the polarization multiplexed signals. After transmis-
sion through the optical fiber, at the output of the optical BPF,
the electric field of the optical PDM QPSK signal can be written,
in equivalent baseband notation, as

E(t) = Es(t)|es(t)) + Ep(t)|ep (1)) ()

where E(t), E,(t) are the complex envelopes of the pream-
plified optical signals contaminated with ASE noise, and
les(t)), lep(t)) are the corresponding slowly-varying, nor-
malized, Jones vectors along two arbitrary orthogonal SOPs,
denoted by s, p. Based on the assumption of SOP orthogonality,
the inner product of the two Jones vectors must vanish, i.e.,
(ex(t)er(t)) = bk, k,l = s, p, where 6y, is Kronecker’s delta.

The complex envelopes of the electric fields in (1) can be
written as

Es(t) = [\/ﬁejes(t)ul(t) + ns(t)]ejwst
Ep(t) = [\/ﬁejGS(t)UQ(t) + ’rlp(t)]ej""st @)

where P,, P, are the average optical powers at each SOP,
u1(t), u2(t) are the modulating signals, w; is the angular fre-
quency offset from the channel’s nominal frequency, and 6, ()
is the phase noise of the received signal. The terms n4(t), n,(¢)
represent independent, identically distributed, complex ASE
noise components in the two orthogonal SOPs, which follow
Gaussian distribution with zero mean and variance 03 .

The normalized Jones vectors |es(t)),|e,(t)) can be ex-
pressed in rectangular coordinates as [36]

| cosa(t)cose(t) — jsina(t)sine(t)
les(1)) = [Sin a(t) cose(t) + j cos a(t) sin e(¢) } )
and
| —sina(t) cose(t) + j cos at) sine(t)
len(8)) = [ cos a(t) cose(t) + 7 sin a(t) sine(t) }

“4)

where a(t) and e(¢) are the angles corresponding to the s-SOP’s
azimuth and ellipticity [36], respectively, and take values in the
intervals |a(t)| < 7/2,]e(t)| < 7/4 [36].

In Appendix A, it is shown that an array of two complex pho-
tocurrents X(n) is generated at the output of the polarization-
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and phase-diversity coherent optical receiver, which, in the ab-
sence of phase noise, can be written as

X(n) = H(n)U(n) + N(n) ©)

where U(n) is the array of the two sampled modulating signals
scaled by a multiplication factor, N(n) is the array of the total
photocurrent noises, and H(n) is the transfer function of the
transmission channel

(zles(n)) (zley(n))
(yles(n)) (ylep(n)) ]~ (©)

The mean and covariance matrices of the sampled modulating
signals U(n) are

py =E{U(n)} =0 0

H(n) =

and
Ky = E{U(n)U"(n)} = diag { A}, A3} 8)

respectively, where E{-} denotes expectation, diag{-} denotes
a diagonal matrix, dagger denotes the adjoint, i.e., conjugate
transpose, matrix, and A;, Ao are the signal amplitudes at each
receiver branch.

The mean and covariance matrices of the total photocurrent
noises N(n) are given by

n=E{N()} =0 ©)
and

K = E{N(n)Nf(n)} = diag {0,053} (10)

respectively, where 07, 03 are the variances of the photocurrent
noise components at each receiver branch.

It is straightforward to verify that H(n) belongs to the special
unitary group SU(2), i.e., H(n)H(n) = Hf(n)H(n) = I,
where I denotes the 2 x 2 unit matrix, and det[H(n)] = 1,
where the operator det[-] denotes the determinant of a matrix.

C. Optimal Receiver

In Appendix B, using the maximum-likelihood criterion
[25]-[27], we derive the decision metric of the optimal receiver
for joint detection of PDM QPSK signals transmitted over the
memoryless, discrete-time, two-input two-output (TITO) linear
channel described by (5).

It is shown that a sufficient statistic for estimating the trans-
mitted symbols is the following (see (57) in Appendix B)

U= arggng{UTHTK—lHU —2R{UTHTK'X}}
(S
(11)

where R{-} denotes real part and { is the joint, complex-symbol
alphabet. We have dropped the time dependence of all matrices
in order to avoid clutter.

From (11), we observe that, prior to decision, the optimal re-
ceiver must form a linear superposition Y of the complex pho-
tocurrents X

Y = WX (12)
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where W is the transfer matrix of a spatial electronic filter

W =H'K L (13)
Substitution of (12) into (11) leads to the concise decision

rule
U = arg Ir}ng{UTHTK_lHU —2R{UTY} . (14)

€

We conclude that, in the general case, when the total pho-
tocurrent noise is not spatially white, i.e., o1 # o2, the optimal
receiver should perform the following steps: (i) spatial noise
pre-whitening, i.e., multiplication by K~/2; (ii) projection to
K~'/?2H; and (iii) joint maximum-likelihood vector symbol
estimation using the concise metric (14). This receiver is called
the linear minimum mean squared error (MMSE) receiver [27].

D. Zero-Forcing Receiver

In the special case when the noises at the two branches of the
polarization diversity receiver have the same variance (i.e., the
photocurrent noise is spatially white), the optimal receiver may
use the simplified decision rule (see (61) in Appendix B)

U = arg min ||Y — U||? 15
arg min || | (15)
where the spatial electronic filter transfer matrix is now reduced
to
W =H"'. (16)

The above relationship indicates that the optimal receiver
must use an electronic polarization demultiplexer, in order to
fully invert the fiber Jones matrix.

It would be instructive to gain some insight into why (16) is
optimal. Assume that the receiver has perfect knowledge of the
channel transfer matrix. According to (16), the receiver should
set W = HT. Then, the output of the polarization demultiplexer
is written as

Yo(n) = U(n) + H (n)N(n). (17)

Since the multiplication with a matrix is a linear operation, the
resulting noise No(n) = H'(n)N(n) is a complex Gaussian
random vector. Using (9) and (10), for 0? = 03 = o2, we can
calculate the mean p,, and covariance K¢ matrices of Ng(n)

po = E{No(n)} = H'E{N(n)} = 0 (18)
and
Ko =E {No(n)Ng(n)}
= H'E{N(n)N'(n)}H = oL (19)

We observe that the photocurrent noise statistics are pre-
served after the proposed polarization demultiplexer. This
indicates that polarization demultiplexing can be achieved
without penalty. However, were it not for the equality of
the total photocurrent noise variances and the unitarity of
the channel transfer matrix, the performance of the linear
zero-forcing receiver would be suboptimal, compared to joint
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maximum likelihood detection, since the noises at the output
branches of the polarization demultiplexer would be correlated
(19) [27].

As shown in Appendix B, the decision rule (15) can be fur-
ther reduced so that each element @, of U can be individually
estimated at each branch of the polarization-diversity receiver.
Furthermore, the in-phase and quadrature components of iy, are
independently retrieved, by comparison to a zero threshold.

Polarization demultiplexing, followed by separate detection
of the two PDM channels, is a special case of a well-known re-
ceiver structure in the context of multiuser systems with space
diversity, called zero-forcing linear receiver, interference nuller,
or decorrelator [27]. It is worth noting that the proposed re-
ceiver is a direct extension to two dimensions of the maximal
ratio combiner, used in single channel communications systems,
with polarization-diversity coherent receivers [3]. In addition,
the proposed polarization demultiplexer transfer matrix is the
exact 2 X 2 equivalent of the matched filter transfer function
[27], [11].

E. Estimation of Channel Transfer Matrix

The zero-forcing receiver must calculate an estimateAPAI(n)
of the channel transfer matrix in (5) and set W(n) = Hf(n).
From (3)—(4) and (6), we observe that the elements of H(n) are
functions of only two independent parameters a(n) and &(n).
Therefore, one simply needs to calculate the estimates of the
angles &(n),£(n). Below, we show that this can be achieved
blindly using the CMA. Its application on optical channel pa-
rameters estimation is a novel idea. Its adequacy, compared to
other estimators [37], lies out of the scope of the present study.
No claims about its optimality are made. Its adoption, as an ap-
propriate scheme for the estimation of &(n) and &(n), can be
justified by its tolerance to intermediate frequency offsets and
laser phase noise, and its excellent bit error rate (BER) perfor-
mance shown in Fig. 5(c).

The instantaneous error function is defined as

EM)=Y*(n)eY(n)— A (20)
where the operator e denotes the Hadamard matrix product [39],
defined as the component-wise multiplication of two matrices

C=AeB <& [C]U = ai]-bi]- (21)
and W
R 1

A= {REQ)} (22)

where R((Jk), k = 1,2 are the total signal and noise powers at
each branch of the polarization-diversity receiver.
The cost function, which we seek to minimize, can be defined
as the total mean-squared error
£ =E{eT(n)E(n)}. (23)
The instantaneous cost function can then be expressed in
terms of £(n) as

&(n) = ET(n)E(n). (24)
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We define the auxiliary column vector Z(n) with elements
equal to the independent parameters

Z(n) =[z1(n) 2@m)]" =[a(n) @) @25

Taking the derivative of the instantaneous cost function with
respect to z; and using the chain rule, one finally obtains ana-
lytical expressions for 9¢(n)/0zk, k = 1,2
6(n) [0z = 2ET(n){Y*(n) @ [OW (n) /02X (n)]

+Y (n) o [JW (n) /02X )]}k = 1,2 (26)

We define the gradient of the instantaneous cost function in
the space of the independent variables

27

The stochastic gradient algorithm for updating the adaptive

filter coefficients is written [21], [25]

Z(n+1)="7Z(n) — uVén) (28)
where p is a positive real constant (step-size parameter).
Using periodic boundary conditions, the parameters &(n)
and £(n) in (28) are confined within a unit cell, delimited by
6] < 7/2,1é] < /4.

It should be stressed that both the proposed constrained
CMA polarization demultiplexer and its conventional counter-
part suffer from output permutation and rotation ambiguities.
The first type of ambiguity means that PDM channel ordering
at the polarization demultiplexer outputs is unpredictable. The
second type of ambiguity means that the recovered constel-
lations might exhibit arbitrary rotations from their nominal
position. In other words, both polarization demultiplexers
cannot distinguish between the desired solution (in the absence
of noise)

Yo(n) =U(n) (29)
and the undesired solution
Y'(n) = [ua(n)e?®  ui(n)el??]T (30)

where ¢1, and ¢, are arbitrary phase rotations.

The output permutation ambiguity can be addressed, for
instance, by periodically transmitting channel identification
training symbols (pilots) and by using a tracking scheme for
their detection.

The rotation ambiguity can be readily unraveled by the feed-
forward laser phase noise estimation circuit [34], which is as-
sisted by differential coding and decoding of the transmitted
symbols [3].

It is worth mentioning that a combination of data-aided and
blind estimation of &, € can be performed, as well. Since polar-
ization rotations, due to fiber birefringence, are slow, in compar-
ison with the symbol rate, they can be considered a quasi-static
effect. Estimation of quasi-static effects can be performed in two
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Fig. 2. Constellation diagrams for the 2-polarization, at the output of the polar-
ization diversity receiver, in the absence ((a), (b), (c)) and in the presence ((d),
(e), (f)) of IF offset. (Conditions: Received SOP parameters: (a), (d)a = ¢ = 0,
), e)a=7/3,e =0,and (¢), f) o« = ¢ = 7/3).

phases, i.e., training and tracking. During the training phase, a
short training sequence, in conjunction with the least squares
method [37], can be used to estimate H. This method asymp-
totically yields the best linear unbiased estimate [37]. During
the time intervals between transmitting consecutive training se-
quences, a blind estimation algorithm, e.g., [38], can be used
for tracking and continuously updating the values of the ad-
justable parameters. The values provided by the training phase
can be used as initial guesses for the recursion of the tracking
algorithm.

III. SIMULATION RESULTS AND DISCUSSION

In order to theoretically evaluate the performance of the pro-
posed constrained CMA polarization demultiplexer and com-
pare it with its conventional counterpart [10], we perform com-
puter simulations of the coherent optical communication system
shown in Fig. 1. We use ideal non-return-to-zero (NRZ) QPSK
signals. The optical fiber is modeled simply as a polarization
rotator with transfer matrix H(n). The optical hybrids are con-
sidered ideal and all photodiodes are identical. All simulations
are performed with initial guesses Z(0) = [&(0) £(0)]T =
[0 0]T for the proposed constrained CMA polarization demul-
tiplexer and W (0) = I for its conventional counterpart.

Initially, the impact of polarization rotations on the constella-
tion of received sampled complex photocurrents is investigated.
We distinguish two cases, in the absence and in the presence of
phase noise and IF offset, respectively. First, the ideal constella-
tion is shown as a reference (Fig. 2(a), black (red) crosses). Due
to cross-polarization interference, received constellations con-
sist of 16 points, Fig. 2(b), (c). This occurs because the mixing
matrix H(n) creates all possible combinations of two constel-
lations of four points each. Depending on the specific values
of o, e, some of the constellation points may overlap. In the
presence of IF offset, constellation points rotate either clock-
wise or counterclockwise, producing up to four concentric cir-
cles with unequal radii, as shown in Fig. 2(e)—(f).
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Fig. 3. (a) Three-dimensional plot of the cost function vs. estimated azimuth
and ellipticity &, é. (Symbols: A, B: Global minima within the unit cell, Rec-
tangle: Unit cell), (b) Corresponding contour plot of the cost function on the
Poincaré sphere for the proposed constrained polarization demultiplexer. (Sym-
bols: White (red) point (A): Minimum at & = é = x/6). (Conditions: Re-
ceived SOP parameters: &« = ¢ = 7/6). (Color coding: Black (blue) areas:
Small values of the cost function, White (red) areas: Large values of the cost
function).

We proceed with exploring the performance surface
¢ = E{€T(n)é(n)} as a function of the proposed demul-
tiplexer adjustable parameters. Fig. 3(a), (b) show three-di-
mensional and Poincaré sphere-contour plots, respectively, of
the instantaneous cost function £(n) vs. &, €, in the absence of
noise, for « = ¢ = /6. Time averaging of the cost function
&(n), over 500 consecutive symbols, is performed instead of
ensemble averaging. In Fig. 3(a), we observe that, within the
limits of the unit cell, denoted by a rectangle, there are two
global minima A, B. In Fig. 3(b), these minima correspond to
two antipodal points on the Poincaré sphere. The minimum at
the point A = [&@ ¢]T = [a €]T (also denoted by a (white)
red point on the Poincaré sphere), corresponds to the correct
ordering of the output signals, whereas the other minimum at
the point B = [&@ €]T = [a£7/2 —¢]T (not shown on
the Poincaré sphere), results in a permutation of the output
channels. Bisecting the line connecting the two minima on the
Poincaré sphere with a perpendicular plane, divides the sphere
into two hemispheres. The intersection of the plane, with the
surface of the sphere, creates a rotated equator line, which
corresponds to the ridge within the unit cell of Fig. 3(a). The
hemisphere of each minimum in Fig. 3(b) corresponds to a
valley within the unit cell of Fig. 3(a). The constrained CMA
converges to the minimum lying in the same hemisphere as the
initialization point &(0),£(0). If the initial point lies exactly
on the equator, in the presence of noise, the algorithm may
converge to either minimum.

Subsequently, we study the impact of ASE noise on the
convergence behavior of the proposed constrained CMA
polarization demultiplexer. We assume that the transmitted
orthogonal SOPs are |z),|y), corresponding to the Stokes
vectors [I 0 0]T and [-1 0 0], respectively. We also
assume that the received SOPs have been rotated due to fiber
birefrigence in relation to the transmitted ones, such that the
s-SOP angles are « = € = m /6. The polarization demultiplexer
iteratively estimates the angles &, € and restores the SOPs of the
PDM QPSK signals back to their initial values. Fig. 4(a) shows
the trajectories followed on the Poincaré sphere during restora-
tion from |es) to |x), both in the absence (black (unmarked)
line) and in the presence of ASE noise (for two different values
of the optical signal-to-noise ration (OSNR)). We observe
that, in the absence of ASE noise, the restored SOP eventually
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Fig. 4. (a) Trajectory of the estimated SOP at the output of the proposed con-
strained polarization demultiplexer. (Conditions: Received SOP parameters:
a = ¢ = /6, BPF bandwidth= 32 R, LPF 3-dB bandwidth: B. = 0.8Rj,
LPF equivalent noise bandwidth: B4 = 1.04B., phase averaging block
size = 10 symbols), (Symbols: Black (unmarked) line: Absence of noise, Red
line (open circles): OSNR = 9 dB and, Blue line (crosses): OSNR = 7
dB) (b) Time evolution of the MSE for the = polarization for the proposed
constrained (dotted line), and the conventional CMA-based (solid line), polar-
ization demultiplexers, for the optimum step size ¢ = 0.1. Averaging over 500
experiments is performed. (Conditions: Received SOP parameters: o & 7/4
and ¢ = 0).
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Fig.5. Representative constellations of the received (blue (gray) points), equal-
ized (red (black) points) and ideal ((green) crosses) signals for the  polariza-
tion, using (a) the proposed constrained polarization demultiplexer, and (b) the
conventional CMA-based polarization demultiplexer; (c) BER vs. OSNR for the
ideal (i.e., distortionless) case (blue (thick black) curve), and using the proposed
constrained ((red) triangles), and the conventional CMA-based ((black) circles),
polarization demultiplexer. Quadratic polynomial fitting is used, drawn as a
dotted line (in red) for the proposed constrained and as a thin solid line (in black)
for the conventional CMA-based polarization demultiplexer. (Conditions: Re-
ceived SOP parameters: v = 7r/6 and ¢ = 7r/12, BPF bandwidth = 32R,,
LPF 3-dB bandwidth: B, = 0.8R,, 4th-order Bessel LPF equivalent noise
bandwidth: B¢ = 1.04B., phase averaging block size = 10 symbols).

coincides with the transmitted one, whereas, as the OSNR is
reduced, the restored SOP fluctuates more significantly around
the initially transmitted SOP.

In Fig. 4(b), we compare the decay time of the error
magnitude for the proposed constrained CMA polarization
demultiplexer (dotted line), and the conventional one (solid
line) [10]. More specifically, for both demultiplexer types, we
plot the time evolution of the mean-squared error E{e?(n)},
for the x-polarization, for the optimal value of the step-size
parameter .. We choose a maximal initial perturbation; that is
to say, the initial point is selected adjacent to the rotated equator
and within the appropriate hemisphere, in order to prevent
output reversal. Ensemble averaging over 500 simulation runs
is performed. The optimum step-size parameter is . = 0.1 for
both polarization and demultiplexers, providing fast conver-
gence and negligible residual mean squared error (MSE). The
constrained CMA polarization demultiplexer clearly exhibits
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Fig. 6. (a) Block diagram of the experimental setup (Symbols: ECL: External cavity laser, QM: Quadrature modulator, CPL: 3-dB coupler, PC: Polarization
controller, PRBS: Pseudo-random binary sequence, RF Amp: Radio frequency amplifier, OF: Optical fiber, PBC: Polarization beam combiner, VOA: Variable
optical attenuator, OA: Optical amplifier, Rx: Polarization- and phase-diversity coherent optical receiver, BPD: Balanced photodetector, DSO: Digital storage
oscilloscope.); (b) Block diagram of the DSP modules used to analyze the experimental results. (Symbols: Sync. & Resampling: Quadrature and polarization time
synchronization and resampling, SE dist: Single-ended distortion mitigation, FFFE: Feed-forward frequency estimation and removal, FFPE: Feed-forward phase

estimation and removal, BER: Bit error rate tester.).

superior performance, in terms of convergence speed. For
example, for © = 0.1, the constrained CMA polarization de-
multiplexer requires less than 20 symbol intervals to minimize
the MSE, whereas its conventional counterpart [10] requires
more than 60 symbol intervals, i.e., it is more than three times
slower.

Fig. 5(a), (b) show representative input/output constellation
diagrams, with ASE noise and zero IF offset, obtained by
using the constrained CMA polarization demultiplexer and the
conventional one, respectively. We assume that the received
SOPs correspond to o« = 7/6,e = m/12. We see that both
polarization demultiplexers are able to transform the received
spiral constellation (blue (gray) points) into four approximately
circular points (in red (black)) that approach the transmitted
constellation (green crosses).

Fig. 5(c) shows BER curves, as a function of the OSNR, mea-
sured in a resolution bandwidth B, = 1.25R,, (e.g., OSNR
measured in 0.1 nm resolution bandwidth for R, = 10 GBd) for
both polarization demultiplexers. The BER is calculated using
Monte Carlo simulation. The red triangles correspond to the pro-
posed constrained CMA polarization demultiplexer, the black
circles correspond to the conventional CMA polarization de-
multiplexer, and the blue (thick black) curve corresponds to the
ideal case, with no polarization rotations [2], [3]. Obviously,
both polarization demultiplexers exhibit almost identical perfor-
mance, with a negligible penalty relative to the ideal case at high
OSNRs.

IV. EXPERIMENTAL VALIDATION

In order to test the validity of the simplifying assumptions of
the theoretical model presented in Section II, we performed a
series of PDM QPSK experiments. The experimental set-up is
shown in Fig. 6(a).

Light from an external cavity laser (ECL), acting as a trans-
mitter, is QPSK modulated using a QM, driven by two 2 Gb/s

PRBSs. The optical signal at the output of the QM is split into
two equal amplitude components, using a 3-dB coupler. One
of the two components is delayed using approximately 8 m of
optical fiber. Their SOPs are adjusted, using two PCs, so that
they become aligned with the principal axes of the PBC. The
PDM QPSK signal, at the output of the PBC, is amplified using a
booster optical amplifier (OA1) and is subsequently transmitted
through 100 km of LEAF® optical fiber. The latter, at 2 GBd,
simply acts as a polarization rotator and attenuator. The received
optical signal is preamplified and filtered in two stages, using
two tunable fiber Bragg grating (FBG) filters. The first FBG
filter has 0.6 nm bandwidth, in order to emulate a WDM DMUX.
The second FBG filter has 0.25 nm bandwidth, in order to emu-
late the ASE noise-limiting filter, typically used after the optical
preamplifier. As the optical field reaches the polarization- and
phase-diversity coherent optical receiver, it is split using a PBS.
The two polarization components are combined with the light of
an ECL, acting as a LO. Local-oscillator-to-signal power ratio
(LOSPR) was kept small due to limitations of the lasers used at
the experiment. Two different optical hybrid technologies were
used, namely, a bulk-component, 2 X 2 90° optical hybrid [40],
and a commercially-available, integrated 2 x 4 90° optical hy-
brid [6]. At the output of the 2 x 2 90° optical hybrid, two, al-
most identical, 10-GHz bandwidth PDs are used. The integrated
2 x 4 90° optical hybrid is followed by two pairs of 40-GHz
bandwidth BPDs. Finally, an 8-GHz electrical bandwidth, 40
GSa/s, real-time, sampling oscilloscope samples the photocur-
rents and stores the signals for off-line processing. An electrical
spectrum analyzer, not shown in Fig. 6(a), is used for the manual
adjustment of the transmitter and LO frequencies within ~400
MHz from each other. The duration of a single measurement is
equal to 51.25 us.

Fig. 6(b) shows the block diagram of the DSP modules used
to analyze the experimental results. First, we filter the translated
spectrum using an LPF, in order to remove out-of-band noise.
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Timing recovery is manually performed, in order to remove any
differential delays between the signals, which are caused by op-
tical and electrical path differences. Subsequently, signals are
resampled to one sample per symbol.

Distortion due to small LOSPR and single-ended detection at
the 2 X 2 90° optical hybrid is first partly removed [41]. Inaccu-
racies in the bias voltages of the 2 x 4 90° optical hybrid, as well
as non-optimal setting of the four PCs within the 2 x 2 90° op-
tical hybrid, in conjunction with differences in the responsivity
of the PDs, cause QI [29]. QI is a slowly varying impairment,
essentially constant over the duration of a single measurement.
Several methods have been proposed for QI estimation and com-
pensation, both in optical communications [28]-[31], and in
digital communications, e.g., [42]. Here we use the algorithm
described in [29], [31]. After QI compensation, the PDM QPSK
signals are fed into the proposed electronic polarization demul-
tiplexer. After polarization demultiplexing, any residual IF is
estimated and removed using a feed-forward frequency estima-
tion algorithm [32], [33]. A feed-forward phase noise removal
circuit estimates and removes laser phase noise [34]. Finally, the
signal corresponding to each quadrature passes through a deci-
sion circuit. The symbol sequence for each PDM QPSK signal is
recovered and is differentially decoded. Then, it is transformed
into two bit sequences, which are compared to the transmitted
ones in order to perform error counting.

It is important to note that all DSP algorithms based on the
assumption of the envelope constancy of QPSK signals, (i.e.,
[32]-[34]), cannot be applied prior to polarization demulti-
plexing. Otherwise, symbol errors occur due to the presence
of multiple signal levels, caused by cross-polarization inter-
ference, as shown in Fig. 2. Therefore, residual IF estimation
and phase noise estimation should be performed only after the
proposed constrained CMA polarization demultiplexer. The
latter is insensitive to IF offset and laser phase noise, so their
presence does not affect the correct estimation of the fiber
transfer matrix parameters &, €.

Fig. 7 shows typical constellations for the xz-polariza-
tion (upper row) and y-polarization (lower row), respec-
tively, immediately after synchronization and downsampling
(Fig. 7(a), (b)), at the input of the proposed polarization
demultiplexer (Fig. 7(c), (d)), at the output of the proposed
polarization demultiplexer (Fig. 7(e), (f)), and after the IF and
phase noise removing circuits (Fig. 7(g), (h)). The scale of
constellations (a)—(d) is different from the scale of constel-
lations (e)—(g) because the samples are normalized to unit
magnitude at the input of the polarization demultiplexer. The
initial constellations shown in Fig. 7(a), (b) contain QI, as wit-
nessed by their elliptical shape. The constellation of Fig. 7(a),
corresponding to the 2 x 2 90° optical hybrid, has the form
of eccentric ellipses, a shape due to the distortion introduced
by single-ended detection, combined with small LOSPR. The
QI compensated constellations of Fig. 7(c), (d), resemble the
ones plotted in Fig. 7(e), (f). Concentric circles with unequal
radii are a tell-tale sign of cross-polarization interference
between the two PDM QPSK signals. Due to the presence
of ASE noise, circles are transformed into thick rings, whose
circumferences may overlap. The constellations at the output
of the polarization demultiplexer, seen in Fig. 7(e), (f), are
single circles, indicating that fiber transfer matrix inversion was
successfully performed. The difference in sizes between the

1129

Fig. 7. Typical constellation diagrams in the = polarization (upper row) and
the y polarization (lower row). (a), (b) after synchronization and downsampling;
(c), (d) after QI compensation; (), (f) at the output of the proposed polarization
demultiplexer; (g), (h) after the IF and phase noise removing circuits. (Condi-
tions: R, = 2 GBd).

final x- and y-polarization constellations is primarily attributed
to polarization imbalance (not to be confused with QI) due to
gain and phase differences between the two branches of the
polarization-diversity receiver (see analysis in Appendix C).
In addition, the two polarization tributaries that are combined
at the PBC, may have slightly unequal average powers due to
maladjustment of the PCs or the non-ideal power splitting ratio
of the 3-dB coupler. Fig. 7(g), (h) show the final constellations.
The impact of polarization imbalance is obvious since the
recovered constellations have unequal radii. No errors occur
during a single measurement (i.e., 100 000 symbols) in both
branches of the polarization diversity receiver.

Fig. 8(a) illustrates the time evolution of the estimates of the
azimuth & and ellipticity €. A variable step-size p is used. In
order to bring the operating point near the optimum quickly we
start with a relatively large value of y. The value of y is halved
after 100 symbols and again after another 200 symbols, to avoid
large baseline wander. We can see that while the ellipticity angle
¢ approaches its final value after fewer than 100 symbols, the
azimuth & requires around 200 symbols to do the same. The
azimuth and ellipticity remain stable over the rest of the mea-
surement, confirming that polarization rotations are a slowly
varying effect. Fig. 8(b) shows the time evolution of the in-
stantaneous squared error function for the z-polarization e?(n),
for both the proposed constrained CMA polarization demulti-
plexer and the conventional one. Curves have been smoothed
by moving averaging for illustration purposes. The theoretically
observed three-fold increase in convergence speed is hereby
qualitatively confirmed, although the absolute time scales are
different compared to Fig. 4(b).

V. SUMMARY

This article addressed the optimal design, using the
maximum-likelihood criterion, of polarization-diversity
coherent optical receivers, for the detection of orthogonal
polarization-multiplexed optical signals in the absence of PMD
and PDL. It was shown that a zero-forcing linear receiver,
performing polarization demultiplexing and individual demod-
ulation of the demultiplexed tributaries, yields, under certain
conditions, optimal performance. We showed that polarization
demultiplexing can be performed using a lattice adaptive filter
with four complex, mutually-dependent taps in the absence
of PMD and PDL. The taps can be expressed as a function of
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only two, independently-controlled real parameters. For their
estimation, we used the CMA. We studied, by simulation, the
performance of the proposed polarization demultiplexer in
coherent optical communication systems, using PDM QPSK
signals. We showed that it was, by far, superior, in terms of
convergence speed, compared to a conventional, CMA-based
polarization demultiplexer [10]. Apart from this difference,
both polarization demultiplexers exhibited almost identical
performance. Nevertheless, a salient feature of the proposed
constrained CMA polarization demultiplexer is that it always
achieves convergence, unlike its conventional counterpart,
which occasionally gets caught in singularities. Both the pro-
posed constrained CMA polarization demultiplexer and the
conventional one suffer from output permutation and rotation
ambiguities, but these problems can be remedied by other DSP
techniques. Finally, we experimentally tested the tolerance
of the proposed constrained CMA polarization demultiplexer
to realistic imperfections of polarization-diversity coherent
optical receivers.
APPENDIX A

In this Appendix, we model the polarization- and phase-di-
versity coherent receiver and derive the matrix equation (5). Our
analysis is similar to the one by [2], [3] and is reported here for
completeness. Relationship (1) is used as a starting point.

The polarization-diversity coherent optical receiver splits the
received complex electric field vector E(¢) into its - and y-po-
larization components E,. (¢) and E, (¢) using a PBS with prin-
cipal axes |z), |y)

E.(t) = [Es(t)(z|es()) + Ep(t)(zley(t)]|7)
Ey(t) = [Es () (yles(t)) + Ep(){ylep()]]y)-

The SOP at the output of the LO is assumed to be linear 45°.
After a PBS with principal axes |z}, |y), at the input of each
hybrid, the electric field of the LO can be written, in equivalent
baseband notation, as

€2y

1
—FE,(t)|k
o (1)
where k = x,y and Ej,(t) is the complex envelope of the local
oscillator given by

Eio(t) = /2Pel et +i%e ). (33)

In (33), P, is the average optical power of the local oscillator,
wlo 18 the local oscillator’s angular frequency offset from the
channel’s nominal frequency, and 6),(¢) is the phase noise of
the local oscillator.

At the four outputs of an ideal, lossless, polarization-inde-
pendent, 90° optical hybrid, we obtain (omitting the time de-
pendence, for brevity) [43]

Ep = %(Ek —Eio k)
Eiw2 = 2(Ex + Eio 1)

where k = z,9.

Neglecting, for the moment, the contribution of shot and
thermal noises, which will be taken into account later on, the
photocurrents, at the output of the photodiodes, are given by

. R
Tp] = %ELEI«I

Ei, 1 (t) = (32)

Eis =

L(E Eio
e 3( k+ 7By k) (34)
k4 =3

(JEk + Eio k)

(35)
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where k = z,y,l = 1,...,4. In (35), Ry; are the responsivi-
ties of the photodiodes and the dagger denotes the adjoint, i.e.,
conjugate transpose, matrix.

By substitution of (34) into (35), we obtain

) R
ixn = = (BRI + [ Buo|” — 2% [EL, i

Rk2 {

Tpy = IBx)” + [|Biokl® + 2R o,k Bk

B 2]
o i {||Ek||2+||Elok||2+2s (Bl m]
23 [E], B

) R
ina = "ot (Bl + o ul? - 23 [BL B |
(36)
where k = z,y, and R{-}, {-} denote the real and imaginary
parts, respectively.
In the case of identical photodiodes with responsivity equal
to R, at the outputs of the balanced receivers, we obtain

) ) ) R
ltot, k1 = Tk — Tk1 = §R [EL kEk:|

o k2 = ks — ik = gs BLE] 6
where k = x,y.

After sampling at integer multiples of the symbol period 7%,
we can form the discrete-time complex photocurrents via com-
plex addition

itot,k(n) = itot,kl(n) + j’itot,k2(n)

R
= 5Bl 1 (n)Ex(n) (38)

where k = z,y.
By substitution of (31) and (32) into (38), we obtain

RE,(n)

22 [Es(n)(Eles(n)) + Ep(n)(kley(n))]

(39)

itot,k(n) =

where k£ =
conjugation.

We can define the column-vectors of the photocurrents X (n),
the modulating signals U(n), and the total photocurrent noise
N(n) as

z,y and the superscript * denotes complex

) = [itot,2 (1) itot,y(n)] "
U(n) = [ug(n) u(n)]”

N(n) = [na(n) na(n)]" (40)

where n1(n), n2(n) include the contribution of ASE, shot, and
thermal noises, and the superscript T denotes transposition.

From (2), (39), we observe that the fiber-induced polarization
rotation and the optoelectronic conversion, at the polarization-
and phase-diversity coherent optical receiver, can be described
as a matrix equation

X(n) = AH(n)U(n) + N(n) 41)
where A is a multiplicative factor
A= E\/PSPloejA“IF"TS”M("). (42)

V2
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Fig. 8. (a) Time evolution of the estimates of the s-SOP angles & and £ com-
puted by the proposed constrained polarization demultiplexer. For visualization
purposes, we have removed the unit cell angle restrictions. (b) Time evolution
of the squared error function for the x-polarization e3(n), for the proposed
polarization demultiplexer and the conventional CMA-based one. Curves are
smoothed by two hundred-points moving averaging. (Symbols: Dotted lines:
Initial convergence step ¢« = (.05, Solid lines: Initial convergence step pt =
0.5).

In the above, Awrr = ws — wy, is the IF offset and Af(n) =
s(n) — 610(n) is the total laser phase noise.

In (41), we also defined the transfer function of the transmis-
sion channel as a 2 X 2 matrix

(zles(n))  (zlep(n))
(yles(n))  (yley(n))

It is straightforward to verify that H(n) belongs to the special
unitary group SU(2), i.e., H(n)H(n) = H(n)H(n) = I and
det[H(n)] = 1, where I denotes the 2 x 2 unit matrix and the
operator det[-] denotes the determinant of a matrix.

For ideal NRZ QPSK modulation, the sampled modulating
signals ug(n),k = 1,2 take equiprobable discrete com-
plex values ugx(n) = e/?*(™ k = 1,2, where ¢(n) €
(/4,31 /4}.

Consequently, the mean and covariance matrices of the
modulating signals U(n) are

ny = E{U(n)} = 0

H(n) = . (43)

(44)
and

Ky = E{U(n)UT(n)} =1 (45)

respectively, where E{-} denotes expectation.

From the properties of ASE, shot, and thermal noises, the
mean and covariance matrices of the total photocurrent noise
N(n) are given by

w=E{N(n)} =0 (46)
and

K = E{N(n)N'(n)} = ¢’I (47)
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respectively, where o2 is the variance of the total photocurrent
noise components at the two receiver branches.

In the general case, when the modulating signal amplitudes
and the noise variances at the two receiver branches are not iden-
tical, (41) can be rewritten, with some abuse of notation, as

X(n) = H(n)U(n) + N(n) (48)
where we scale U(n), N(n), so that
Ky = diag{|A41 %, |A2]*} (49)
and
K = diag {07,003} (50)

where diag{-} denotes diagonal matrix, A, Ao are the modu-
lating signal amplitudes, and ¢, o2 are the total photocurrent
noise variances at the two branches of the polarization diversity
receiver, respectively.

APPENDIX B

This Appendix provides a detailed derivation of the optimal
receiver for joint detection of PDM QPSK signals transmitted
over a memoryless, discrete-time, two-input two-output (TITO)
linear channel, based on the maximum-likelihood criterion
[25]-[27].

As a starting point for the derivation, we use the matrix equa-
tion (48)

X(n) =H(n)U(n) + N(n). (51)
The optimal maximum-likelihood receiver estimates the vector
U(n) by maximizing the metric [26],

U =arg max P(X]|U) (52)
where P(X|U) is the conditional probability of the observed
vector X given that the transmitted vector was U and / is the
joint, complex-symbol alphabet. We have dropped the time de-
pendence of all matrices in order to avoid clutter.

Using (51), the above relationship can be rewritten as

A

U=arg max Pn(X — HU) (53)
where Px(N) is the joint probability density function (pdf) of
the complex Gaussian random variables n1, no, with zero mean
given by (46) and covariance matrix K given by (50) [25], [26]

Pu(N) e L C

1
T o da®] Y {

Since P (IN) is a decreasing function of the argument of the ex-
ponential, the maximization in (53) is equivalent to minimizing
the Euclidean distance

D =K '*(X-HU)|. (55)

Expanding the distance metric yields

D =X'K'X + UH'K™'HU - 2R{U'H'K~'X}.
(56)
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The first term is independent of U and, can be ignored. Thus, a
sufficient statistic for estimating the transmitted symbols is the
following

U= arglr}lig{UTHTK_lHU —2R{UHIK'X}}.
[S
(57)

In the special case when the noises at the two branches of the
polarization diversity receiver have the same variance o2 (i.e.,
the photocurrent noise is spatially white), the covariance matrix
of the total photocurrent noise is given by (47). By substitution
of (47) into (56), and taking into account that H is unitary, the
distance metric is simplified

D=0 {|X|” +|U|* - 2R{U'H'X}} (58
or, equivalently,
D=0 {|[Y = U[I* - [[Y[]” + [IX]*} (59)
where we have defined
Y =H'X. (60)

Since only the first term of (59) depends on the candidate
symbol vector U, the optimal receiver simply needs to mini-
mize the metric
U = arg min ||Y — UJ|>. 61

g in [Y - U] (61)
We observe that it is sufficient to estimate each element 4, of
U individually, at each branch of the polarization-diversity re-
ceiver, using the metric

iy = arg min, |yx —uel®,k =,y (62)

where A is the complex symbol alphabet of each polarization-
multiplexed tributary. Furthermore, expanding the above rela-
tionship into its quadrature components, it follows that it is suf-
ficient to choose the real and imaginary parts of each symbol
independently at each branch of the phase-diversity receiver, in
order to minimize the metric

min

63
up ER{A} 63)

ﬂk,l = arg (yk,l - uk,l)27 k= x,y,l = 7‘7i'

To summarize, the above analysis indicates that the optimal
receiver is reduced to a zero-forcing linear receiver [26], [27].
The latter first uses an electronic polarization demultiplexer with
transfer matrix W (n) = Hf(n). Subsequently, the in-phase and
quadrature components of the symbols, at the two outputs of
the polarization demultiplexer, can be independently detected,
by comparing each individual quadrature component to a zero
threshold.

In conclusion, the proposed constrained CMA polarization
demultiplexer is optimal, when the photocurrent noise is spa-
tially white. In this case, the joint maximum-likelihood receiver
and the zero-forcing linear receiver are equivalent.
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APPENDIX C

In this Appendix, we examine how the equivalent channel
formalism can be modified, in order to accommodate PDL and
polarization imbalance at the polarization-diversity receiver. It
is shown that both effects result in a perturbation transfer matrix
that creates additional cross-polarization interference.

Consider a partial polarizer with eigenaxes in Jones space de-
noted by the vectors |p4), |p—). The corresponding eigenaxes
in Stokes space are denoted by +p. The transmittances associ-
ated with these eigenaxes are T ,ax, Tmin, respectively. Both the
eigenaxes and the transmittances are independent of frequency.
PDL is defined in dB units as pag = 10 log(Tmax/Tmin)-

The Jones matrix of the partial polarizer, in the absence of
birefringence, is written as [44], [45]

M = V' Tax|p+)(p+| + VTimin|p-) (p-|-

Using the expansion of the projection coefficient in Pauli spin
matrices (relation [3.9] of [35]), the Jones matrix of the partial
polarizer can be expressed in the alternative form

(64)

M = a(I + Aapad) (65)
where I is the 2 x 2 identity matrix, & is the Pauli spin vector
[35], and we defined the average amplitude attenuation coeffi-
cient a and the differential amplitude attenuation coefficient Aa
as

a = (\/Tmax + Tmin)/Z (66)
Aa = (V/Tuax = VTin)/(VTax + v/ Tin)- - (67)

The electric field of the optical PDM QPSK signal at the input
of the PDL is given by relationship (1). The electric field of the
optical PDM QPSK signal at the output of the partial polarizer
can be written, in the absence of noise, as

Eoui(t) = ME(?). (68)
Then (41) can be rewritten, in the absence of noise, as
X(n) = a[H(n) + AaAH(n)]U(n) (69)
where we defined the perturbation transfer matrix
AH(w) - [Pelleam) plelale, )] o

Pyléles(n))  plyldley(n))

As a sanity check, we observe that the second term of (69)
becomes negligible for Aa — 0, i.e., when Tiax = Tinin-

The zero-forcing polarization demultiplexer must calculate
an estimate H(n) of the total channel transfer matrix a[H(n) +
AaAH(n)] and set W (n) = HT (n). The independent parame-
ters of H(n) are the azimuth and the ellipticity of the input SOP
les(n)), the azimuth and the ellipticity of the PDL eigenaxis p,
and the PDL parameters a, Aa.

In summary, the description of the perturbation matrix would
require four additional control parameters. The total channel
matrix requires six independent control parameters. Still, the
current approach is advantageous compared to the CMA,
which requires control of eight independent real parameters
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for polarization demultiplexing. Increasing the dimensionality
of the independent parameter space will obviously slow down
the search for the global optimum of the transfer function. On
the other hand, conventional CMA-based demultiplexers are
not only slow but also suffer from singularities. Their large
number of independent parameters increases the number of
degrees of freedom and the effects that can be accommodated,
at the expense of execution speed and perhaps convergence
altogether.

It is instructive to estimate the impact of PDL and of po-
larization imbalance on the performance of the proposed con-
strained polarization demultiplexer, which possesses a unitary
transfer matrix. Since the addition of two unitary matrices is
not a unitary matrix, the total channel transfer matrix a[H(n) +
AaAH(n)] is not unitary. As a result, the product of the total
channel transfer matrix with the unitary transfer matrix of the
proposed constrained polarization demultiplexer is not a unit
matrix. Consequently, the transmitted constellations cannot be
not fully detangled.

The output of the polarization demultiplexer can be written,
in the absence of noise, as

Y (n) = a[Heq(n) + AaAHcy(n)]U(n) (71)

where H.,(n), AH.,(n) are the transfer matrices of the
channel and the perturbation after polarization demultiplexing,
which can be written

H.,(n) = WH(n)

AH.,(n) = WAH(n) (72)

The action of the polarization demultiplexer is to rotate the
principal axes of the receiver PBS |z), |y) in order to match
the Jones vectors of the received polarization tributaries. It is
straightforward to show that

[(eslea(m) (Ealen(m))
H‘*q(“>‘[<ép|es<n>> <ép|ep<n>>] (73)
and
[ [lea(n))  H(En(n)|Fen(n))
AHeg(n) = [ﬁ<ép(n)lﬁles(n)> ﬁ<ép(n)lﬁlep(n)>}
(74)

where |é5(t)), |é,(t)) are estimates of the Jones vectors of the
received polarization tributaries.

Assuming that the presence of the perturbation transfer
matrix AH(n) does not drastically change the esti-
mate of CMA, we can postulate that after convergence,
[65(1)) = les(t)), [p(1)) = |ep (1)) Since (es(n)|Fles(n)) = §
and (e, (n)|dles(n)) = 82 + 783 [35], where § is the Stokes
vector of the s-SOP and 3, $o, $3 are a right handed orthogonal
set in Stokes space,

Y(n) = [“ t0aB8) Aoa(ﬁg)} U(n) + AY(Aa)
(75)
where
AY(Aa) = Aa {ﬁ@ ?rjgs) p(% gjg‘”’)} Uln) (76)
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The first term in (75) indicates that the polarization tribu-
taries can be essentially recovered but they are distorted (i.e.,
the constellations have different size, differing by 2Aa(p$) in
radius). This distortion is an artifact induced by the assumption
of the unitarity of the polarization demultiplexer’s transfer ma-
trix. The second term in (75) indicates that there is a residual
cross-polarization interference due to the anti-diagonal transfer
matrix in (76). This interference term is relatively small since
its magnitude depends on the differential amplitude attenuation
coefficient Aa.

Finally, it is worth noting that the polarization imbalance
at the polarization-diversity receiver is the electronic domain
equivalent of using a partial polarizer in the optical domain.
Its impact can be accounted for by substituting the polarizer’s
transmission parameters \/7Imax, VI min With the photodiode
responsivities and the polarizer eigenaxis in Stokes space by

N A

p = a.
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