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Abstract—The mode-dependent signal delay method can be
used to estimate the modal dispersion vector of multimode fibers.
We compute optimal launch modes minimizing the noise error
in this estimate. The electronic SNR is improved asymptotically
by almost 6 dB compared to conventional mode combinations.

I. INTRODUCTION

THE exponential growth of internet data traffic in the years
to come might eventually lead to a capacity shortage in

the global fiber-optic network [1]. To avoid congestion, it is
possible to increase link capacity by using spatial division
multiplexing (SDM) over multimode and multicore optical
fibers (jointly abbreviated below by the composite acronym
SDM MMFs) [1].

Assuming that SDM MMFs will eventually become ubiq-
uitous, accurate experimental techniques must be developed
for their characterization [2]. In particular, modal dispersion
in long SDM MMFs can be described by a set of orthogonal
propagation modes called principal modes (PMs) and by their
corresponding differential mode group delays (DMGDs) com-
pared to the average mode group delay [3]. These quantities
can be geometrically represented by a vector in a generalized
Stokes space called modal dispersion (MD) vector [3], [4].

The mode-dependent signal delay method focuses on the
measurement of the MD vector using an inexpensive direct-
detection receiver [5]. An important question that is left
unanswered in the previous articles on the mode-dependent
signal delay method [5]-[7] is which launch modes must be
used to measure the MD vector.

In the present paper, we answer the above question by
analyzing the impact of noise on the MD vector charac-
terization process performed by the mode-dependent signal
delay method. Our analysis reveals that using a set of launch
modes corresponding to maximally-orthogonal Stokes vectors
minimizes the error in the estimation of the MD vector. We
develop two optimization algorithms based on the gradient
descent method for the selection of maximally-orthogonal
launch states. Using these algorithms, we compute optimal sets
of launch modes for up to N = 40 that maximize the signal-to-
noise ratio (SNR) at the direct-detection receiver and enhance
the accuracy of the mode-dependent signal delay method.
For example, we show that the optimal mode combinations
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improve asymptotically the noise performance of the mode-
dependent signal delay method by almost 6 dB compared to
the set of modes proposed by Yang and Nolan [6].

II. MATHEMATICAL MODEL

The mode-dependent signal delay method consists in send-
ing N2 − 1 optical pulses using different combinations of
modes though an N−mode SDM MMF and measuring the
corresponding mode group delays at the fiber output. Fig. 1
shows indicative drawings of the input and output pulses in
yellow and various colors, respectively. The group delays τgi
of the output pulses are related to the input MD vector ~τs (ω)
and the unit Stokes vectors ŝi representing the launch mode
combinations [4].

Fig. 1: Input pulse (yellow line) and output pulses (blue,
orange, green, and red lines). (Symbols: τgi = Group delays
of the output pulses calculated as first moments in time).

The input MD vector ~τs (ω) is estimated by [7]

~τs (ω) = S−1Tg. (1)

In (1), we defined the coefficient matrix

ST :=
[
ŝ1, . . . , ŝ N2−1

]
, (2)

where the columns of ST are the launch states represented by
the Stokes vectors ŝi, i = 1, . . ., N2 − 1.

We also defined the column vector of the DMGD’s com-
pared to the average group delay τ0

Tg := 2C2
N

[
τg,1 − τ0, . . . , τg,N2−1 − τ0

]T
, (3)

where CN :=
√
N/ [2 (N − 1)].

The presence of thermal noise at the individual measure-
ments τg,i, i=1,. . . , N2 − 1 can lead to a random offset δTg



in the estimation of the DMGD matrix Tg. The mean square
norm of the error in the estimated MD vector is given by [7]

E
{
‖δ~τs‖

2
}
= σ2

δTg
Tr
[
AAT

]
, (4)

where the operator Tr(.) denotes the trace of a matrix, σ2
δTg

is
the variance in the measurement of the individual components
of the column vector Tg, and we set A = S−1 for brevity.

Neglecting σ2
δTg

in (4), since it is solely dependent on the
specific implementation of the direct-detection receiver, we
adopt the squared Frobenius norm of A as a cost function

ξ := ‖A‖2F = Tr
[
AAT

]
. (5)

We want to minimize ξ subject to the constraint that the
Stokes vectors in S must correspond to valid combinations
of modes, taking into account the incomplete coverage of the
Poincaré sphere with valid states for N > 2 [3], [4].

Assume that ξ is a function of n real parameters p1, . . . , pn.
We can write the parameters in column vector form as

p := [p1, . . . , pn]
T
. (6)

The method of gradient descent [10] uses an iterative
algorithm to calculate a minimum of the cost function ξ.
Starting from a given point p(0), it makes successive steps to
points p(k) by moving opposite to the direction of the gradient,
until it reaches a local minimum:

p(k+1) = p(k) − µ(k)∇ξ
(
p(k)

)
, (7)

where µ(k) is a positive constant (adaptive step size) [10]. The
details of the optimization process are given in [11].

III. RESULTS AND DISCUSSION

Fig. 2 shows plots of the SNR penalty as a function of
the number of propagation modes N in the optical fiber for
various vector sets compared to the ideal albeit infeasible case
of orthonormal Stokes vectors. The results of the numerical
optimization are represented by the black curve with circles.
Notice that the penalty is initially 0 dB for N = 2, reaches a
maximum value for N = 4, and then falls monotonically to
almost 0 dB for N = 40. The fact that the penalty is 0 dB for
N = 2 comes as no surprise: in this case, the whole surface of
the Poincaré sphere is covered with valid states. Thus, there
exists an infinity of orthonormal vector sets that can be used
for the measurement of the MD vector in Stokes space. For
larger values of N , it is impossible to find an orthonormal set
of N2−1 Stokes vectors. For instance, for N = 4, we observe
that there is 0.517 dB penalty with respect to the ideal case.
By further increasing N , we observe a gradual reduction in
penalty, reaching 0.046 dB for N = 40.

For comparison, we included in the same graph, three
additional plots corresponding to vector sets proposed in prior
literature in optical communications and quantum mechanics,
namely Yang and Nolan’s vectors [6], vectors selected from
mutually unbiased bases (MUBs) [8], and symmetric, infor-
mationally complete, positive operator valued measure (SIC-
POVM) vectors [9] in blue, green, and orange, respectively.
The main advantage of these three vector sets is that there are
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Fig. 2: SNR penalty compared to the ideal case vs the number
of modes for four different vector sets (Symbols: Blue line:
Yang and Nolan’s vectors [6]; Green line: MUBs [8]; Orange
line: SIC POVMs [9]; Red line: Orthonormal Stokes vectors;
Circles: Numerical optimization).

relatively simple analytical or numerical algorithms for the
evaluation of their coordinates. On the downside, they present
much higher penalties than the optimal vector sets.

In summary, the optimal vector sets provided by numerical
optimization increase the SNR of the measurements asymptot-
ically by 3 dB for large values of N compared to SIC POVMs
and MUBs and by about 6 dB compared to Yang and Nolan’s
vectors.
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