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Abstract—Modal dispersion in strongly-coupled multimode
and multicore optical fibers can be viewed as a generalization
of polarization-mode dispersion in single-mode fibers. Due to
the similarities between these two transmission effects, the
conventional Jones and Stokes calculus for polarization-mode
dispersion can be extended to the case of modal dispersion. In
this paper, we review and expand the theoretical framework
used for the representation of modal dispersion in Stokes space
by the modal dispersion vector. We show, for the first time,
that the modal dispersion vector can be written as a weighted
sum of the Stokes vectors representing the principal modes
with the corresponding mode group delays as coefficients.
This constitutes a fundamental relationship that leads to a
reinterpretation of the modal dispersion vector and can be used
to derive its properties.

Keywords – Optical fiber communication, multimode optical
fiber, multicore optical fiber, modal dispersion, spatial division
multiplexing.

I. INTRODUCTION

The global data traffic crossing the Internet is expected
to increase with a compound annual growth rate (CAGR)
exceeding 20% until 2020 [1], [2]. If this trend continues
unabated for a longer period of time, it can lead to capacity
exhaustion of the existing fiber-optic backbone network [3].
To accommodate future traffic demands, it is desirable to
increase spectral efficiency in congested links by using spatial
division multiplexing (SDM) to send independent data streams
over disjoint spatial paths. This can be done, for instance, by
using different modes of multimode optical fibers (MMFs) or
different cores of multicore optical fibers (MCFs) [4], [5].

Among other transmission impairments, MMFs and MCFs
exhibit modal dispersion (MD), mode-dependent loss (MDL),
multipath interference, and intermodal/intercore crosstalk [6].
This paper is devoted to the accurate modeling of MD in
strongly-coupled MMFs/MCFs in the absence of other modal
effects. In this regime, MD can be viewed as a generalization
of polarization-mode dispersion (PMD) in single-mode fibers
(SMFs) [6]. Due to the similarities between MD and PMD,
the PMD formalism expressed in the conventional Jones and
Stokes spaces [7]-[11] was generalized into higher dimensions
by several authors, e.g., [12]-[16]. MD in MMFs and MCFs
can be fully described in the generalized Jones space by a
set of orthogonal propagation modes called principal modes

(PMs) and by their corresponding mode group delays (MGDs)
[6]. Alternatively, MD can be represented geometrically by a
vector in the generalized Stokes space, called the MD vector
[12]. To the best of our knowledge, so far there has existed
no explicit analytical relationship between the MD vector, the
PMs, and the MGDs. In this paper, for the first time, we show
that the MD vector can be expressed as a weighted sum of the
Stokes vectors representing the PMs with the corresponding
MGDs as coefficients. This leads to a new interpretation of
how the MD vector encapsulates both the PMs and the MGDs
in a single mathematical entity.

The rest of the paper is organized as follows: In Section
II, we review the generalized Jones and Stokes formalism
[12]-[16] for the modeling of MD in MMFs and MCFs.
More specifically, we take a brief look in the generalized
Jones vectors and matrices, the expansion of the latter in the
basis of the generalized Gell-Mann matrices, the transition
between the generalized Jones and Stokes spaces using the
above expansion, and the properties of the vector dot products
in both spaces. In Section III, we derive a concise analytical
relationship that links the MD vector with the input PMs
and the corresponding MGDs. In the Appendix, based on this
new relationship, we rederive previously proposed analytical
expressions for the norm of the MD vector and the projections
of the MD vector on the PMs.

II. THEORETICAL BACKGROUND

A. Literature survey and motivation

Modeling of MD in long-haul SDM optical communications
systems using MMFs/MCFs started circa 2005, when Fan and
Kahn [17] first showed that the concept of principal states
of polarization (PSPs) in SMFs [7] can be generalized to
MMFs/MCFs. Later on, Ho and Kahn [6] used a general-
ized Jones matrix concatenation model to derive analytical
expressions for the probability density functions of the MDGs
and the MDL in strongly-coupled MMFs/MCFs. In 2012,
Antonelli et al. [12] extended Gordon and Kogelnik’s spinor
PMD formalism [10] to the modeling of MD in strongly-
coupled MMFs/MCFs. Several follow-up papers, e.g., [13]-
[16], elucidated various facets of this formalism.

The aim of this invited paper is twofold: (i) To review the
MD formalism and reconcile the differences in the mathemat-
ical conventions adopted by various authors [12]-[16]; (ii) To
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derive a new analytical relationship linking the MD vector to
the PMs and their corresponding MGDs.

The MD vector is a generalization of the PMD vector for
N > 2, where N is the number of spatial and polarization
modes. Recall the conventional definition of the input PMD
vector ~τs as the product of the slow input PSP vector p̂
in Stokes space with the differential group delay (DGD) τ
between the two PSPs (Fig. 1) [10].

Fig. 1. Poincaré sphere, input slow and fast PSPs, p̂ and −p̂, respectively,
and input PMD vector ~τs in the case of SMF (N = 2). An arbitrary launch
state of polarization (SOP) is denoted by ŝ.

Alternatively, it is possible to redefine the input PMD vector
~τs as the sum of the Stokes vectors representing the slow
and fast PSPs, p̂ and −p̂, respectively, with the corresponding
group delays τ/2, −τ/2 as coefficients. This new definition
yields a PMD vector identical to the conventional one

~τs
∆
=
τ

2
p̂+

(
−τ
2

)
(−p̂) = τ p̂. (1)

The advantage of this new definition is that it can be
generalized in the case of higher dimensions N > 2, whereas
the conventional definition of the PMD vector fails to scale
with the number of modes.

More specifically, in Section III, we will show that, in all
cases (N ≥ 2), the input MD vector ~τs can be written as
a weighted sum of the Stokes vectors p̂i, representing the
input PMs, with the corresponding MGDs τi, i = 1, . . . , N
as coefficients [see expression (21) below].

B. Generalized Jones and Stokes spaces

The electric field of a monochromatic optical wave at a
given time instant and position in a N -mode waveguide can
be expressed as the vector sum

E(r, t) =

N∑
k=1

ckEk(r, t), (2)

where Ek(r, t) represent the electric fields of individual modes
and the complex coefficients ck, k = 1, . . . , N represent the
mode excitations [12]. The latter satisfy the relationship

N∑
k=1

|ck|2 = 1. (3)

In the following, we use the methodology and the notation
of [10], [11]: Dirac’s bra-ket vectors represent vectors in the
generalized Jones space and hats represent vectors in the
generalized Stokes space.

We define the generalized unit Jones vectors as |s〉 ∆
=

[c1, . . . , cN ]T , where T denotes the transpose of a matrix.
Combinations of propagation modes are described by such
vectors.

Linear optical devices are represented by N ×N complex
matrices called generalized Jones matrices, similar to the two-
dimensional case. Their action results in a simple multipli-
cation of the input Jones vector by the corresponding Jones
matrix.

There are several advantages in using the generalized Stokes
space instead of the generalized Jones space: The Stokes
formalism allows to depict a combination of modes in a
(N2 − 1)-dimensional Stokes space as a point on the surface
of a (N2−2)-hypersphere (i.e., a generalized Poincaré sphere)
with unit radius. This geometric representation is not as
eloquent as in the case of the three-dimensional Stokes space,
nevertheless, it has some aesthetic appeal. The Stokes space
can also be used for the representation of MD in a concise form
in terms of the MD vector. Moreover, a generalized Stokes
vector can be directly measured using multiple mode filters
and a power meter, similarly to the case N = 2 [18]. Finally,
the MGD of narrowband optical pulses during propagation in
MMFs/MCFs can be written simply as the inner product of
the input MD vector with the Stokes vector corresponding to
the launched combination of modes [16]. This relationship can
be used to characterize MD using the mode-dependent signal
delay method [16].

To transition to Stokes space, we will make use of the
fact that any matrix in the N -dimensional Jones space can be
decomposed in the basis of the N×N identity matrix I and the
N2 − 1 generalized Gell-Mann matrices λ1, . . . , λN2−1 with
dimensions N × N [19], [20]. The latter can be constructed
as follows: Consider an arbitrary orthonormal basis in Jones
space |b1〉 , . . . , |bN 〉 . We first define the following auxiliary
symmetric, antisymmetric, and diagonal matrices, respectively
[19], [20]:

Ujk
∆
= |bj〉 〈bk|+ |bk〉 〈bj | , (4)

Vjk
∆
= −i (|bj〉 〈bk| − |bk〉 〈bj |) , (5)

Wl
∆
= −

√
2

l(l + 1)

l |bl+1〉 〈bl+1| −
l∑

j=1

|bj〉 〈bj |

 , (6)

for given indices j, k, l.
Then, we define the sets [19], [20]

U ∆
= {Ujk : 1 ≤ j < k ≤ N},

V ∆
= {Vjk : 1 ≤ j < k ≤ N},
W ∆

= {W` : 1 ≤ l ≤ N − 1}.
(7)

The generalized Gell-Mann matrices λi are the elements
of the union of the above sets, i.e., λi ∈ U ∪ V ∪ W , i =



1, . . . , N2 − 1 [19], [20]. The order in which the elements
λi are listed is immaterial since reordering them results in a
permutation of the Stokes vector components in (12).

From their definition, we note that the generalized Gell-
Mann matrices are traceless and mutually trace-orthogonal
[19], [20]

Tr (λi) = 0,
Tr (λiλj) = 2δij ,

(8)

where Tr(.) denotes the trace operator and δij , i, j =
1, . . . , N2 − 1, denotes the Kronecker delta.

To write concisely the expansion of a Jones matrix in the
orthonormal basis of the identity matrix and the N2 − 1
generalized Gell-Mann matrices, we also define the Gell-Mann
spin vector Λ

∆
= [λ1, . . . , λN2−1]

T , in analogy to the Pauli
spin vector [10].

To illustrate the expansion of a Jones matrix in the orthonor-
mal basis of the identity matrix and the N2 − 1 generalized
Gell-Mann matrices, following the methodology of [10], we
first define the dyadic operator |p〉 〈q| as the outer product of
two generalized Jones vectors

Ξ
∆
= |p〉 〈q| =


p1q1

∗ p1q2
∗ · · · p1qN

∗

p2q1
∗ p2q2

∗ · · · p2qN
∗

...
...

. . .
...

pNq1
∗ pNq2

∗ · · · pNqN
∗

 , (9)

where the asterisk denotes complex conjugate.
A special case of a dyadic operator is the projection

operator. This represents a mode filter, i.e., the equivalent of
a polarizer in the two-dimensional case

ρ
∆
= |s〉 〈s| =


|c1|2 c1c2

∗ · · · c1cN
∗

c2c1
∗ |c2|2 · · · c2cN

∗

...
...

. . .
...

cNc1
∗ cNc2

∗ · · · |cN |2

 . (10)

Using (4)-(8), we expand the projection operator in the
orthonormal basis of the identity matrix and the N2 − 1
generalized Gell-Mann matrices {I, λ1, . . . , λN2−1} [13], [15]

|s〉 〈s| = 1

N

[
I +

√
N(N − 1)

2
ŝΛ

]
, (11)

where we defined the generalized Stokes vectors as [13], [15]

ŝ
∆
=

√
N

2(N − 1)
〈s|Λ |s〉 . (12)

The normalization coefficient
√
N/[2(N − 1)] in (12) is cho-

sen such that ‖ŝ‖ = 1.
It should be emphasized that Antonelli et al. [12] used

different multiplication coefficients for (11), (12). Here, we
adopt the conventions of [13]-[15] and [19] due to their
backward compatibility with the PMD case [10], [11].

One can use the following eigenvalue equation as an inverse
transform from Stokes to Jones space [11]√

N

2(N − 1)
(ŝΛ) |s〉 = |s〉 . (13)

Equation (13) stems from the expansion of the projection
operator (10) on the basis of the identity matrix and the
N2 − 1 Gell-Mann matrices (11) by multiplying the latter
with |s〉 from the right and rearranging the terms. It indicates
that the Jones vector |s〉 corresponding to the Stokes vector
ŝ is the eigenvector of the operator (ŝΛ) corresponding to
the
√
2(N − 1)/N eigenvalue. Most points on the generalized

Poincaré sphere do not satisfy (13), which means that they do
not correspond to valid combinations of modes.

The connection between the dot products in Jones and
Stokes space is the following [19]:

|〈q | p〉|2 =
1

N
[1 + (N − 1) p̂q̂] . (14)

To obtain (14), we first write the dyadic operator (9) as a linear
combination of the identity matrix and the N2−1 Gell-Mann
matrices and then we multiply with |p〉 from the right and 〈q|
from the left.

Orthogonal vectors in Jones space correspond to non-
orthogonal vectors in Stokes space. Setting 〈q | p〉 = 0 in
(14), we obtain [19]

p̂q̂ = − 1

N − 1
. (15)

The dot product property (15) is satisfied by the N vectors
connecting the origin of the axes with the N vertices of a
(N − 1)-dimensional regular simplex centered at the origin
and inscribed in the unit sphere SN−2 [19]. Conversely, this
indicates that the N vectors of an orthonormal basis in Jones
space are mapped into Stokes vectors that form the vertices
of such (N −1)-dimensional regular simplex [19] (cf. Fig. 3).

C. Modeling long MMFs/MCFs
A long linear MMF/MCF link can be modeled as a con-

catenation of independent short fiber segments [6]. The latter
can be implemented using random unitary matrices for the
coupling sections and diagonal unitary matrices for the delay
sections (Fig. 2).

Fig. 2. Trellis diagram visualization of the simulation model of a long
MMF/MCF link with N modes/cores composed of a concatenation of K-1
uncoupled short uniform fiber segments with K coupling stages in between.
All functionalities can be implemented using N×N unitary matrices in Jones
space [6]. (Symbols: Nodes = fiber modes, τ (k−1)

i = MGD of the i−th mode
in the k−th segment, c(k)i,j = coupling coefficient between the i−th and the
j − th modes in the k−th segment).

From the directed graph shown in Fig. 2, we can write
the following matrix equation that connects the input |s〉 and
output |t (ω)〉 Jones vectors [10]

|t (ω)〉 = U (ω) |s〉 , (16)



where U(ω) is the unitary transfer matrix of the fiber in Jones
space.

The input MD vector ~τs is defined as

iU(ω)
†
Uω(ω)

∆
=

√
N − 1

2N
~τs(ω)Λ, (17)

where the index ω denotes differentiation with respect to the
angular frequency and † denotes the adjoint matrix.

It is worth pointing out that Antonelli et al. [12] and Milione
et al. [16] use different multiplication coefficients for the RHS
of (17). Our choice stems from (11), (12) and is backwards
compatible with the PMD case [10], [11].

The input PMs are the eigenstates of the operator [10]

iU(ω)
†
Uω(ω) |pi(ω)〉

∆
= τi(ω) |pi(ω)〉 , (18)

where τi(ω), i = 1, . . . , N , are the corresponding MGDs.
The output PMs are given by |qi (ω)〉

∆
= U (ω) |pi (ω)〉,

i = 1, . . . , N .
Millione et al. [16] showed that the group delay τg of an

optical pulse corresponding to a given combination of launch
modes is related to the dot product of the input MD vector
~τs (ω) and the input launch state ŝ in Stokes space. We rewrite
their expression in a slightly modified form:

τg =
N − 1

N
〈~τs (ω)〉 ŝ, (19)

where angle brackets denote spectral averaging [10].
It is worth noting that (19) differs from the original ex-

pression (16) of Millione et al. [16] on several points: there
is a corrective multiplicative factor of (N − 1)/N , the input
MD vector ~τs is spectrally-averaged, and the average MGD is
assumed zero for convenience [12]

N∑
i=1

τi (ω) = 0. (20)

The above changes are necessary in order to make (19)
compatible with (11), (12) and with expression [5.30] in [10].

III. MODELING OF MODAL DISPERSION

We will show that, in the absence of MDL, the input MD
vector can be written as a weighted sum of the Stokes vectors
representing the input PMs with the corresponding MGDs as
coefficients

~τs (ω) =

N∑
i=1

τi (ω) p̂i (ω) . (21)

Since the input and output PMs form orthonormal bases in
Jones space, according to (15), they are mapped into Stokes
vectors that form the vertices of (N − 1)-dimensional regular
simplices. It is possible to visualize these simplices in the
case of bimodal fibers (N = 2) (i.e., the PSPs p̂, −p̂ form a
straight line in Fig. 1), as well as in the case of hypothetical
trimodal (N = 3) and quadrimodal (N = 4) fibers (Fig.
3), where the PMs form an equilateral triangle and a regular
tetrahedron, respectively. In general, the Stokes vector in the

direction of the MD vector does not coincide with a state that
corresponds to a valid combination of modes in Jones space,
i.e., the eigenvalue equation (13) is not satisfied.

(a)

(b)
Fig. 3. (a) For a hypothetical trimodal fiber, the Stokes space is eight
dimensional. The input PMs in Stokes space are vectors from the origin of
the axes to the vertices of an equilateral triangle. The input MD vector is on
the same plane as the input PMs. The dotted circle indicates the boundaries of
the generalized Poincaré sphere; (b) For a hypothetical quadrimodal fiber, the
Stokes space is 15-dimensional. The input PMs in Stokes space are vectors
from the origin of the axes to the vertices of a regular tetrahedron. The input
MD vector lies in the same 3D subspace as the input PMs.

To prove (21), we will first derive an alternative expression
for (19). For this purpose, we introduce the Jones transfer
matrix decomposition

U (ω)= Q (ω)D (ω)P† (ω) , (22)

where D (ω) is a diagonal matrix containing the mode group
delays of the PMs

D (ω) =

 e−iωτ1(ω) 0
. . .

0 e−iωτN (ω)

 , (23)

and P (ω) ,Q (ω) are unitary matrices with columns the input
and output PMs, respectively.



Consider a scalar pulse g(t) with unit energy, which is
originally centered on t = 0. These conditions can be mathe-
matically expressed as follows:

∞∫
−∞

|g (t)|2dt = 1,

∞∫
−∞

t|g (t)|2dt = 0.

We launch this pulse into a MMF using a combination of
modes |s〉 . The output electric field spectrum can be written
in equivalent baseband representation as

E (ω) = G (ω)U (ω) |s〉 . (24)

Substituting expression (22) for the fiber transfer matrix into
(24) yields

U (ω)=

N∑
k=1

e−iωτk(ω) |qk (ω)〉 〈pk (ω)|. (25)

Assuming that the pulse has sufficiently narrow spectrum
around ω = 0 such that all frequency-dependent terms in the
RHS of (25) are constant, the output electric field in the time
domain can be written as

E (t) =

N∑
k=1

g(t− τk) 〈pk | s〉 |qk〉 , (26)

where we omitted the dependence from ω = 0 to avoid clutter.
The pulse group delay τg is defined as [10]

τg
∆
=

∞∫
−∞

tE(t)
†
E (t) dt, (27)

which yields

τg =

N∑
i=1

τi|〈pk | s〉|2=
1

N

N∑
i=1

τi +
N − 1

N

N∑
i=1

τip̂iŝ. (28)

Substituting (20) into (28), we obtain

τg =
N − 1

N

N∑
i=1

τip̂iŝ. (29)

Finally, by comparison of (19) and (29), for a sufficiently
narrowband pulse such that 〈~τs (0)〉 = ~τs(0) = ~τs, we arrive
at the desired expression

~τs =

N∑
i=1

τip̂i. (30)

Q.E.D.

IV. SUMMARY

In this paper, we reviewed and expanded the theoretical
framework used for the representation of MD in Stokes space
by the MD vector. We reconciled the differences in the
mathematical conventions adopted by various authors [12]-
[16]. Finally, we showed that, in the absence of MDL, the input
MD vector can be written as a weighted sum of the Stokes
vectors representing the input PMs with the corresponding
MGDs as coefficients.
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APPENDIX
MD VECTOR PROPERTIES

In this Appendix, we will use our definition of the input
MD vector (21) to prove the MD vector properties given
by the relationships (31) and (32) below. These expressions
were initially derived by Antonelli et al. [12] using a different
method. Here, they differ slightly from their original form in
[12] due to our choice of multiplication coefficients in (11),
(12), and (17).

More specifically, we will show that:
(i) The norm of the input MD vector ~τs(ω) is given by

‖~τs(ω)‖ =

√√√√ N

N − 1

N∑
k=1

τ2
k (ω). (31)

(ii) The input MD vector ~τs(ω) is not aligned to any
particular input PM p̂s,i. Its projection on the input PMs is
given by

~τs(ω)p̂s,i(ω) =
N

N − 1
τi(ω) (32)

where i = 1, . . . , N.
We will first prove relationship (31). From (21), the squared

magnitude of the MD vector is given by

‖~τs (ω)‖2 =

N∑
i=1

N∑
j=1

τi (ω) τj (ω) p̂i (ω)p̂j (ω)

=

N∑
i=1

τ2
i (ω) + 2

N∑
i=1

N∑
j=i+1

τi (ω) τj (ω) p̂i (ω)p̂j (ω) .

Using (15) we obtain

‖~τs (ω)‖2 =

N∑
i=1

τ2
i (ω)−

2

N − 1

N∑
i=1

N∑
j=i+1

τi (ω) τj (ω).

(33)
By squaring (20), we get

2

N∑
i=1

N∑
j=i+1

τi (ω) τj (ω) = −
N∑
i=1

τ2
i (ω). (34)



Substituting (34) into (33), we obtain

‖~τs (ω)‖2 =
N

N − 1

N∑
i=1

τ2
i (ω).

and thus (31) is proved.
Q.E.D.

Next, we will prove relationship (32). First, we multiply
both sides of (21) with p̂i

~τs (ω) p̂i (ω) =

N∑
j=1

τj (ω) p̂j (ω) p̂i (ω). (35)

Substituting (15) into (35) yields

~τs (ω) p̂i (ω) = τi (ω)−
1

N − 1

N∑
j 6=i

τj (ω). (36)

Rearranging the terms in (20) yields

N∑
j 6=i

τj (ω) = −τi (ω) . (37)

Substituting (37) into (36), we obtain the desired expression

~τs (ω) p̂i (ω) =
N

N − 1
τi (ω) .

Q.E.D.
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