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Abstract—In coherent optical systems, apart from fiber 
chromatic dispersion and polarization mode dispersion, 
transmitter and local oscillator phase noise and 
intermediate frequency offset also have a significant impact 
on the system’s performance. We study, by simulation, the 
performance of adaptive equalization, assisted by a 
recursive phase noise-removing unit, on the combined 
impact of the above effects. An intermediate frequency 
offset larger than 300 MHz induces an SNR penalty over 6 
dB, whereas the system’s tolerance over phase noise is 
larger, allowing for the use of lasers with linewidth equal to 
almost 30 MHz, with less than 4 dB penalty.  

I. INTRODUCTION 
Chromatic dispersion (CD) and polarization mode 

dispersion (PMD) have a significant impact on the 
performance of optical systems as data rates increase [1], 
[2]. Instead of using expensive and bulky optical 
equalization methods [3] for their compensation, coherent 
detection, in conjunction with adaptive electronic 
equalization, can be employed [4]. Adaptability is 
essential due to the time-variant nature of PMD and 
possible changes in fiber length caused by optical 
switching in all-optical networks. Due to the phase 
preservation property of coherent receivers, adaptive 
electronic equalization is, in principle, capable of 
removing linear fiber impairments with zero total penalty. 
However, coherent homodyne detection suffers from 
intermediate frequency (IF) offset, which varies very 
slowly with time and normally requires automatic 
frequency control (AFC) in order to be removed. In 
addition, for optical communication systems using phase 
modulation and coherent detection, phase noise (PN) 
causes additional performance degradation [1]. 
Experimental and theoretical studies have been published 
[5]-[9] that demonstrate the performance of adaptive 
electronic equalization against CD and PMD in optical 
coherent systems. However, to our knowledge, the 
impact of IF offset on the performance of these equalizers 
has not yet been examined. Most theoretical studies 
assume ideal homodyne detection [5], [6]. Most 
experimental studies either manage to keep IF offset 
under strict limits [7], or use complex, off-line methods 
for removing it [8], [9]. 

In this article, we study, by computer simulation, the 
performance of an adaptive electronic equalizer against 
the combined effect of CD and PMD, in the presence of 

phase noise and, for the first time, of the IF offset 
generated by free running transmitter and local oscillator 
lasers. The receiver under study is equipped with an 
additional digital signal processing application-specific 
integrated circuit (DSP ASIC) for the removal of phase 
noise [5] symbol-by-symbol. It can operate with up to 
300 MHz of IF offset and phase noise generated by wide-
linewidth lasers, combined with CD and PMD. 

The rest of the paper is organized as follows. In section 
II, we describe the simulated system. In section III, the 
simulation models of the optical fiber, the coherent 
receiver, and the electronic equalizer are presented. 
Simulation results are shown in section IV. Conclusions 
are presented in section V. 

II. SYSTEM OVERVIEW 
The system under study is shown in Fig. 1. Four 

pseudo-random bit sequences (PRBS 1-4), at a bit rate 

bR  each, are differentially encoded (DE) and transformed 
into non-return-to-zero (NRZ) pulse sequences, which 
externally modulate the output of the transmitting laser 
diode, using two quadrature modulators. Two optical 
differential quadrature phase shift keying (DQPSK) 
signals are produced, at a symbol rate S bR R=  each. The 
two signals are added together using a polarization beam 
combiner to form a polarization-multiplexed DQPSK 
(PM-DQPSK) signal which is transmitted into the optical 
fiber. The optical fiber is characterized by CD, PMD and 
attenuation. Optical amplifiers, placed after each fiber 
span, are used to compensate for the optical fiber’s 
attenuation. After optical bandpass filtering, the distorted 
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Figure 1.    System block diagram (Symbols: PRBS: Pseudo-random bit 
sequence, DE: Differential encoding, TxL: Transmitter laser, QM: 
Quadrature modulator, PC: Polarization controller, PBC: Polarization 
beam combiner, OA: Optical amplifier, BPF: Optical bandpass filter, Rx: 
Coherent receiver, s : Transmitted signal, ,x y : Orthogonal states of 

polarization (SOP), bR : Bit rate, sR : Symbol rate). 
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waveform is demodulated using a phase- and 
polarization-diversity homodyne coherent receiver. 
Initially, at the receiver front end, the received signal is 
split into two arbitrary orthogonal states of polarization 
and combined with the light of the local oscillator in two 
2×4 90° optical hybrids, as illustrated in Fig. 2. The 
signals at the optical hybrids’ outputs are detected by four 
balanced detectors. The four electrical waveforms 
produced correspond to the in-phase and quadrature 
components of x  and y  polarizations, respectively. 
After low-pass filtering (LPF), the analog waveforms are 
fed into the DSP section of the receiver, which is pictured 
in Fig. 3. There, initially, sampling and analog-to-digital 
conversion take place. Then, the samples of the 
quadrature components are processed so that fiber-
induced distortion is compensated for and the combined 
phase shift due to phase noise and IF offset is removed, to 
a certain extent. Distortion compensation is achieved via 
a linear, fractionally-spaced equalizer. Tap spacing is set 
to half the symbol period T , which requires two-fold 
oversampling. A / 2T -spaced equalizer has superior 
spectral characteristics and increased tolerance of 
sampling phase errors in comparison with the T -spaced 
equalizer [4], [10]. It also exhibits at least similar 
performance to the decision feedback equalizer (DFE) 
[5], [6], [10] in coherent optical systems, but with 
reduced complexity. The number of equalizer L taps is a 
design parameter and its role will be discussed below. 

III. THEORETICAL MODEL 
In this section, we describe the fiber-induced 

distortions, the modeling of additive noise, phase noise 
and IF offset. We also describe the structure and 
operation of the equalizer and the DSP unit that removes 
phase noise and IF offset. 

The transmitted waveforms ( )xs t , ( )ys t  for the two 

orthogonal polarizations can be written, in equivalent 
baseband notation [10], as 
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where Α  is the carrier amplitude, ( )t tθ  is the 

transmitter phase noise, ,

k

x yϕ  is the transmitted phase for 

each orthogonal polarization, corresponding to the k − th 
symbol, M  is the length of the transmitted sequence of 
symbols, and ( )g t  is the symbol shape, which is 

assumed to be ideal NRZ. With ( ),x yz t  we denote the 

phase noise-free optical waveforms. 
Phase noise is caused by random frequency 

fluctuations of the transmitting and local oscillator lasers 
[1]. It is modeled as a Wiener-Lévy process [11]. The 
phase noise is generated by the transmitting laser and is 
sent through the optical fiber. We assume that optical 
filtering by the fiber and the optical bandpass filter (BPF) 
does not affect the statistics of the transmitting laser 
phase noise. Additional phase noise is generated by the 
local oscillator at the receiver. 

The optical signal is fed into the optical fiber, which is 
assumed to be linear, exhibiting only CD and PMD. The 
optical fiber’s transfer function has the form of a 2×2 
matrix (in equivalent baseband notation [10]): 

 ( ) ( )
2

2

S

fj
Rf f e

π γ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠=H J . (2) 

In (2) we use boldface letters to denote matrices and 
vectors. More specifically, ( )fJ  denotes the 2×2 Jones 
matrix of the optical fiber, including polarization 
rotations and all PMD orders [12], f  is the frequency 
deviation from the carrier frequency and γ  is the CD 
index [13], given by 

 ( )2
21

S fiberR L D
c
λγ λ

π
= , (3) 

where fiberL  is the fiber’s length, λ  is the carrier 

wavelength and ( )D λ  is the chromatic dispersion 
parameter [1]. We ignore higher-order CD, polarization 
dependent loss and fiber non-linearities.  

The impulse response of the optical fiber also has a 
matrix-form 
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where the operator {}1 .−F denotes the inverse Fourier 

transform.  
We assume that the optical BPF has an ideal 

rectangular transfer function, with bandwidth much larger 
than the signal bandwidth, so we ignore its impact on the 
signal. After detection, the two analog complex signals 
( )xr t  and ( )yr t , for the two polarizations, respectively, 

can be written as: 
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Figure 2.    Receiver front end (Symbols: LO: Local oscillator, PBS: 
Polarization beam splitter, BRx: Balanced receiver, LPF: Low-pass 
filter, u : Filtered analog electrical signal). 
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In (5), we used the following symbols: The multiplicative 
coefficient B  denotes the amplitude of the detected 
electrical waveforms. The phase component ( )tθ  is 

given by ( ) ( ) ( )IF Nt t t tθ ω θ= + , where ( )N tθ  denotes 
the total phase noise, i.e., the sum of the phase noises 
from the transmitter and the local oscillator, and 

2IF IFfω π=  is the angular intermediate frequency, with 

IFf  being the IF offset. The IF offset is defined as the 
difference between the signal’s carrier and the LO’s 
frequencies. Due to laser frequency drift, perfect 
homodyne detection is not feasible and a difference 
between the two frequencies always exists. The total 
phase noise of the IF photocurrent is quantitatively 
characterized by the 3-dB IF linewidth 

IF Tx LOν ν ν∆ = ∆ + ∆ , where Txν∆ , LOν∆  are the 
transmitter’s and LO’s linewidths, respectively [1]. In (5), 
( )xn t  and ( )yn t  describe the sum of all additive noises 

that affect each polarization. In the optical domain, the 
signal is contaminated with amplified spontaneous 
emission (ASE) noise from optical amplifiers. In the 
electrical domain, shot and thermal noise are introduced 
by the photodiodes and receiver circuitry, respectively. 
ASE and thermal noise can be modeled in equivalent 
baseband notation as Gaussian complex random 
variables, while shot noise follows a Poisson distribution 
[1]. For high levels of optical power, shot noise may be 
also approximated by a Gaussian distribution [1]. 
Consequently, we can model the combined effect of ASE, 
shot and thermal noises, as two independent, equivalent 
complex additive white Gaussian (AWGN) noise sources, 
one for each polarization. 

The detected signals are filtered by electronic LPFs, 
that have an impulse response ( )eh t  and produce the 

waveforms ( ) ( ) ( ), ,x y e x yu t h t r t= ⊗ , for the two 

polarizations, respectively. We assume that phase noise 
and IF offset are not affected by lowpass filtering.  

After two-fold oversampling compared to the symbol 

rate, two samples of ( ),x yu t  per symbol period T  enter 

the equalizer, which compensates for the effect of CD 
and PMD. The block diagram of the electronic equalizer 
and the assisting signal processing mechanisms is shown 
in Fig. 3. It consists of four complex-valued transversal 
filters with impulse responses 11 12 21 22, , ,w w w w  of 
length L , arranged in a butterfly structure [5], [9]. The 
equalizer implements a 2×2 matrix impulse response 
similar to the structure of the fiber’s one, symbolized by 
W , where 11 12 21 22, , ,w w w w  serve as elements in the 
equalizer matrix impulse response. The equalizer 
generates one sample per symbol, at time instants 

,  kT k ∈ . 
If the fiber’s transfer function is known and constant, 

the equalizer’s tap weights can be appropriately selected, 
in order to invert the product of the LPF and the optical 
fiber’s transfer functions, i.e., ( ){ } ( )eh t fHF . 

However, the transfer function ( )fH  includes the effect 
of time-varying PMD. In addition, the optical fiber’s 
length is not always constant and a-priori known in the 
case of reconfigurable all-optical networks. 
Consequently, an adaptive method must be used for tap-
weight adjustment. The least mean squares (LMS) [10] 
algorithm is used to control the equalizer’s tap weights, 
following the minimum mean-square error (MMSE) 
criterion [10]. The tap weight adjustment is described by 
the equation 

 [ ] [ ] [ ] [ ] [ ]1 * T ˆk k k k k ,µ+ = +W W u e Θ  (6) 

where we use the notation [ ] ( ) ,  a k a kT k= ∈ , for the 
representation of discrete time signals. In (6), 

[ ][ ] [ ] [ ]
T

x yk k k=u u u and contains the L -sized line 

vectors [ ],  [ ]x yk ku u , each made from the L  last output 

samples of the sampling circuit, for each polarization, 
respectively, µ  denotes the LMS step size,  

 [ ]
[ ] [ ]
[ ] [ ]

x x

y y

d k q k
k

d k q k

−
=

−

⎡ ⎤
⎢ ⎥
⎣ ⎦

e  (7) 

is a vector that contains the error sample, i.e., the 
difference between the output and the input samples of 
the decision circuit for each polarization, stars denote 
complex conjugates and the matrix 
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is used for stability reasons [5]. Phases x ,y
ˆ kθ ⎡ ⎤⎣ ⎦  are the 

estimates of the phase error caused by phase noise and IF 
offset, for every sample at time instant ,  kT k ∈ , in 
both polarizations. These estimates are calculated using 
the phase shift between the samples at the input and the 
output of the decision circuit at time instants 
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Figure 3.    Block diagram of the receiver DSP unit (Symbols: ADC: 
Analog-to-digital converter, w: Transversal filter impulse response, θ̂ : 
Phase noise estimate, ,  q d : Decision circuit input and output, e : error 
signal, DD: Differential decoding, BER: Bit error rate counter). 
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( )1 ,  k T k− ∈  [5]: 
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where [ ]x ,yq k , [ ]x ,yd k  are the samples for each state of 
polarization at the input and the output of the decision 
circuit, respectively, and [ ]0 1,δ ∈  is the step size 
parameter for the phase noise cancellation algorithm. The 
estimates [ ]x ,y

ˆ kθ  are subtracted from the phase of the 
samples at the output of the equalizer, as shown in Fig. 3. 
This symbol-by-symbol phase noise estimating and 
removing circuitry is simpler to implement than the block 
based signal processing methods that are usually used in 
the literature, including FFT [9] or rise of the complex 
symbols to the fourth power [8], [14]. 

Finally, the estimates of the transmitted symbols are 
differentially decoded (DD) and compared to the 
corresponding PRBS at the transmitter for bit error rate 
(BER) calculations. 

IV. SIMULATION RESULTS 
We simulate a system using a standard single mode 

fiber (SMF) with CD parameter D=16 ps/nm/km at 1550 
nm. The bit rate is bR =10 Gb/s, so the respective symbol 

rate is SR =10 GBd per polarization. First-order PMD 
exclusively is considered for all simulations, with DGD 
ranging from 0.2T  to 2.5T . The relative angle between 
the fiber’s PSP’s and the two orthogonal transmitted 
states of polarization is equal to 45° (worst case 
scenario). The electronic LPF has a 3-dB bandwidth 
equal to 8 GHz. Step size parameters µ , δ  are set to the 
values 0.001 and 0.5, respectively, optimized for stability 
of the recursive algorithms and low BER. For the 
purposes of the simulations we consider a single-span 
fiber-optic communication system with variable length, 
followed by a single optical amplifier, which fully 
compensates for the fiber’s attenuation. The SNR is set 
by appropriately selecting the power of the optical signal 
at the input of the optical amplifier, which has a fixed 
gain and a noise figure of 4 dB. The SNR penalty is 
calculated for BER 10-3, which can be reduced to 10-15 
using forward error correction (FEC) [8]. The SNR 
penalty for each case is calculated by comparing the SNR 
after transmission to the required SNR for  BER=10-3 for 
the back-to-back case, for an ideal homodyne 
configuration with zero laser 3-dB linewidth and an 
equalizer with 50 taps. BER is calculated using Monte 
Carlo simulations. Non-linear effects have been 
neglected. 

Fig. 4 shows constellation diagrams at the input of the 
electronic equalizer and at the output of the phase noise 
removing circuit. In order to demonstrate the system’s 
performance against phase noise and IF offset we 
consider three case studies. In diagrams (a) and (b), only 

phase noise is simulated ( IFν∆ =2 MHz), while CD, 
PMD, and IF offset are set to zero. In (c), (d), CD, PMD, 

IFν∆ are set to zero and IF offset of 100 MHz is 

simulated. Finally, in (e), (f), IFν∆ =2 MHz, IF offset is 
100 MHz, γ =1.2 and PMD is set as described earlier 
with DGD equal to 0.2T . To facilitate visualization, 
additive noise has been omitted. It is observed that the 
equalizer manages to restore the constellation diagrams 
to, almost point-like form, in all cases. 

Fig. 5 shows the impact of the number of filter taps on 
the performance of the electronic equalizer. An IF offset 
of 100 MHz and a IFν∆  equal to 10 MHz are assumed. 
The SNR penalty for BER=10-3 is calculated, as a 
function of γ , for an electronic equalizer with 8, 14, 22 
and 50 taps, respectively. Results are shown for DGD= 
0.2T  and DGD= 2.5T . It is observed, that even for the 
back-to-back case, due to phase noise and IF offset, the 
SNR penalty is non-zero. For DGD= 0.2T , it can be seen 
that the equalizers with 8 and 14 taps can maintain the 
target BER for values of γ  up to 1 and 2, respectively, 
with SNR penalty less than 3 dB. The equalizer with 22 
taps gives less than 3 dB penalty for γ  about 3.5. If the 
length of the equalizer is increased to 50 taps, the penalty 
remains below 2 dB for γ  up to 5. In the extreme case 

γ  
Figure 5.    SNR penalty vs. CD index γ for various equalizer transversal 

filter lengths. Conditions: 
IF

f =100 MHz, 
IF

v∆ =10 MHz (solid line: 

DGD= 0.2T , dotted line: DGD= 2.5T ). 

a) c) e)

b) d) f)  
Figure 4.    Equalizer input (upper row) and decision circuit input (lower 
row) constellation diagrams.  ((a)-(b): phase noise only, (c)-(d): IF offset 
only, (e)-(f): CD, PMD, phase noise, IF offset). 
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when DGD= 2.5T , we observe that the equalizers with 8 
and 14 taps fail to maintain the SNR penalty below 3 dB 
for values of γ  greater than 0.5. The equalizer with 22 
taps manages to reach γ  slightly over 2 with SNR 
penalty less than 3. If the length of the equalizer is again 
increased to 50 taps, the system is resilient to this 
increase of DGD and maintains the SNR penalty below 2 
dB for the whole range of γ  studied here. It can be seen 
that for the removal of distortion caused by DGD up to 
2.5T , more than 14 taps are necessary. The equalizer 
with 22 taps is capable of compensating for PMD up to 
2.5T  but is limited by CD, while the equalizer with 50 
taps is not influenced by PMD and can, additionally, 
equalize for any amount of CD studied here. 

The combined impact of phase noise and IF offset on 
the performance of the system with γ =2, using an 
equalizer with 22 taps, is presented in the contour plot of 
Fig. 6. We have calculated the SNR penalty for BER=10-3 

for different values of  IFν∆  and IF offset. As expected, 

there is a trade-off between IFν∆  and IF offset. With this 
system, even lasers with very wide linewidth can be used, 
if IF offset is limited to low values. Conversely, the use 
of low-linewidth lasers could relax the requirements on 
IF offset control. 

V. CONCLUSIONS 
We demonstrate the impact of IF offset on the 

performance of a coherent homodyne system, employing 
electronic equalization against CD and PMD and 
additional signal processing against phase noise. The 
system can operate with a SNR penalty less than 6 dB 
with IF offset up to 300 MHz if narrow-linewidth lasers 
are used. If IF offset is kept below 150 MHz, wide-
linewidth lasers can be used giving the same SNR 
penalty.  
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