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ABSTRACT 
Two different semi-analytical methods for error probability estimation in PDM-QPSK optical 

communication systems are investigated. We consider the accuracy of a stochastic semi-analytical method 

based on Gaussian noise statistics and a deterministic semi-analytical method where the noise probability 

density function is estimated analytically against Monte-Carlo simulation. Linear coherent PDM-QPSK 

systems with distortions induced by filtering only, and nonlinear coherent PDM-QPSK systems with or 

without inline dispersion compensation are studied. Our results suggest that the stochastic semi-analytical 

method based on Gaussian noise statistics works very well for practical fiber-optic communication systems. 

Keywords: Optical fiber communication, error probability, phase shift keying, coherent detection.  
1. INTRODUCTION 

Error probability estimation through conventional Monte-Carlo simulation requires the transmission of a 

pseudo-random bit sequence (PRBS), followed by direct error counting. In order to achieve good statistical 

reliability, it is important to assure that at least 100 errors are observed for each simulation in order to 

calculate the error probability [1]. This imposes significant constraints on the memory and efficiency for 

computer simulations, especially for systems with low error probability. Therefore, computationally-

efficient analytical or semi-analytical methods are desired for performance characterization of optical 

communication systems. To design accurate semi-analytical methods, one has to know the probability 

density function (p.d.f.) of the noise, which can be inherently difficult to evaluate in closed form due to the 

interaction among the noise, nonlinearities, and digital signal processing algorithms for coherent systems.  

 

 In this paper, we compare two different semi-analytical methods for coherent 100 Gb/s non-return-to-

zero (NRZ) PDM-QPSK systems performance evaluation, namely, a stochastic and a deterministic semi-

analytical methods. We examine the limitations of them, and compare their accuracy against Monte-Carlo 
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simulation under different system operating conditions. We find that if additive Gaussian noise is the 

dominant effect, the agreement of all methods is excellent for all OSNR range. In the presence of strong 

distortion and negligible noise, the stochastic semi-analytical method is pessimistic for high OSNR. 

However, for typical terrestrial long-haul systems, the stochastic semi-analytical method based on Gaussian 

statistics yields accurate results with minimum complexity.  

 

2. MATHEMATICAL MODELS FOR ERROR PROBAILITY  
At the input of the decision circuit of a coherent PDM-QPSK transmission system, the kth sample of the 

complex photocurrent can be written as ( ) 1 2exp[ ] ,
k kk k k kx A j n jnϕ θ= + + + where kA  is the amplitude, 

kϕ  is the phase due to modulation, kθ  is the residual phase noise, and 1 2,  k kn n  are two independent 

Gaussian noise components with standard deviation .σ   

 

 According to the deterministic semi-analytical method, the signal is propagated in the absence of noise, 

and the noise statistics are calculated analytically. The average symbol error probability for each 

polarization is ,/1 || ∑= =
s

k
N
k ssese NPP where sN  denotes the number of simulated symbols and | ke sP is the 

conditional error probability for the kth symbol. By projecting all noiseless signal samples kx  to the upper 

right quadrature of the complex plane, | ke sP is given by [2]  
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where ( )22 2/ σρ ks Ak =  is the instantaneous electronic symbol signal-to-noise ratio (SNR) before the 

decision circuit and ( )
k kpθ θ  is the p.d.f of the residual laser phase noise, which is considered Gaussian to 

a first-order approximation with zero mean and variance equal to [3]  
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where 2 ,D π ν= Δ  νΔ  is the combined 3-dB spectral linewidth of the lasers, T  is the symbol interval, kt  is 

the sampling time, and eqB  is the equivalent noise bandwidth of the coherent optical receiver. Finally, the 

average bit error probability for Gray coding is approximated by sebe PP || 5.0=  [4]. 

 
 According to the stochastic semi-analytical method, both the signal and the noise are propagated 

through the transmission channel. The conditional p.d.fs of the received currents are assumed to be 

Gaussian for both quadrants. The stochastic semi-analytical method estimates the conditional mean x̂  and 

variance 2σ̂ of the received complex samples for each quadrant, given the information of the transmitted 
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bits. The bit error probability assuming Gray coding is  

( ) ( ) ,2/
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⎡ +≈ QIbe erfcerfcp ρρ       (3) 

where )(⋅erfc  is the complimentary error function [5], Iρ , Qρ  are the electronic symbol SNRs for the in-

phase and quadrature components defined as 2
,

2
,, ˆˆ QIQIQI x σρ = [4].  

 
3. SIMULATION RESULTS AND DISCUSSION 

We compare the accuracy of the semi-analytical methods for the performance evaluation of practical 

coherent optical PDM-QPSK communication systems as shown in Fig. 1. For Monte-Carlo simulation, we 

use a PRBS with length of 216-1 unless otherwise stated. 

 

 First, we consider the performance of the semi-analytical methods in the linear regime. The full-width at 

half-maximum (FWHM) of the optical filter (MUX and DEMUX in Fig. 1) is Bo, and the half-width at 

half-maximum (HWHM) of the electrical filter is Be. We consider two extreme cases, wide filtering (i.e., 

Bo=2/Ts, Be=1/Ts) and tight filtering (i.e., Bo=1/Ts, Be=0.4/Ts). We do not use any DSP and the laser phase 

noise is neglected so only ASE noise is present. Fig. 2(a) shows the constellation diagrams for the noiseless 

signals after filtering, and Fig. 2(b) shows the Q value, which is related to the bit error probability by the 

inverse of the complementary error function [5], versus OSNR. Monte-Carlo simulation can provide 

accurate results for Q < 10 dB only since we transmit a PRBS sequence of 216 - 1. There is excellent 

agreement between the semi-analytical methods and the Monte-Carlo simulation in the wide filtering case. 

However, for tight filtering, there is an increasing discrepancy for higher OSNR values (i.e., above 18 dB), 

which is due to the fact that the stochastic method treats the ISI distortion as an equivalent Gaussian noise, 

yielding a spurious error floor in the limit when the OSNR tends to infinity. The deterministic semi-

analytical method is accurate in this case in the absence of laser phase noise and DSP. 

 

 
Fig. 1. Block diagram of a coherent optical PDM-QPSK system. PBS and PBC refer to polarization beam splitter and 

polarization beam combiner, respectively. MUX and DEMUX refer to optical multiplexer and de-multiplexer, 

respectively. 
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Fig. 2. (a) Noiseless constellation diagram for wide filtering (blue) and tight filtering (red); (b) Q-factor as a function of 

OSNR in the absence of phase noise using different techniques.

  

 Next, we compare the accuracy of the semi-analytical methods for an 8-channel 100 Gb/s PDM-QPSK 

coherent optical system, with 50-GHz channel spacing. The transmission system consists of 30 spans of 

100 km of standard single-mode fiber (SSMF) with in-line optical dispersion compensation. The residual 

dispersion per span is 17 ps/nm. The total residual dispersion is pre-compensated. The average differential 

group delay of the link is chosen to be 15 ps. The combined laser linewidth is 200 kHz. In the coherent 

receiver, we use a fixed transversal filter to compensate the residual dispersion of the edge channels and a 

two-stage CMA-based PMD adaptive equalizer with 13 taps to compensate for the polarization mode 

dispersion [6]. We use the Viterbi-Viterbi algorithm for phase noise estimation [7] with a fixed block size 

of 40 symbol intervals.  

 

 Fig. 3 shows the estimated Q value as a function of the launch power. We observe excellent agreement 

between Monte-Carlo simulation and the stochastic method up to the optimum launch power. For high 

launch power (e.g., 2 dBm per channel), the Q value difference between the stochastic method and the 

Monte-Carlo simulation can be as large as 0.5 dB. We also observe that the deterministic semi-analytical 

method has a larger disagreement with the Monte-Carlo method for large launch power, which is due to the 

fact that adaptive equalizers work differently with and without noise, and due to the omission of the 

nonlinear phase noise effect in the deterministic method. Figs. 4 (a) and (b) show the constellation 

diagrams for a launch power of -1 dBm and 2 dBm, with and without ASE noise, respectively. Compared 

with that for -1 dBm, the constellation diagram for 2 dBm is significantly elliptical. In addition, the 

constellation diagram in the presence of ASE noise is rotated compared to the noiseless constellation 

diagram due to the nonlinear phase noise. These two factors account for the discrepancy of 0.5 dB in Q 

value in the high-power region between stochastic semi-analytical method and Monte-Carlo simulation.  
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Fig. 3. Q-factor of the central channel as a function of channel launch power for a 3000 km PDM-QPSK system with 

inline DCF 

 
(a)                                                                            (b) 

Fig. 4. Constellation diagram for (a) -1 dBm, and (b) 2 dBm launch power with and without noise. Blue and red denote 

the noisy and noiseless constellation diagrams, respectively.  

 

  For SMF systems without inline DCF, the Q-factor as a function of launch power for a 5000 km system 

(100 km per span) is shown in Fig. 5(a). We observe excellent agreement between the stochastic semi-

analytical method and Monte-Carlo simulation. This can be explained by the fact that for systems without 

inline DCF, the pulses are spread over hundreds of symbol intervals due to chromatic dispersion, which 

makes the ISI-induced distortion more Gaussian noise-like. Therefore, the inherent assumption of the 

stochastic semi-analytical method holds. Fig. 5(b) shows the constellation diagram at 1 dBm power per 

channel. We see that the constellation diagram for the system without inline DCF is circular. For the 

deterministic method, we see a good agreement for launch power up to 3 dBm, and a discrepancy for very 

high powers such as 5 dBm, which is due to the exclusion of the nonlinear phase noise. 
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Finally, we compare and validate the two semi-analytical methods for uncompensated systems with 8 

channels and various transmission distances. We fix the launch power at 1 dBm per channel. The 

deterministic method is believed to be accurate for uncompensated systems with optimum launch power of 

1 dBm, since it accurately takes into account the deterministic distortions. The stochastic method based on 

Gaussian statistics works well for long distances when the OSNR is relatively low. However, the stochastic 

method might encounter problems for high OSNR region (i.e., short distances), as observed in Fig. 2. Thus 

it is necessary to validate the stochastic method for short distances. In Fig. 6, we show the Q value as a 

function of OSNR (or equivalently, as a function of transmission distance) for the stochastic method, 

deterministic method, and the Monte-Carlo method.  We observe excellent agreement among the three 

methods.  
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(a)                                                           (b) 

Fig.  5. (a) Q-factor of the central channel for systems without inline dispersion compensation after 5000 km 

transmission; (b) Constellation diagram at 1 dBm per channel launch power. Blue and red denote the noisy and 

noiseless constellation diagrams, respectively 
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Fig.  6. Q-factor as a function of OSNR and transmission distance with 1dBm per channel launch power. 
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4. CONCLUSION 

We have compared stochastic and deterministic semi-analytical methods for the error probability 

evaluation of coherent optical PDM-QPSK systems. The stochastic method based on Gaussian statistics 

suffers from inaccuracies when significant fiber nonlinearities impact the performance for dispersion-

managed systems. However, for all of the terrestrial systems we studied, the stochastic semi-analytical 

method produced accurate results, and thus is preferred as it yields accurate results with minimum 

complexity for the performance evaluation of practical communication systems.  
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