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Optical system assessment for design:
numerical ray tracing in the Gaussian pupil
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The continuing rapid increase in available computing power has not reduced the importance of efficient methods of
optical system assessment for automatic lens design. On the contrary, the new capabilities simply show that truly
automatic optical design will eventually be accomplished. It is proposed that the merit of a system-assessment
scheme be measured in terms of the accuracy of its estimation of the overall performance of a proposed system as a
function of the amount of work done (e.g., number of rays traced). By using this criterion, a number of schemes
based on ray tracing are compared, and some highly efficient assessment procedures are developed. As a simplify-
ing approximation, the effects of vignetting and pupil distortion are ignored here. The key to the most-effective
methods lies in coupling appropriate coordinates to Gaussian quadrature schemes. Appropriate coordinate sys-
tems are those for which the relevant integrands (either wave-front errors or transverse intercept errors) take the
form of smooth functions. The resulting methods for system assessment are typically at least an order of
magnitude more efficient than comparatively simple schemes.

1. INTRODUCTION

Automatic design of sophisticated systems of any kind (opti-
cal or otherwise) usually involves two distinct stages. The
initial phase is the formulation of a precise description of the
task at hand. This includes the specification of the proper-
ties desired of the eventual system and the definition of a
single figure of merit that measures, in some appropriately
weighted sense, how well a proposed system meets those
requirements. The second stage consists of searching
through the configuration space of systems in an attempt to
uncover the system with the optimal figure of merit. In
practice, this stage is usually performed by starting with
rough specifications for an appropriate system and switch-
ing to an automated procedure, which iteratively modifies
the specifications in search of the ultimate system. In such
a form, the stage is well described by the term optimization.

Typically, optimization is by far the most computationally
demanding stage in the design process and is dominated by
the work done in assessing the myriad systems proposed
along the way. It is therefore crucial that an efficient
scheme be available for system assessment. Virtually all the
optimization algorithms presented to date follow a strictly
monotonic path in the configuration space; that is, they
accept modifications to the system only if the figure of merit
is thereby improved. This type of strategy greatly simpli-
fies the process but restricts the final solution to a certain
neighborhood of the starting point, yielding a locally optimal
solution. Such a strategy cannot discover the globally opti-
mal solution if there is no monotonic connection to the
starting point. The design of global optimization schemes is
a popular topic of research, and some of these ideas are being
applied in the context of optical design. 1' 2 Any such strate-
gy clearly adds a new degree of complexity and will generally
require significantly more exploration of the configuration
space. For this reason, the pressure on the efficiency of the
schemes for optical system assessment is now redoubled.

In optical design, the merit function involves a combina-
tion of factors, including some account of the feasibility of
manufacturing the system (tolerances, cost, etc.), the optical
performance of the system, and perhaps penalties to enforce
certain constraints (although these may be incorporated at a
higher level in the optimization algorithm). In this paper I
concentrate solely on the component of the merit function
that measures the optical quality of the system. This aspect
is usually evaluated by tracing a limited set of rays through
the proposed system and measuring transverse errors in the
ray intercepts or optical path differences (OPD's) in some
way. Recently Robb3 proposed that a measure of the optical
quality of a system could be determined as much as an order
of magnitude more efficiently by using a direct computation
of aberration coefficients in place of ray tracing. However,
Robb had access to only the seventh-order series, and it was
found that, owing to truncation errors, this approach was not
suitable when ray angles in the system approached 300.
Since that research was done, schemes were devised to com-
pute aberration series to arbitrarily high orders4' 5 and to
extend and accelerate their convergence.6' 7 These new re-
sults suggest a reexamination of the efficiencies of various
schemes for the assessment of the optical quality of pro-
posed systems.

A first step in this direction is the investigation of the
efficiency of ray tracing for optical system assessment. The
fundamental measure of this efficiency is taken here to be
the number of rays that need to be traced in order to deter-
mine the value of the overall system performance to various
accuracies (say, to 1, 2, or 3 significant digits). Clearly, this
issue can be addressed only after the measure of overall
system performance is defined. In practice, it is the behav-
ior of the modulation transfer function (MTF) of the system
for various patches of the field (together with some idea of
the geometrical distortion) that often provides the ultimate
measure, and there are a number of efficient means to calcu-
late approximations to the properties of the MTF. For
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example, the variance of the OPD gives an approximation to
the Strehl ratio,8 which, in turn, is related to the volume
under the MTF. Alternatively, the variance of the trans-
verse ray error (i.e., the mean-square spot size) can be seen to
be related to a second-order Taylor expansion of the MTF
about zero spatial frequency.9 These two entities, the vari-
ance of the OPD and that of the ray intercepts, are simply
averages of quantities that are directly available from the
ray-trace data, and they are often adopted as bases upon
which to build a merit function. In this paper the efficiency
of a system-assessment scheme is measured in terms of the
accuracy with which the scheme can approximate this type
of parameter as a function of the number of rays traced.

The schemes for optical assessment by using ray tracing
can be regarded then simply as numerical integration
schemes for performing the appropriate averages. Further-
more, since the transverse intercept error is, to a good ap-
proximation, proportional to the gradient of the OPD, it is
reasonable to expect a scheme that efficiently approximates
one of these two types of integral to be also well suited to the
other. This is in fact the case. However, the data from a
single ray through a system directly yield not only the value
of the OPD but also it derivatives. This suggests the possi-
bility of devising more-specialized numerical integration
schemes to use this extra informational Since the spot size
is more straightforward, I shall first deal with that problem
alone.

The problem now takes the form of the evaluation of
particular multidimensional integrals, which can be struc-
tured as follows. The innermost integration, for averaging
over the pupil, ranges over the two-dimensional family of
rays transmitted by the system from a point source of a given
color and position. Next, it is convenient to integrate over
color in order to model a white point source and then to
finish with the integration over all positions lying within the
desired field. (For a rotationally symmetric system, the last
integral can clearly be reduced to a one-dimensional form.)
Each of these integrals involves a weighting function, which
must be laid down during the first phase of design. The
region of interest for the field and color is also specified
explicitly at that stage. This significantly simplifies the
associated averaging, and it is often the case that a small
sample in field and color is all that is required. For the
aperture average, on the other hand, the family of rays in-
volved (or the true entrance pupil shape) is almost never
known precisely. For this reason, a relatively large number
of rays is sometimes needed in sampling the aperture. For
simplicity, the Gaussian entrance pupil is often used as a
first approximation in determining the rays transmitted by
the system. This approximation is also adopted in this
paper, and the effects of pupil distortion and vignetting are
left as separate (often crucial) issues to be addressed inde-
pendently. Methods that account for these effects must
generally be adopted in at least the final stages of design.

For calculating the spot size of a monochromatic point
source to an accuracy of 1%, it was claimed by Foreman"
that approximately 100-150 rays are required (in one half of
the pupil). The integration scheme in the Gaussian pupil
was based on sampling on a polar grid with uniform spacing
in radius and angle and uniform weighting for each ray. (It
was recommended that a radial spacing of at most 1/20 of the
aperture radius and an angular spacing on each ring of ap-

proximately 30-45° be used.) This figure was reduced by
Andersen,' 2 who introduced a fourth-order weighting
scheme using the same sample points. Andersen expected
his routine to yield an accuracy of 1% with about 20 rays and
an accuracy of 0.01% with 40-50 rays. However, as reported
in Section 3 of this paper, his scheme appears to require
approximately 75 and 300 rays, respectively, to attain these
accuracies. (For 1% accuracy, Andersen's scheme requires
once again a 30-45' angular spacing with about 12 rings
across the pupil.) For comparison, if uniform weighting on a
square Cartesian grid in the pupil is used, it is found in
Section 3 that 500 rays are needed in the half pupil in order
to produce reliably an accuracy of 1%, and hundreds of
thousands of rays are needed to reduce this figure to 0.01%.13

By introducing appropriate variable transformations and
more-accurate integration schemes, it is shown that the
numbers of rays quoted above can be reduced remarkably.
Since high-order integration schemes can be expected to
yield higher accuracy only when the integrand is a smooth
function (i.e., one resembling a low-order polynomial), the
variable transformations mentioned above are used to make
the integrand smooth. Likewise, in the subsequent averag-
ing over field and color, it is vital that appropriate variables
be adopted. In the context of reducing truncation error for
aberration series, variables have been sought for this pur-
pose6"4 (i.e., attempting to render the aberration function
polynomial-like), and the results are used to advantage here
together with higher-order integration schemes such as
Gaussian quadrature. It is emphasized that the key novel
feature of the research presented in this paper lies in the
choice of appropriate underlying coordinates that govern
the sampling and weighting schemes for approximating the
integrals.

The form of the integrals used for the spot-size calcula-
tions is given in Section 2, and the ensuing Sections 3, 4, and
5 are devoted to the integrals over aperture, color, and field,
respectively. The results in these sections are based on the
analysis of a variety of unobscured systems, including a
wide-angle system (the hypergon' 5 ), a Cooke triplet,' 6 a dou-
ble Gauss,' 7 a Schmidt camera,' 8 and a microscope objec-
tive.' 9 A discussion of the efficiency of overall integration
schemes appears in Section 6 and is followed by a number of
concluding remarks.

2. A FIGURE OF MERIT FROM THE RAY
INTERCEPTS

It is convenient to define the entities to be computed in
subsequent sections in one location. To this end, some
notation must first be introduced: Three variables are used
to specify a ray (two of which are two dimensional). The
field and aperture variables, written here as f and a, specify
the location of the intercept with the object and entrance
pupil surfaces, respectively, and the color of the ray is speci-
fied by a coordinate written as w. (If either the object
surface or the pupil surface is at infinity, the corresponding
variable must be taken to specify a direction.) Since the
integrations performed here are for the purposes of averag-
ing over these variables, it is convenient to introduce some
shorthand. The average of a function f(x) with weight X(x)
is written as
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J f(x)X(x)dx
Avgxf(x)) :=

J %(x)dx

(2.1)

where the integral can formally be over all values of x if the
region of interest is absorbed into the weighting function.
As a final piece of notation, in the image space of the system,
let y(f, a, cv) and Q(f, a, cv) be the functional representations
of the intercept and the direction tangents of a ray at some
fixed plane in the image space, say, the Gaussian image
plane. The intercept, say, Y(f, a, co), with a plane defocused
by A is then given by Y = y + AQ.

If L2(f) is the mean-square spot size of the image (in a
fixed defocused plane) of a point source at the field point
specified by f, the figure of merit for the overall image in that
plane, say, A, is taken to be given by

jf 2
:= AvgfL 2 (f)J. (2.2)

That is, A is an average measure of the size of the (polychro-
matic) geometric point-spread function. Note that the as-
sociated weighting factor, 5(f), is specified in the initial
phase of the design20 together with CW(cv), which is needed
below. For a symmetric system, L2(f) depends only on Ifl;
and the average in Eq. (2.2) can be reduced to a one-dimen-
sional integral.

L2(f) is defined in terms of the centroid of the image of the
point source. Accordingly, define Y(f, cv) to be the centroid
of the image for a given color, i.e.,

Y(f, cv) := Avga{Y(f, a, cv)). (2.3)

In all the averages over the aperture variable (which is taken
to be the innermost integral here), the weight used for the
element d2a in the pupil is assumed to be proportional to the
solid angle subtended by the element at the field point f and
is written as A (f, a). If the object is at infinity, A (f, a) is
taken to be the normal cross-sectional area of the beam from
f that fills the element d2a. The centroid of the colored
image, say, Y(f), is then defined to be

Y(f) = Avg{jY(f, co)) = Avga,JY(f, a, c)). (2.4)

L2(f) is now given by

L2 (f) : Avg.,,J[Y(f, a, c) -Y(f)] 2 )

= Avgaf([Y(f, a, c) Y(fv)] +[
= Avgs,,{Avgat[Y(f, a, cv) - y(f, c)]2 + [Y(f, c) y

(2.5)

It is convenient to define U
2 to be the monochromatic mean-

square spot size, i.e.,

o2 (f c) := Avga{[Y(f, a, cv) - Y(f, co)] }a (2.6)

then L2 (f) can be written as2 '

L2 (f) = AvgJ 0u2(f, c) + [y(f, cv) _ Y(f)]2 1. (2.7)

Since averaging is a linear process, it follows that Y(f, c) is
exactly a linear function of the defocus, A. In an obvious
notation, Y is given by Y(f, c) = y(f, c) + A-Q(f, c). Similar-
ly, after expanding the arguments in Eq. (2.6), one can see
that U

2(f, c) is exactly a quadratic function of A. So, in fact,

is L2 (f) and hence X2 , and it is convenient to write these in
the following form:

lr2(f, c) = SO(f, co) + 2AS1(f, co) + A
2

S 2 (f, Cv),

L2 (f) = Lo(f) + 2AL1(f) + A2L 2(f),.

,n 2 = ifto + 2AX, + A2in2.

(2.8)

(2.9)

(2.10)

It is easy to show, for example, that So = Avga(y - y)21 8, =

Avgaf(y - y) - (Q - Q)J, etc. The subscripted entities ap-
pearing in these three equations are calculated in the follow-
ing sections and, together with the expressions (linear in A)
for Y and Y, can be used to find general surfaces of best focus
for white or monochromatic light and the optimally defo-
cused plane for which the mean size, in, is a minimum (viz.,
Aoptimal = -Jil/in 2 , where Jioptimal = PRnO - iXi2/n 2 1 1/

2 ).
Finally, notice that the centroid location is evaluated during
this process, and, if needed, some account for distortion can
be included in the merit function.

3. AVERAGING OVER THE APERTURE

The efficiency of various schemes for the computation of the
monochromatic spot size, i.e., a(f, c) defined in Section 2, is
reported here. In practice, Si(f, co) for i = 0, 1, 2 are calculat-
ed for the Gaussian image plane, and the errors referred to
are typical errors in 0 Gaussian = ISo(f, ))'/2 and -Yoptimal = ISO,
cW) - Sl(f, c) 2/S 2(f, cO)11/2 evaluated at the edge of the field of
the system (where the error is usually largest) and near the
middle of the spectral region of interest. It is found that the
errors for a given integration scheme are, to a good approxi-
mation, insensitive to the system type. This rather surpris-
ing result holds at least for the range of symmetric systems
mentioned at the end of Section 1, except for the microscope
objective, which is discussed separately at the end of this
section. Since these errors are also insensitive to the value
of the color coordinate, one representative value of the error
can be quoted for each scheme. Furthermore, once the field
point is moved away from the axis to, say, 20-30% of the full
extent of the field, the accuracy is found to be roughly inde-
pendent of movement across the remainder of the field.
This means that, in effect, the errors quoted in this section
give a good approximation to the errors for a general off-axis
field point. (On axis, of course, the aperture average be-
comes one dimensional for the symmetric systems consid-
ered here.) Because of symmetry, it is necessary only to
sample one half of the pupil, and the number of rays quoted
in this section and elsewhere in this paper is the number of
rays that are actually traced.

A couple of standard methods for sampling the pupil ap-
pear to be guided by the principle of having a uniform densi-
ty of points. These include a square Cartesian grid and a
polar grid with uniform radial spacing and uniform arc
length between adjacent points on a given ring.22 Examples
of these schemes are shown in Figs. 1 and 2, respectively.
Notice that the polar scheme samples more densely in the
radial direction (the separation in the angular direction is a
factor of 7r/2 greater than the radial separation), and this is
appropriate for the types of functions considered here, since
they generally have weaker angular dependence. Cartesian
grids can never exploit this property.

If an equal weight is adopted for each point, the accuracy
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Fig. 1. Example of Cartesian sampling in the pupil. With uniform
weighting, this particular grid typically results in 3% accuracy in the
calculation of spot size with 26 rays, which is shown to be one of the
more-efficient Cartesian schemes.

Fig. 2. Example of a uniform polar grid. The sample points are
arranged on equally spaced rings with a fixed arc length separating
the points on each ring. With uniform weighting, this particular
grid yields about 15% accuracy in the calculation of spot size with 16
rays.

of the Cartesian method can be expected to be erratic, as
variation of the side length of the lattice causes sample
points to fall on or off the disk in an irregular manner. Some
idea of the fluctuation can be obtained by considering the
results of integrating a constant function over a disk in order
to approximate the area. The error in the resulting approxi-
mation, together with the number of sample points in half of
the disk, is plotted in Fig. 3 as a function of the number of
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points across a radius, say, n. 2 3 (The grid shown in Fig. 1
corresponds to n = 4.0.) The number of sample points is
given roughly by (7r/2)n2, and the error is on average propor-
tional to n-3/2 , or N-314, where N is the number of sample
points in half of the disk (as can be deduced simply from the
standard results for a random walk, for example). This type
of fluctuation is also manifested in the results of spot-size
calculations, as is made clear by Fig. 4. The curve plotted
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Fig. 3. Efficiency of numerically integrating to determine the area
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sign and locate configurations that exactly integrate a constant over
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sian grid with uniform weights; (an) a polar grid with uniform
weights; (A) Andersen's scheme, which is effectively Simpson's
method on a Cartesian grid in the polar coordinate plane (r, 0),
where the disk takes the form of a rectangle; (A) a modified version
of Andersen's method that uses uniform weighting for the angular
integral; and (+) a scheme that uses Gaussian quadrature in the
radial direction. The curves represent typical errors. By chance, a
given method may have significantly better accuracy on some occa-
sions, but, for the systems analyzed here, the errors rarely exceeded
those reported by more than a factor of 2 or so (a relatively small
shift on this log plot).
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Fig. 5. An example of the type of grid used by Andersen to sample
the pupil. With Andersen's weighting, this particular grid yields
n10% accuracy with 21 rays.

for the Cartesian method uses n = 2.0, 3.0, 4.0,... , 8.0, 10.0,
12.0, 14.0, 16.0, 20.0. Notice that the error for n = 8 (with
104 rays) is greater than that for n = 4 (with 26 rays). It is
informative to see where these points lie on the curve in Fig.
3, where it is clear that n = 4 and n = 5 happen to be close to
configurations that can exactly integrate a constant, while n
= 8 is not. This corresponds well with the oscillations ap-
parent in Fig. 4. In fact, if only those schemes that can
exactly integrate a constant are used, the high points on the
Cartesian curve in Fig. 4 can be reduced (although not con-
sistently to the level of the straight line through the lowest
points, since there remain differences in the errors in inte-
grating higher-order terms).

The polar scheme illustrated in Fig. 2 can clearly be ex-
tended consistently to any number of rays by adding more
rings to the outside of the disk. The error resulting from
this method is also plotted in Fig. 4 and is referred to as the
polar method. Clearly, the fluctuations have been removed,
and the polar scheme lies between the best and the worst
Cartesian schemes. Since the error of the polar scheme is
found to be consistently negative, it appears that the best
Cartesian methods are superior to the polar schemes because
the functions being integrated increase rapidly near the edge
of the pupil and the Cartesian methods usually include sam-
ple points whose minimum distance to the perimeter is sig-
nificantly smaller than a lattice side length.24

The efficiency of Andersen's method, which uses the sam-
pling scheme illustrated in Fig. 5, is also presented in Fig. 4.
The method is not significantly better than those previously
discussed until the number of rays exceeds 50 or so, and it
can yield 1% accuracy with approximately 75 rays. Ander-
sen expected an error of 1% with only 20 rays, but the error is
about an order of magnitude worse at that point (and more
than 2 orders of magnitude worse than he expected at 40-50
rays). This is partly due to the fact that when Andersen
analyzed the integration over angle, he assumed that all

points on a given ring had uniform weight. This is not the
case for his method, which uses Simpson's rule and ends up
with every other point weighted twice as heavily. This al-
ternating weight in Simpson's rule is an artifact of end ef-
fects; yet, for integration around a circle, there are no ends:
all points are equivalent.

Replacing Andersen's angular weighting scheme with uni-
form weighting considerably simplifies the algorithm for the
two-dimensional integral, yet it increases the accuracy of the
result.25 (This modification also allows the angular sample
points to be rotated by half a subdivision to move all but the
central point off the plane of symmetry, thereby further
reducing the number of rays.) The error of the resulting
scheme is also presented in Fig. 4. It can be seen that the
error for a given number of rays is decreased by a factor of 4
or so (and the number of rays required for a given accuracy is
roughly halved). It is remarked that when fewer than 100
rays are being traced, it is best to have the number of angular
divisions in (0, 27r) roughly equal to the number of rings, but
when the number of rays increases to approximately 100 and
beyond, the number of rings should be a factor of 2 or so
higher.

As a final method based on these simple polar coordinates,
it is interesting to consider using a Gaussian scheme for the
radial integral and retaining the uniform sampling and
weighting in angle. The radial integral then takes the form

R 1 NrJ f(r, O)rdr = R2 J f(Ru, 0)udu - R 2 > wjf(Rup, 0), (3.1)
j=l

where uj and wj are the Gaussian sample points and weights
chosen to make the method exact for f, a polynomial in r of
degree 2Nr - 1. Uniform sampling and weighting in angle is
the optimal Gaussian method for this case involving the
interval [0, 7r], with the basis functions being polynomials in
cos 0.25 Combining these methods yields

rR r2,
I:= f(r, 0)dOrdr

fo oJd

= R2f [2 f f(Ru, O)dO udu

Nr N{ ,}
- R2 E wj 2 N-E' f(RU;, akd ' (3.2)

where Ok = (k - 1/2)7r/No. The efficiency of such a scheme is
also presented in Fig. 4 and clearly is a remarkable improve-
ment, yielding 1% accuracy with only a dozen rays (Nr = 4,
No = 3). The Gaussian parameters for these radial schemes
are not presented here, since more-accurate schemes are
developed below. It is remarked at this point that for cases
in which the effects of pupil distortion and vignetting need
to be determined (and accounted for) simultaneously with
the integration, pure Gaussian schemes are not possible, so
other methods are also considered in what follows. (These
effects are sometimes approximated by linearly squashing
the pupil by a prespecified amount, and, of course, it is also
possible to use this type of approach in conjunction with
Gaussian methods.)

The accuracy of all numerical integration schemes de-
pends on the smoothness of the integrand. For example, as
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Fig. 6. Comparison of the efficiencies of schemes based on the
radial coordinate r with those based on the coordinate p, which is
just a normalized version of r2. The first three methods in the
legend are described in Fig. 4. The latter three are based on p and
include (U) a trapezoidal scheme, (X) a fourth-order scheme, and
(in) Gaussian quadrature, respectively.

mentioned for the Gaussian scheme, with four rings in the
pupil it is possible to integrate exactly a polynomial of de-
gree 7 in r. If the integrand cannot be approximated well by
such a polynomial, the accuracy will be poor. In fact, for the
case in hand, it is not necessary to be able to integrate odd
powers of r. This can be seen as follows: the integrand f(r,
0) has a plane of symmetry and can be expanded as a series in
r2 and r cos 0. If the sample points for the angular integral
are those specified after Eq. (3.2), the symmetry entails that
all odd powers of cos 0 sum identically to zero in the numeri-
cal approximation of the angular integral.26 It follows then
that the radial integral has to deal only with even powers of r.
This observation suggests that improvements can be made
to the radial components of the integration schemes dis-
cussed above.

For example, the modified version of Andersen's method
uses Simpson's rule radially, which means that it is exact for
cubics in r. However, the linear and cubic terms in r drop
out, and only the constant and quadratic terms are integrat-
ed exactly. If the radial sampling is changed to uniform
sampling in r2 and a fourth-order weighting scheme (such as
Simpson's method or an end-corrected trapezoidal rule) is
again adopted, the method becomes exact for cubics in r2 ,
which means that significantly higher accuracy can be ex-
pected. Accordingly, expressing the integral in terms of the
variable p = r2/R2 leads to an integration scheme of the form

I = R2 J {2 j' f(Rp' 12 , O)dO} 2

-2 E j oEtR N) o]No ~~~~~', N ~~ 1~
J=O k=1 ~ ~ 0kI

(3.3)

(3.4)

where Ok is defined as before and wj can be chosen in a
number of ways. The simplest choice follows from the trap-
ezoidal rule, which specifies in an obvious notation that the
weights be given by w = WT = (1/Nr) (1/2, 1, 1, 1,... ., 1, 1/2).
Anticipating the effects of vignetting and pupil distortion, it
is interesting to consider this case, since it probably gives a

reasonable indication of the accuracy attainable when the
boundary must be determined and accounted for with infor-
mation from the same rays used in the integration. The
efficiency of this trapezoidal scheme is plotted in Fig. 6,
which shows that this second-order method (which can ex-
actly integrate a function linear in p) has an efficiency com-
parable with that of the modified version of Andersen's
method for 1% accuracy or less. The radial weights can
alternatively be chosen according to a fourth-order rule:
either Simpson's rule, i.e., w = w, = (1/3Nr) (1, 4, 2, 4,... ,2,
4, 1), or the more attractive end-corrected scheme in which
the weights are equal to those for the trapezoidal case (and
hence are uniform away from the ends) but have the last four
weights at either end modified by taking w = WT + C + C,

where c = (1/48Nr) (-7, 11, -5, 1, 0, 0, 0, . .. , 0) and a is the
mirror image of c. These methods give roughly the same
accuracy, and their efficiency is also plotted in Fig. 6. The
error is typically an order of magnitude smaller than that of
the best fourth-order scheme based on r when more than 30
rays are traced and is clearly a significant improvement
when more than 10 rays are traced, yielding 1% accuracy
with 17 rays (Nr = 4, No = 4).

Finally, it is possible to devise a superior Gaussian scheme
by once again adopting p in the radial integral. From Eq.
(3.3),

Nr N, 

- 2
1 U 2 - t f(Rp O/2,Ok)}j=1 No k-i (3.5)

can be obtained, where wj and pj are related simply to the
standard Gaussian parameters for integration with a con-
stant weight function and can be found from the zeros of
Legendre polynomials (and the values of their first deriva-
tives at those points).2 7 The appropriate weights and sam-

Table 1. Gaussian Integration Parameters for the
Radial Integral as Approximated in Eq. (3.5)
Nr 3 Pil/2 Wj

1 1 0.70710678 0.50000000

2 1 0.45970084 0.25000000
2 0.88807383 0.25000000

3 1 0.33571069 0.13888889
2 0.70710678 0.22222222
3 0.94196515 0.13888889

4 1 0.26349923 0.08696371
2 0.57446451 0.16303629
3 0.81852949 0.16303629
4 0.96465961 0.08696371

5 1 0.21658734 0.05923172
2 0.48038042 0.11965717
3 0.70710678 0.14222222
4 0.87706023 0.11965717
5 0.97626324 0.05923172

6 1 0.18375321 0.04283112
2 0.41157661 0.09019089
3 0.61700114 0.11697848
4 0.78696226 0.11697848
5 0.91137517 0.09019039
6 0.98297241 0.04283112
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Fig. 7. Sample points for the nine-ray configuration based on
Gaussian quadrature. This scheme (when the weights in Table 1
are used for Nr = 3) has an accuracy of Ad 1%.

ple points are presented in Table 1 for Nr = 1, 2, 3, ... , 6.
(Parameters of this sort are typically needed only to two
decimal places beyond the expected accuracy of the result-
ing integral approximation. However, the additional tabu-
lated accuracy is useful for checking purposes.) The effi-
ciency of this method (also presented in Fig. 6) is extremely
good, with 1% accuracy requiring only nine rays (Nr = 3, No
= 3) arranged in the configuration shown in Fig. 7. Some
important observations concerning the accuracy of these
schemes based on such small ray sets are offered at the end
of this section. The error for this method when 30 rays are
used (N. = 5, No = 6) is almost 4 orders of magnitude below
the error of the Cartesian method, which requires more than
106 rays to yield this same accuracy. The fact that the
Gaussian pupil is taken as the region of integration should
not be forgotten, however, and once the accuracy has
reached the limit set by the error incurred by this assump-
tion, it makes no sense to continue any further. (Procedures
for handling this problem must be considered separately.)
However, notice that even within the 1-10% accuracy range,
this Gaussian scheme is unequaled.

When experimenting with these small ray sets, it is inter-
esting to examine other options that may yield some configu-
rations between the six-ray case (Nr = 2, No = 3) with 10%
accuracy and the nine-ray case of Fig. 7 with 1% accuracy.
[Note that the next two configurations plotted in Fig. 6 are
(Nr = 3, No = 4) and (Nr = 4, No = 4).] One obvious
possibility is to add one ray at the center of the pupil, there-
by changing the radial sampling to a Radau scheme,28 if
maximal accuracy is to be retained. The integral is then
approximated by

N. No 

N v {2 2 E f(RUj, 0k)}' (3.6)

for which the associated weights and sample points are given

in Table 2. The seven-point configuration (N. = 2, No = 3)
is illustrated in Fig. 8 and is found to yield an accuracy of
n3%, which lies on the lowest curve in Fig. 6 (as all these
Radau schemes do) and is significantly better than that of
the six-ray configuration mentioned above. With fewer rays
than this the results become highly erratic.

To this point, nothing has been said of the microscope
objective. Notice that all the systems discussed so far either
have their object at infinity or, in the case of the hypergon (a

Table 2. Radau Integration Parameters for the
Radial Integral as Approximated in Eq. (3.6)

Nrj
10

1

20
1
2

30
1

2
3

40
1
2
3
4

50
1
2
3
4
5

U'

0.00000000
0.81649658

0.00000000
0.59586158
0.91921106

0.00000000
0.46080423
0.76846154
0.95467902

0.00000000
0.37384471
0.64529805
0.85038637
0.97102822

0.00000000
0.31390299
0.55184756
0.74968339
0.89553704
0.97989292

Vi

0.12500000
0.37500000

0.05555556
0.25624291
0.18820153

0.03125000
0.16442216
0.19409673
0.11023111

0.02000000
0.11155195
0.15591326
0.14067801
0.07185678

0.01388889
0.07991019
0.12134680
0.13023170
0.10422533
0.05039710

Fig. 8. Seven-ray configuration, with a Radau method used for the
radial integral. This sampling scheme, together with the weights
from Table 2, for N. = 2, yields 3% accuracy for calculating spot-
size information.
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unit-magnification, f/30 system), have small numerical aper-
tures. When the entrance pupil subtends a sizable angle
(say, a half-cone angle in excess of 20° or so) the efficiencies
of the Gaussian integration schemes discussed above are
found to deteriorate significantly. For the microscope ob-
jective considered here, this angle, say, U, is approximately
50°. It is usual, however, to treat the object as the image in
designing such a system, and in this way these large angles
are avoided. (The entrance pupil for the system reversed in
this way subtends roughly 10.) If the system is analyzed in
this manner, the results quoted above hold reasonably well.
However, if the system is not reversed, the Gaussian schemes
perform poorly, with errors sometimes significantly more
than an order of magnitude bigger than expected. This
unsatisfactory situation is to be expected, since it was found6

that aberration functions of the form considered here are by
no means smooth when U approaches 400, and a new coordi-
nate was recommended (for both the field and aperture) in
place of the regular position vectors that have been used so
far.

The new aperture coordinate, written here as a, is just the
direction cosine of the line joining the center of the object
and the location of the intercept on the pupil. Adopting this
variable changes only the radial part of the integration
schemes as follows. The variable r2 must be replaced by t =
a * a = r2/(D2 + r2), where D is the distance from the object to
the entrance pupil. This puts the radial integral in the form

Jf(r, O)rdr = D2 Jf[D ( . )1/2 1] 1 ' (3.7)

where S = sin2 U. The Gaussian quadrature scheme must
then be designed by using a weighting function proportional
to (1 - t)-2. Introducing the normalized variable v = t/S

yields the new expression for the integral I:

I = R2 f {2 Jf(R [( -S)v 1/2 )d0} 2( - Sv)2 dv

st R2 Exj 2 N E f(Rs;, k)f -
i14 1 No -

(3.8)

The associated weights and sample points x; and sj are pre-
sented in Tables 3-6 for S = 0.2, 0.4, 0.6, 0.8 (i.e., U - 27°,
390, 510, 630). Notice that, from the form of Eq. (3.8), when
S is equal to zero, the parameters are identical to those given
in Table 1 (i.e., x; = wj and sj = pj' 12 ). It is interesting that,
as the aperture subtends larger angles, the sample points are
pulled nearer to the center in the plane of the pupil and the
weights are shifted more heavily to the outer points. By
using these parameters it is possible to obtain the efficien-
cies found earlier for the Gaussian scheme for low-numeri-
cal-aperture systems. Since these parameters change quite
slowly with S, it is expected that the tabulated values should
be adequate for most purposes when only a small number of
rays are to be traced (e.g., Nr not bigger than 3). From my
limited experience in using these parameters, it appears to
be best to round down the numerical aperture of a particular
system when deciding which of the tables to use. It should
also be noted that for cases in which the pupil is at infinity,
the values for the parameter sj given here are to be taken as
normalized direction tangents in place of normalized radial
positions.

Table 3. Gaussian Integration Parameters for the
Radial Integral in Eq. (3.8) with S = 0.2 (i.e., Uz 270)

Nr j Si Xj

1 1 0.69384445 0.50000000

2 1 0.43543723 0.23070844
2 0.87510456 0.26929156

3 1 0.31232501 0.12232506
2 0.67840051 0.22109640
3 0.93304442 0.15657855

4 1 0.24273576 0.07465129
2 0.54098777 0.15278777
3 0.79417534 0.17191291
4 0.95844762 0.10064803

5 1 0.19831273 0.05006067
2 0.44698355 0.10783627
3 0.67414583 0.14117340
4 0.85757794 0.13124438
5 0.97175498 0.06968528

6 1 0.16756660 0.03583065
2 0.37990375 0.07919620
3 0.58067807 0.11097140
4 0.75762209 0.12141973
5 0.89583930 0.10163465
6 0.97957228 0.05094737

Table 4. Gaussian Integration Parameters for the
Radial Integral in Eq. (3.8) with S = 0.4 (i.e., U- 390)

Nr j Si Xj

1 1 0.67647261 0.50000000

2 1 0.40432614 0.20615699
2 0.85723961 0.29384301

3 1 0.28334434 0.10279606
2 0.64005104 0.21639410
3 0.92016371 0.18080984

4 1 0.21754825 0.06076048
2 0.49792986 0.13813168
3 0.76021048 0.18081687
4 0.94919652 0.12029096

5 1 0.17644476 0.03998941
2 0.40520854 0.09278801
3 0.62998719 0.13682736
4 0.82948791 0.14523767
5 0.96490002 0.08515755

6 1 0.14837563 0.02827855
2 0.34105017 0.06602071
3 0.53356700 0.10141885
4 0.71692624 0.12446318
5 0.87287672 0.11660231
6 0.97432582 0.06321641

In closing this section, some observations are offered con-
cerning the orders of aberrations that are exactly integrated
by the Gaussian schemes considered here. This is of impor-
tance since, with the small numbers of rays being used, the
quoted accuracy of a given scheme can be seriously violated
when the behavior of the system is dominated by aberrations
of an order higher than that which can be integrated by the

G. W. Forbes



Vol. 5, No. 11/November 1988/J. Opt. Soc. Am. A 1951

Table 5. Gaussian Integration Parameters for the
Radial Integral in Eq. (3.8) with S = 0.6 (i.e., Us 510)

Nr j Si Xi

1 1 0.65168244 0.50000000

2 1 0.36130432 0.17288555
2 0.83010332 0.32711445

3 1 0.24509622 0.07896118
2 0.58426612 0.20408175
3 0.89935733 0.21695707

4 1 0.18520696 0.04473904
2 0.43851128 0.11612775
3 0.70803535 0.18758867
4 0.93360380 0.15154454

5 1 0.14883717 0.02875378
2 0.34963074 0.07296355
3 0.56590348 0.12571259
4 0.78438867 0.16168849
5 0.95299762 0.11088159

6 1 0.12441841 0.02003190
2 0.29061007 0.04984692
3 0.46811830 0.08585576
4 0.65517275 0.12322550
5 0.83472366 0.13677914
6 0.96501817 0.08426077

Table 6. Gaussian Integration Parameters for the
Radial Integral in Eq. (3.8) with S= 0.8 (i.e., U- 63°)

Nr j Si xj

1 1 0.60937257 0.50000000

2 1 0.29185413 0.12205389
2 0.77964770 0.37794611

3 1 0.18770381 0.04804410
2 0.48778717 0.17142335
3 0.85701314 0.28053255

4 1 0.13853492 0.02554845
2 0.34408819 0.07987852
3 0.61061112 0.18218416
4 0.89966525 0.21238888

5 1 0.10989681 0.01587943
2 0.26589927 0.04527436
3 0.45695849 0.09808976
4 0.69444529 0.17597196
5 0.92577314 0.16478450

6 1 0.09112174 0.01084000
2 0.21711832 0.02919158
3 0.36395062 0.05872956
4 0.54335308 0.10759254
5 0.75440686 0.16281059
6 0.94291541 0.13083573

scheme. In the case of the axial field point (where No = 1
yields exact results for the angular integral), if the spherical
aberration curve is assumed to be a polynomial of order 2m
+ 1 in r, it follows that Nr = m + 1 yields the exact spot size.
For example, a 7th-order spherical aberration curve, when
squared (to determine spot size), includes terms out to 14th
order in r (i.e., 7th order in p), and this is exactly integrated

by a Gaussian scheme with Nr = 4. For off-axis points, a
similar result holds. If the aberration function is assumed
to be of order 2m + 1, then choosing both Nr and No to be
equal to m + 1 yields the exact spot size. So, for example,
the scheme represented in Fig. 7 exactly determines the spot
size for any aberration function up to fifth order. (Strictly
speaking, these results are valid only for systems with the
object at infinity, since the aperture weight depends on only
the field variable in this case. If weighting proportional to
solid angle is used for a system with finite conjugates, these
results no longer hold exactly, since the aperture weight
function remains a factor in the integrand.)

4. AVERAGING OVER COLOR

The second stage in the global average discussed in Section 2
involves an integral over the spectral region of interest. In
this section the efficiencies of schemes for integrating over
color are examined. The errors quoted are typical errors at
the worst point in the field for LGaussian = ILo(f)1i/2 and
Loptimal = {Lo(f) - Li(f)2/L2(f)j'/2 . From the ideas presented
in Section 3, it seems that this is also an ideal case for the
application of Gaussian quadrature. This is not new. How-
ever, it is clear that the resulting efficiency hinges on the
smoothness of the integrand when expressed in terms of the
chosen coordinate, and the most immediate coordinates for
specifying color (viz., either wavelength or frequency) are in
fact poor candidates. This follows from the fact that the
refractive index of glass is roughly hyperbolic in wavelength
over the visible spectrum (steep in the blue and flat in the
red) and cannot be fitted well by polynomials of low order
(say, much less than degree 10). Consequently, it can be
expected that the entities to be integrated here will not be
smooth when expressed in terms of these coordinates. This
is in fact found to be the case. In the context of chromatic
aberration theory, a coordinate was devised by Buchdahl 2 9

expressly to render the dispersion of glass as a low-order
polynomial. This coordinate plays a key role in recent ap-
plications of chromatic aberration theory,3 0 yields efficient
forms for interpolating dispersion data,'4 and was used to
advantage recently in the analysis of data for the interfero-
metric measurement of refractive index.3' It is applied here
in yet another context.

At the outset, it is necessary to specify a spectral weight.
It is found that the efficiencies of the schemes discussed here
are effectively independent of the details of the weighting
function, and two illustrative examples are considered here.
The first is a uniform weight in wavelength from XB = 400
nm to XT = 700 nm, and the second, plotted in Fig. 9, is of the
form £(X) = exp[-k(X - Xo)2] over the same interval, where
the values of the parameters appearing here are taken to be k
= 1.5e - 4 nm- 2 and X0 = 550 nm.

Three integration schemes are compared here. The first
uses uniform sampling at the midpoints of subintervals (i.e.,
Xi = XB + (i - 1/2)(XT-XB)/N-, for i = 1, 2, .. ., N,) and
weighting given by the spectral weight evaluated at each
point. The other two methods are Gaussian integration
schemes; one uses X as the fundamental coordinate, and the
other uses Buchdahl's coordinate, the difference being that
the weight function in one case picks up a Jacobian. 2 0

The relative efficiencies of these three schemes are pre-
sented in Fig. 10. As before, the curves represent typical
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Fig. 9. Relative spectral weight adopted as an example for the color
average.
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Fig. 10. Comparison of the efficiencies of a number of schemes for
averaging over color. The schemes include (A) uniform sampling in
wavelength; (*) Gaussian quadrature, assuming that the integrand
is approximated well by a polynomial in wavelength; and (i) Gauss-
ian quadrature, assuming that the integrand is approximated well
by a polynomial in Buchdahl's chromatic coordinate.
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Fig. 11. Chromatic dependence of the spot size and the centroid
location for the double gauss halfway out in the field. (The unit of
length is chosen to be 1/100 of the focal length.) The plane curves
are the quadratic and the quartic of the best fits to the upper and
lower curves, respectively, with wavelength used as the variable.
Note that these curves can be fitted so closely by a quadratic and a
quartic, respectively, in Buchdahl's chromatic coordinate that the
results are indistinguishable from the originals on this scale.

Table 7. Gaussian Integration Parameters for
Integration over the Visible Spectrum with Uniform
Weight in Wavelength and with the Gaussian Weight

Plotted in Fig. ga

Value of Integration Parameter (,im)
Uniform Weight Gaussian Weight

Nr j Xi Wi Xi Wj

1 1 0.528944 0.300000 0.541368 0.1433636

2 1 0.440626 0.106793 0.471604 0.0443355
2 0.608925 0.193208 0.584579 0.0990281

3 1 0.418886 0.049456 0.434658 0.0099821
2 0.505546 0.123853 0.518983 0.0782096
3 0.644536 0.126692 0.614795 0.0551719

4 1 0.410836 0.028202 0.418309 0.0032488
2 0.460136 0.071776 0.477524 0.0316589
3 0.554033 0.112203 0.552481 0.0795135
4 0.662979 0.087820 0.637241 0.0289423

a It is emphasised that these parameters were determined by using Buch-
dahl's chromatic coordinate as the underlying variable, which entails that the
weight function pick up a Jacobian.

maximum errors. (As before, the errors may occasionally
exceed the plotted values by a factor of 2 or so.) For one
color, the error is consistently beyond 30% or so (and some-
times as much as 100%) regardless of the scheme used. The
errors of the two-color methods often exceed 10% (except in
the case of the hypergon, which has no color correction and
for which the better Gaussian scheme gets an accuracy of
about 0.01%). In view of the form of plots such as that given
in Fig. 11, in which the chromatic dependence of the spot size
of the double gauss is presented, it is clear that the integra-
tion schemes must at least be able to handle quartics. The
Gaussian schemes with two points can exactly integrate only
cubics. With three sample points, the accuracy of the
Gaussian scheme based on Buchdahl's coordinate is orders
of magnitude better than the other two methods. The asso-
ciated sample points and weights for both spectral weighting
functions mentioned above are presented in Table 7. These
parameters were calculated by using the general-purpose
chromatic coordinate presented in Ref. 14 and are also of
value for checking purposes.

In practice, lens design is often done by the so-called D - d
method, which yields the first derivative of the OPD with
respect to color. This is in sharp contrast to the recommen-
dation that all rays be traced in three colors, but it is clear
that such a procedure is necessary to determine the overall
properties to more than approximately one decimal place.
Since the control of the chromatic properties of a system is
limited to the selection among discrete glasses, it may be
that a simpler scheme is all that is required, but this is not at
all obvious and would require further investigation.

5. AVERAGING OVER THE FIELD

The efficiency of averaging over the field variable to gener-
ate the final figure of merit in the form presented in Eq.
(2.10) is reported in this section. In accordance with the
preceding sections, the errors quoted are relative errors in
JhGaussian and Atoptimal. Since there is symmetry between the
field and aperture variables, the general form of the integra-

G. W. Forbes



Vol. 5, No. 11/November 1988/J. Opt. Soc. Am. A 1953

1.0

0 .8

0.6

0 .4

0.2

0A-

0.0 0.2 0.4 0.6 0.8 1.0

Normalized position on the object
Fig. 12. Weight function, adopted as an example for averaging the
mean-square spot size over the field. The function is of the form
W(h) = 1.0 - aih2

- a2 h4 , where h is the normalized object position
and the coefficients a, and a2 are taken to have the values 0.25 and
0.5, respectively.

Table 8. Gaussian Integration Parameters for
Averaging over the Field by Using the Weight

Function Presented in Fig. 12

Nr I Si xi

1 1 0.64168895 0.35416667

2 1 0.43031871 0.20629209
2 0.85315256 0.14787458

3 1 0.31999532 0.12240883
2 0.67815443 0.16406851
3 0.92442742 0.06768933

4 1 0.25381393 0.07923447
2 0.55436991 0.13417354
3 0.79663522 0.10415890
4 0.95517022 0.03659975

5 1 0.21003785 0.05503557
2 0.46615087 0.10422657
3 0.68857948 0.10580761
4 0.86125653 0.06664974
5 0.97070391 0.02244717

6 1 0.17903360 0.04031148
2 0.40109978 0.08121040
3 0.60226192 0.09485103
4 0.77138936 0.07809421
5 0.89995791 0.04464430
6 0.97948621 0.01505525

tion methods developed in Section 3 is also valid here. For
symmetric systems, the spot size is independent of rotation
about the axis, so only the radial component of the integral is
needed. Just as with the color average, there is a system-
dependent weighting function that enters into the integrals.
It is found, however, that the errors are reasonably insensi-
tive to the form of this weighting function.

If each patch of the field of view has an equal weight, the
parameters presented in Section 3 can also be used here.
For many applications, however, the center of the field is of
greater importance, and new Gaussian parameters must be

calculated that incorporate the appropriate weight function.
Again, when the field angle becomes large, it is better to use
schemes such as those devised for systems with large nu-
merical apertures, although for the cases considered here the
difference is not so significant as in the aperture average.
The parameter S of Section 3 must now be taken to repre-
sent the square of the sine of the half-angle subtended by the
object at the center of the pupil. For the sample weight
function presented in Fig. 12, the associated Gaussian and
Radau quadrature parameters (for S = 0) are presented in

Table 9. Radau Integration Parameters for
Averaging over the Field by Using the Weight

Function Presented in Fig. 12
N. j U1 V1

1 0 0.00000000 0.10518293
1 0.76531973 0.24898374

2 0 0.00000000 0.04958584
1 0.56484166 0.20324952
2 0.89399859 0.10133130

3 0 0.00000000 0.02870831
1 0.44198632 0.14150922
2 0.74279304 0.13411331
3 0.94168944 0.04983582

4 0 0.00000000 0.01868944
1 0.36144719 0.10008973
2 0.62563117 0.12268764
3 0.83161892 0.08406164
4 0.96374493 0.02863823

5 0 0.00000000 0.01312624
1 0.30516908 0.07346590
2 0.53709792 0.10245377
3 0.73253887 0.09202967
4 0.88203922 0.05472700
5 0.97548572 0.01836408
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Fig. 13. Comparison of the better methods for averaging over the
field. The first method involves uniform sampling in the object
position (or direction tangents) squared and corresponds to the
trapezoidal scheme used for the aperture average (although here the
samples are taken to be the midpoints of the subintervals). The
other two methods involve Gaussian and Radau quadratures of the
same form as the most-efficient methods developed for the aperture
average.
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Tables 8 and 9. As before, if the object is at infinity the
sample points are to be interpreted as normalized direction
tangents. Typical results for the better schemes are pre-
sented in Fig. 13. These curves are not valid for the micro-
scope objective, which is dominated by low-order field aber-
rations, and the corresponding errors are significantly lower.
Notice that, for an accuracy of 1%, only two field points are
typically required with a Gaussian scheme. For the Radau
schemes, the axial point is always included, and, since No = 1
is all that is needed there, this point is counted as about a
third to a fifth of an off-axis sample point (depending on the
accuracy).

6. GLOBAL AVERAGING

After the results are collected for the variety of integration
schemes considered in Sections 3-5, it is straightforward to
generate comparisons of global averaging methods. For ex-
ample, a number of representative methods are compared in
Fig. 14. Note that, even though the most elementary (and
inefficient) methods that use uniform sampling in field and
wavelength are not included in this plot, the improvement
from best to worst in those given is typically measured in
orders of magnitude. A number of the most-efficient ray
configurations deserve individual mention. To obtain
about 10% accuracy overall, only 18 rays are needed: two
field points (selected according to the Radau scheme so that
the axial field point is included) are used; for the axial point,
three rays are traced in the aperture (by using either the
Radau or the Gaussian scheme with Nr = 3); and for the off-
axis point, six rays are traced (by using the Gaussian scheme
with Nr = 2 and No = 3). Each of these nine rays is traced at

two colors (by using the Gaussian scheme based on Buch-
dahl's coordinate), and the resulting error is typically 10%.
A general ray set that yields c 1% accuracy can be made up
of 54 rays as follows: again, two field points are needed (but
this time not including the axial point); at each of these
points, 9 rays are traced through the pupil (Nr = 3 and No =
3), and these 18 rays are eadh traced at three colors. For
even higher accuracies, using 111 rays yields about 0.1% with
a Radau scheme for the field average (using two off-axis
points), where Nr = No = 4 for the two off-axis points, Nr = 5
for the axial point and, as before, these 37 rays are traced at
three colors.

The three general-purpose ray sets specified above can, of
course, be fine tuned and/or tailored to particular systems.
For example, the hypergon never needs more than two col-
ors, and the microscope objective requires only one off-axis
field point. It is emphasized that the quoted accuracies for
these ray sets were determined by analyzing only those sys-
tems mentioned in Section 1. It follows from the remarks at
the end of Section 3 that the mean spot size reported by the
first two ray sets will be unreliable for systems in which the
dominant aberrations are of seventh order or higher. Also
notice that once the weighting functions for the field and the
spectrum are specified for a given system, it is necessary to
generate the specific Gaussian sample points and weights for
that particular problem. For the aperture average, on the
other hand, the tables of parameters presented in Section 3
should be adequate for most purposes. It is expected that
these methods are also efficient for the calculation of rms
wave-front errors.

7. CONCLUDING REMARKS

In much of the lens-design community, system assessment is
100l invariably carried out by tracing small ray sets of sizes com-

parable with those specified in Section 6 (except for the
a) 10 As.... -------- ;- . l _t .sampling in color, as mentioned in Section 4). However, the

configurations of the rays are often chosen by the designer
specifically to control the aberrations at given positions or

-a\ A \ t | 1 _ _ zones and not to represent the overall performance of the
0

system. It is often found that optimization may significant-
ly reduce the value of this sort of merit function and yet, in
doing so, ruin the overall system performance, a phenome-
non sometimes referred to as the toothpaste-tube effect

@ 0.01 (squeeze it here and it simply pops up somewhere else).
This phenomenon forces the designer to intervene at regular

0.001 ...... , , -.- ! ' ! .intervals during optimization to request a thorough system
10 1 io 1003 104 10 5 106 107 108 analysis and determine whether the merit function need be

Total number of rays through system redefined. In fact, unless the accuracy with which the merit
Fig. 14. Efficiencies of a number of global averaging schemes (de- function represents the overall performance is known, it is
termined from the results of Sections 3-5) are compared in this plot. impossible to specify how far the optimization should pro-
Curves: 0i, Cartesian sampling in the pupil, a Gaussian method ceed. The question about whether an X% change in a par-
based on wavelength for the color average and the trapezoidal rule ticular figure of merit is significant (i.e., indicates an im-
based on the square of the field variable for the field average; *, a provement in overall performance) is usually unanswerable;
similar method, except for the aperture average, for which Ander- ....ign... 
sen's method is used (these two curves serve as starting points by optimization is often pushed far ito regions of isignifi-
which any alternative scheme can be measured); A, a trapezoidal cance.
scheme based on the square of the aperture variable and Gaussian The ray sets introduced here are chosen specifically to give
methods in the color and field averaging based on Buchdahl's chro- a measure of the overall performance. It can therefore be
matic coordinate and the square of the field variable, respectively expected that these ray sets will be significantly less suscep-
(this curve is expected to give some indication of the limits of tible to the toothpaste-tube effect just mentioned and will
numerical ray tracing when vignetting plays a significant role and is
to be accounted for directly); X, the most-effective Gaussian require less intervention by the designer.32 In fact, the
schemes for each average. remarkably rapid convergence of the merit functions based
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on Gaussian quadrature permits automatic monitoring of
reliability to be performed efficiently by generating a pre-
scription to start the optimization with a simple ray set and,
for each dimension, occasionally to use an extra sample point
to determine when it is appropriate to change to a ray set of
higher accuracy. (In the case of global optimization, it
would also be appropriate to allow for reduction in the accu-
racy of the ray set.) Such a procedure would trace the
minimum number of rays required at each stage, and this
efficiency is crucial, especially for global optimization.
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