

# Wave-Front Aberrations

We've seen previously that a wave-front aberration function W(x,y) for optical systems with rotational symmetry can be expressed as a sum of even-order terms, each describing the optical path difference between the aberrated wave front and a spherical reference wave front. Here we further explore how each of these terms varies with optical system parameters.





# Wave front polynomial parameters

The parameters used in the wave front aberration polynomial are the normalized field height  $\overline{H}$ , the normalized pupil (radial) coordinate  $\rho$ , and the angle between them,  $\varphi$ .

Sasian notation ...

Exit pupil plane Image plane  $y'_{\kappa}\vec{\rho}$   $\vec{p}''_{\kappa}\vec{H}$   $\vec{p}''_{\kappa}\vec{H}$ 

Figure 5.2 The field and aperture vectors (scaled by the marginal ray height at the exit pupil and the chief ray height at the image plane) and the angle  $\phi$  between them looking down the optical axis.



Fig. 7.18 Coordinate system for Seidel aberrations: (a) point location in exit pupil; (b) point location in image.

Geary notation ...



# Wave front polynomial terms (order 0, 2, 4)



J. Sasian, Introduction to aberrations in optical imaging systems, Fig. 5.1



Joseph A. Shaw – Montana State University

# Some "higher-order" wave front terms (order 6)



#### Wave front aberrations through order 6

| Aberration name                             | Vector form                                                                 | Algebraic form                 | j | m | n |
|---------------------------------------------|-----------------------------------------------------------------------------|--------------------------------|---|---|---|
| <i>Zero order</i><br>Uniform piston         | W <sub>000</sub>                                                            | W <sub>000</sub>               | 0 | 0 | 0 |
| Second order                                |                                                                             |                                |   |   |   |
| Quadratic piston                            | $W_{200}(\vec{H} \mid \vec{H})$                                             | $W_{200}H^2$                   | 1 | 0 | 0 |
| Magnification                               | $W_{111}(ec{H} \mid ec{ ho})$                                               | $W_{111}H\rho\cos(\phi)$       | 0 | 1 | 0 |
| Focus                                       | $W_{020}(\vec{ ho} \ \vec{ ho})$                                            | $W_{020}\rho^2$                | 0 | 0 | 1 |
| <i>Fourth order</i><br>Spherical aberration | $W_{040}(\vec{\rho} \ \vec{\rho})^2$                                        | $W_{040}\rho^4$                | 0 | 0 | 2 |
| Coma                                        | $W_{131}(\vec{H} \mid \vec{\rho})(\vec{\rho} \mid \vec{\rho})$              | $W_{131}H\rho^3\cos(\phi)$     | 0 | 1 | 1 |
| Astigmatism                                 | $W_{222}(\vec{H} \ \vec{\rho})^2$                                           | $W_{222}H^2\rho^2\cos^2(\phi)$ | 0 | 2 | 0 |
| Field curvature                             | $W_{220}(\vec{H} \ \vec{H})(\vec{\rho} \ \vec{\rho})$                       | $W_{220}H^2\rho^2$             | 1 | 0 | 1 |
| Distortion                                  | $W_{311}(\vec{H} \ \vec{H})(\vec{H} \ \vec{\rho})$                          | $W_{311}H^3\rho\cos(\phi)$     | 1 | 1 | 0 |
| Quartic piston                              | $W_{400}(\vec{H} \ \vec{H})^2$                                              | $W_{400}H^4$                   | 2 | 0 | 0 |
| Sixth order                                 |                                                                             |                                |   |   |   |
| Oblique spherical aberration                | $W_{240}(\vec{H} \ \vec{H})(\vec{\rho} \ \vec{\rho})^2$                     | $W_{240}H^2\rho^4$             | 1 | 0 | 2 |
| Coma                                        | $W_{331}(\vec{H} \ \vec{H})(\vec{H} \ \vec{\rho})(\vec{\rho} \ \vec{\rho})$ | $W_{331}H^3\rho^3\cos(\phi)$   | 1 | 1 | 1 |
| Astigmatism                                 | $W_{422}(\vec{H} \ \vec{H})(\vec{H} \ \vec{\rho})^2$                        | $W_{422}H^4\rho^2\cos^2(\phi)$ | 1 | 2 | 0 |
| Field curvature                             | $W_{420}(\vec{H} \ \vec{H})^2 (\vec{\rho} \ \vec{\rho})$                    | $W_{420}H^4\rho^2$             | 2 | 0 | 1 |
| Distortion                                  | $W_{511}(\vec{H} \ \vec{H})^2 (\vec{H} \ \vec{\rho})$                       | $W_{511}H^5\rho\cos(\phi)$     | 2 | 1 | 0 |
| Piston                                      | $W_{600}(\vec{H} \ \vec{H})^3$                                              | $W_{600}H^{6}$                 | 3 | 0 | 0 |
| Spherical aberration                        | $W_{060}(\vec{ ho} \ \vec{ ho})^3$                                          | $W_{060}\rho^{6}$              | 0 | 0 | 3 |
| Un-named                                    | $W_{151}(\vec{H} \ \vec{\rho})(\vec{\rho} \ \vec{\rho})^2$                  | $W_{151}H\rho^5\cos(\phi)$     | 0 | 1 | 2 |
| Un-named                                    | $W_{242}(\vec{H} \ \vec{ ho})^2 (\vec{ ho} \ \vec{ ho})$                    | $W_{242}H^2\rho^4\cos^2(\phi)$ | 0 | 2 | 1 |
| Un-named                                    | $W_{333}(\vec{H} \ \vec{ ho})^3$                                            | $W_{333}H^3\rho^3\cos^3(\phi)$ | 0 | 3 | 0 |

J. Sasian, Introduction to aberrations in optical imaging systems, Table 5.1



#### Wave fans

"Wave fans" plot the amount of wave front aberration vs the normalized pupil coordinate  $\rho$  in the meridional ('tangential') and sagittal planes. Note that the field (*H*) dependence is not shown explicitly (*H* changes the scale of the wave fan but not the shape).





# Images with pure spherical, coma, and astigmatism





4λ

0

 $-4\lambda$ 

Joseph A. Shaw – Montana State University

# Through-focus images with pure spherical ( $W_{040} = 2\lambda$ )



1λ

 $-3\lambda$ 

 $-7\lambda$ 



Joseph A. Shaw – Montana State University

#### Through-focus images with pure coma ( $W_{131} = 2\lambda$ )



 $-4\lambda$ 

1λ

 $-3\lambda$ 

 $-7\lambda$ 



0

Joseph A. Shaw – Montana State University

# Through-focus images with pure astigmatism ( $W_{222} = 2\lambda$ )



1λ

 $-3\lambda$ 

 $-7\lambda$ 



#### Spherical balanced with defocus

