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Abstract—Multispectral vegetation reflectance measurements
were used as an indirect method of sensing CO gas leaking from
underground in a controlled release experiment in Bozeman,
Montana, USA. The leak location is identified through time-se-
ries analysis of the reflectances and the normalized difference
vegetation index (NDVI), evaluated at a test location and a
control location. Vegetation reflectance changes that correlated
with root-level CO exposure were distinguishable from changes
attributed to seasonal factors including precipitation, wind, air
temperature variation, etc. The NDVI of the vegetation became
steadily smaller until saturating approximately twenty days
after the beginning of the release. However, before reaching the
threshold values, both reflectance and NDVI values changed more
rapidly when exposed to elevated CO fluxes.

Index Terms—Environmental management, multispectral
imaging, remote monitoring, remote sensing.

I. INTRODUCTION

T O REDUCE atmospheric emissions, carbon capture and
sequestration (CCS) is proposed as a means of collecting

CO gas generated through industrial and consumer processes
and sequestering it to prevent its release into the atmosphere.
Proposed methods of sequestration include direct deep-sea in-
jection [1], soil sequestration through improved land use and
management practices [2], and geological carbon sequestration,
which is the technique of interest in this paper. A diverse tech-
nology portfolio is required for the implementation of safe and
effective geological sequestration solutions [3]. This includes
technology capable of monitoring sequestration site integrity,
detecting and signaling leakage should it occur. Early leak de-
tection is crucial to ensuring on-site safety and to minimizing
environmental effects. This research focuses primarily on de-
veloping and testing remote-sensing leak detection technology
for eventual deployment to geological sequestration sites.
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There are many complementary approaches proposed for
monitoring sequestration sites, both directly and indirectly,
by observing effects of CO leakages as they are exhibited
in various ways. Techniques include in-situ infrared gas ana-
lyzers, which measure concentrations of CO in a subsurface or
near-surface atmosphere by measuring absorption of infrared
light [4], tunable differential-absorption laser systems, which
measure the light absorption differences between lasers on
and off CO absorption features [5], differential absorption
LiDAR (DIAL) and Raman LiDAR systems [4], and aerial or
ground-based hyperspectral [6] and multispectral [7] imagers.
Imaging instruments are able to monitor larger spatial areas
than many of the direct measurement techniques. Sequestration
projects over large areas may require monitoring over tens to
hundreds of square-kilometers [8].
The technique presented in this research used a custom-de-

signed, low-cost multispectral imaging system with sensitivity
in red (630–670 nm) and near-infrared (780–820 nm) wave-
lengths to study the effects on vegetation of CO released from
a sub-surface source. The intent is to indirectly detect the pres-
ence of CO by observing changes in overlying vegetation. The
system was deployed to a controlled sub-surface release facili-
tated by the ZERO Emissions Research and Technology Center
(ZERT) in Bozeman, Montana in the summer of 2010. The an-
nual release is an opportunity for scientists and engineers from
all over the country to conduct near-surface monitoring exper-
iments in an effort to better understand the behavior of CO
leaking from an underground source, study the effects of CO
on vegetation and acquire important knowledge regarding how
CO interacts with the environment and how its presence is
best detected. Proof-of-principle experiments were conducted
during previous release experiments in 2007 and 2008 using a
commercial multispectral imager [7], and the results here use
a newly designed imager to provide confirmation of the earlier
results while also adding refined spatial and statistical analysis.
This paper discusses the justification for a near-surface imaging
approach to site monitoring, a brief overview of the imaging
system that was deployed to the 2010 ZERT experiment, a sum-
mary of the data collected, and results of the data analysis.

II. METHODS

A. Vegetation Reflectance Spectral Imaging
Reflectance properties of vegetation are determined by a va-

riety of factors, including leaf age, water content, cell struc-
ture, pigment content, surface properties, and angle of incidence
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Fig. 1. Example vegetation reflectance spectra acquired by a handheld spec-
trometer.

of incoming light [9]. Healthy vegetation exhibits significantly
higher reflectance of near-infrared light than visible light. The
sharp increase in vegetation reflectance, which occurs rapidly
in the spectral vicinity of 700 nm, is known as the “red edge”
and is a result of chlorophyll reflectance. Example reflectance
spectra for healthy and unhealthy vegetation are shown in Fig. 1.
These spectra were measured with a hand-held spectrometer at
the “control” and “hot spot” regions of the vegetation test area
late in the study during summer 2010.
As indicated in (1), the Normalized Difference Vegetation

Index (NDVI) uses the near-infrared and red reflectances,
and , respectively, to provide a numerical estimate of
vegetation health (note that each channel’s digital number is
corrected for dark signal and angle-dependent optics response
before being converted to the corresponding reflectance). As
plants become stressed and die, seasonally or otherwise, an
increase in red reflectance and a decrease in near-infrared re-
flectance results in a flattening of the reflectance spectrum and
a corresponding reduction of the NDVI, which is interpreted as
a decrease in vegetation amount, health, or vigor.

(1)

Although modest increases in CO concentration in the air
can act as a nutrient to plants [10], increased concentration of
CO in the soil displaces oxygen around the roots, causing plant
stress through asphyxiation [11], [12] or soil acidification [13].
This plant stress can be detected as changes in the reflectances
and the NDVI. The basis for this study is that time-series trends
in red reflectance, near-infrared reflectance and NDVI can be
used to indirectly detect the presence of abnormally high con-
centrations of root-level CO by observing the resultant stress
as manifested spectrally by the vegetation.
Rather than relying on reflectances or NDVI alone, the statis-

tical analysis of our data used both reflectances and the NDVI
together because the NDVI is an interaction term that models
the interaction of the two band reflectances [14]. To model the

main effects of the two spectral regions, it is necessary to in-
clude the individual band reflectances in the statistical analysis.
Previous research, however, indicates that there might also be
an interaction between the bands, so that including NDVI as an
interaction term is appropriate as well. The regression analysis
indicates the appropriateness of each band and interaction in the
final model.
One limitation of this method is that it cannot uniquely

identify the specific cause of observed stress. In fact, previous
studies have shown that this method can detect stress caused
by increased CO flux or hail storms, as well as short-term
increases in vegetation health resulting from rapid increases in
soil moisture from heavy rains [7]. However, these other varia-
tions act with essentially equal influence throughout our study
region. Furthermore, the vegetation type was quite consistent
through the field where our study was conducted. Although we
show only results from 2010 in this paper, similar results have
been obtained with similar imaging systems over a four-year
period (2007–2011), including vastly different temperature and
moisture patterns [7], [15].
The primary advantage of this method is that it can iden-

tify areas of a field that warrant direct inspection by identi-
fying areas of vegetation that exhibit significantly different re-
flectance values than surrounding vegetation. This serves to re-
duce the extent of required in-situmonitoring by leveraging the
wide-area coverage of an imaging system.
The imaging system used to collect the data presented in this

paper was a second-generation system designed to consume
less power and be more compact at lower cost than the orig-
inal instrument while maintaining similar spectral sensitivity
and field-of-view. A PixeLink PL-B741U camera model was
chosen for use in the system, which featured a 1280-by-1024
pixel monochrome CMOS sensor with high red and near-in-
frared sensitivity, a USB control interface, and C-mount lens
attachment threads. A Tamron 6.5-mm C-mount lens was
chosen as the primary optical element because of its short focal
length, which provided a good start to achieving the desired
45 field-of-view. Spectral channel selection was achieved
using a Thorlabs FW102B filter wheel populated with one-inch
circular interference filters. Each filter had a 40-nm full-width
half-maximum passband centered at 650 nm for the red and
800 nm for the near-infrared channel. Reduction of the center
wavelength of interference filters for non-normal incidence
angles prevented placement of the filter wheel in front of the
Tamron lens mounted directly to the camera. Space to insert the
filter wheel between the Tamron lens and the camera body was
created by using field lenses to pseudo-collimate and relay light
through the filters and a triplet behind the filters to re-image
the light onto the camera detector. Inaccurate estimates of
ray angles exiting the Tamron lens resulted in a trade-off of
reduced image resolution for required field-of-view. The details
of the design and operation of this imaging system are reported
elsewhere [16].

B. Experiment Overview
The imager was deployed at the ZERT field site, located

just west of the MSU campus in Bozeman, Montana. The site
is an approximately 0.35 square-km, nominally flat pasture
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Fig. 2. Three CO hot spots near the end of the 2009 release (long after they
were detectable with multispectral imaging), along with equipment situated
above the buried release pipe.

consisting of a variety of vegetation [15]. Vegetation includes
western salsify, dandelion, Canada thistle, alfalfa, birdsfoot
trefoil, clover, lupine, quackgrass, orchard grass, and Kentucky
bluegrass [17]. CO is released from an on-site storage tank
into a 100-m horizontal injection well buried approximately
1.8-m below the surface. The release pipe is divided into six
zones, each with its own release rate control mechanism. CO
surface flux measurements taken during previous experiments
have shown that the gas does not exit the surface uniformly
along the length of the pipe; rather, several localized regions
of high flux are observed [15]. These regions are called “hot
spots.” By the end of a release, the CO hot spots are visible as
nominally circular patches of completely dead vegetation (but
the imager detects their onset long before they are obvious to
the eye). Fig. 2 shows these hot spots observed near the end of
the 2009 release.
During the 2010 release experiment, extending from 19 July

to 15 August, 2010, the multi-spectral imager was deployed to
a specific region of the test field known as the plant block, a
400- area of vegetation that is bisected by the buried release
pipe, cordoned off from the rest of the field, and reserved for
plant research. For this release, the vegetation test area was not
mown. Fig. 3 shows a general layout of the plant block.
The instrument was housed atop a 3-m tall scaffold and

viewed the vegetation test area at a downward angle of 45 .
The scaffolding was offset approximately three meters from the
pipe, with the imagers situated such that the release pipe ran
horizontally through the image. This setup provided enough
height for the imager to view vegetation from the pipe out
to the edge of the test area. This field-of-view purposely
included control vegetation well removed from the release
pipe representing vegetation unaffected by released CO . The
field-of-view also included a portion of the observed CO hot
spot, which displayed the most dramatic effects of the released
CO on the vegetation. Fig. 4 shows the instrument deployed
atop the scaffolding, along with other sensors.
The imaging system was designed to have an automated

data acquisition process that relies on a known-reflectance
calibration target placed in the field-of-view. The target used

Fig. 3. Plant block layout including vegetation test area dimensions, walking
path through test area, instrument housing scaffolding, release pipe location,
and nominal instrument field-of-view.

Fig. 4. Multi-spectral imager mounted along with other sensors on scaffolding
at the ZERT test site. The imager views the scene through the left window (from
the observer’s perspective) of the white box.

was a 12-inch square reflectance calibration panel made of
Spectralon© material, which is a Lambertian surface with flat
reflectance values across much of the visible and near-infrared
spectrum. In data acquisition, this panel was used as a feedback
mechanism in an exposure-time control loop which adjusted the
camera’s integration time until the average pixel value of the
reflectance panel is between 240 and 250 digital numbers. This
maximized the dynamic range of the measurements by utilizing
as much of the 8-bit values as possible. In post processing, the
reflectance panel was used to calculate a calibrated reflectance
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image using the known red and near-infrared reflectance values
of 0.9894 and 0.9896, respectively. The calibrated images were
calculated as the ratio of each pixel to the average value of the
calibration panel multiplied by the known panel reflectance
values of the respective channels. The calibrated images were
subsequently used in the calculation of an NDVI image.
Ground-truth data were provided by measuring soil CO

fluxes with an accumulation chamber method, with samples
spaced by 5 m along the well and additional samples spaced by
2.5 m along lines transverse to the well at 10-m interline spacing
[18]. During the 2010 experiment, fluxes were measured for
the full grid on 27 and 29 July near the middle of the release,
and at 1-m spacing along the surface trace of the well on 28
July. The average of the 27 and 29 July CO flux measurements
was 29.4 far from the release pipe in the upper-left
region of the vegetation images analyzed as control region
and 91.7 near the edge of the hot spot, in the image
region that was analyzed as “hot spot” data. The background
CO2 flux in locations far from the release pipe varied between
approximately 15 and 20 . Therefore, our “control”
analysis region exhibited CO flux approximately fifty percent
higher than background, while the “hot spot” analysis region
exhibited CO flux nearly five times background and three
times the “control” value. While this flux difference cannot
rule out the existence of other stressors, it provides important
confirmation that there was higher CO flux in regions where
our imaging system detected higher vegetation stress.

III. DATA AND ANALYSIS

The 2010 release spanned 27 days, from July 19 to August
15, with a CO flow rate of 0.15 tons/day. Data were collected
for 25 of the 27 days during which CO was released. Data
were collected for seven days prior to the start of the release to
provide baseline measurements of the vegetation while it was
seasonally healthy. Data collection continued for 14 days after
the release to observe how the vegetation responded. By the
mid-point of the release there were several discernible regions
of stress within the test area. Around the hot spot, areas stressed
by large amounts of foot traffic also were present, but were not
included in the analysis.
The data were extensively filtered to reduce the number of

images to a workable set. This included removal of images with
people in the test area, occlusion of or debris on the calibra-
tion panel, rain on the observation window, over- or under-ex-
posure, etc. Images were acquired every six minutes between 9
AM and 4 PM each day. An analysis to determine if there was
discernible fluctuation of reflectance with changing solar eleva-
tion angle found no significant trends, but it led to the observa-
tion that measurements taken in the morning hours exhibited a
greater degree of variability than afternoon measurements. This
variability was not observed for every day examined, which al-
lowed illumination geometry to be eliminated as the source of
the behavior.We hypothesize that occasional overnight dew for-
mation on the canopy resulted in higher variability of the mea-
surements in the morning hours. As a result, morning images
were discarded and a single daily average image for red re-
flectance, near-infrared reflectance, and NDVI was calculated

Fig. 5. Example NDVI image labeled to indicate the approximate control and
hot spot regions used in data processing. Some of the regions of extremely high
vegetation stress along the right side of the image are a result of human foot
traffic. This image covers the area enclosed approximately by the blue lines
marking the imager’s field of view in Fig. 3.

using afternoon data. This averaging also avoided times during
which the shadow of the instruments and housing was cast into
the field-of-view.
The data were analyzed statistically in two distinct regions:

a control region located approximately 9 m from the buried re-
lease pipe, and a hot spot region near the release pipe. The hot
spot region was known from previous studies [7], [15], [16] to
experience significantly higher CO fluxes than the control re-
gion. As explained at the end of Section II, flux measurements
made during late July 2010, in the midst of this study, showed at
least three times higher CO flux in the hot spot analysis region
relative to the control region. The pixels chosen for inclusion in
the analyzed image regions were well within the boundaries of
vegetation that was never subjected to foot traffic or other causes
of vegetation stress. Fig. 5 shows an example NDVI image iden-
tifying the approximate hot spot and control regions used for
data processing. In the subsequent statistical analysis, time-se-
ries trends of the reflectance and NDVI data from these two re-
gions were compared, as detailed next.
In the analysis, time was represented as ‘experiment day’

with day one corresponding to the first day of acquired data.
Simple linear regressions of experiment day versus red re-
flectance, near-infrared reflectance and NDVI were calculated.
Though experiment day was used as the response variable in
each of the regressions, the data were plotted with experiment
day as the explanatory variable, as this visual representation is
more intuitive. Equation (2) shows the model used for the red
reflectance analysis,

(2)

where is a categorical variable used to distinguish hot spot
vegetation from control vegetation data. This equation was
also used for the near-infrared and NDVI data with the variable

replaced with the appropriate data series. As the data
represent a small segment of a long-run data set, analysis was
performed to adjust model parameters’ significance values for
the effects of serial correlation. Though it was present in the
data, it was not found to change the statistical significance of
any of the regressions.
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TABLE I
2010 RED REFLECTANCE REGRESSION SUMMARY

TABLE II
2010 NEAR-INFRARED REFLECTANCE REGRESSION SUMMARY

Fig. 6. Time-series plot of red reflectance data along with regression lines for
both control and hot spot data. The beginning and end of the release experiment
are marked by the solid black vertical lines.

Fig. 6 shows the red reflectance data set along with the cor-
responding regression lines and Table I shows the numerical re-
gression results. In this and subsequent figures that show re-
flectance and NDVI data, the measurement error bars are of
comparable size to the plot symbols. The small errors arise be-
cause each point on the graph represents a spatial average over
the control or hot spot region, as well as a temporal average
over all valid images obtained on a given day (i.e., one point
represents the average for a chosen region for a specific day).
Therefore, day-to-day fluctuations of reflectances or NDVI are
believed to represent real fluctuations in the vegetation, arising
from changes in sunlight, moisture, and so forth. In interpreting
the regression results in Table I and the subsequent tables, note
that t-statistic values greater than 2 and p-values less than 0.05
are considered significant.
As expected, red reflectance increased throughout the exper-

iment as the vegetation experienced natural seasonal stress. A
small initial offset in red reflectance between the two regions

Fig. 7. Time-series plot of near-infrared reflectance data along with regression
lines for both control and hot spot vegetation. The beginning and end of the
release experiment are marked by the solid black vertical lines.

was observed. Residual effects from a release in June 2010 were
considered as a potential cause of the initial offset. The offset
was found to be statistically significant as evidenced by the
p-value of the parameter in Table I. It was expected that a
statistically significant difference in slopes would be observed
as well, but that was not the case when considering the full
data series. These data did show a visibly sharper increase in
red reflectance for the hot spot vegetation during the release
and prior to reaching a threshold reflectance around 20%. The
fact that the reflectance reached a maximum value and flattened
out helped explain the lack of a significantly different slope be-
tween hot spot and control vegetation in this model. At the end
of the experiment, the control vegetation red reflectance was
still increasing and never reached the same level as the hot spot
vegetation.
Near-infrared reflectance followed a decreasing trend

throughout the experiment. This, combined with the increasing
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TABLE III
2010 NDVI REGRESSION SUMMARY

Fig. 8. Time-series plot of the NDVI data along with regression lines for both
control and hot spot vegetation. The beginning and end of the release experiment
are marked by the vertical lines.

red reflectance, demonstrated the previously mentioned flat-
tening of the reflectance spectrum as vegetation becomes
stressed. The time-series data for control and hot spot veg-
etation are shown in Fig. 7 and the regression results are
summarized in Table II.
The analysis from this model showed little statistical evi-

dence of a difference in response between the hot spot and con-
trol vegetation. However, this does not mean that there was no
difference. Rather, it suggests that a linear model is not ideal for
explaining the behavior of the data, which is evidenced by the
relatively low value of 0.58. However, there are still impor-
tant qualitative observations which can be made. The hot spot
vegetation appeared to reach a low-threshold value of approx-
imately 40% near-infrared reflectance around experiment day
20, with some recovery observed following the end of the re-
lease. By the end of the deployment, the control and hot spot
near-infrared reflectance measurements were closer than the ini-
tial offset, but had not completely converged. The trends in these
data were not as strong as in the red reflectance data, but a
threshold-type behavior is similarly observed.
The NDVI data more clearly demonstrated the response dif-

ference between the two vegetation regions. The NDVI values
were offset between the two regions at the start of the release,
presumably a result of the earlier mini-release mentioned previ-
ously. Fig. 8 shows a time-series plot of the NDVI data for the
control and hot spot vegetation, along with regression lines for
each. The regression results are summarized in Table III.
All model parameters in the NDVI regression were signifi-

cant. The hot spot vegetation was found to start the experiment

in a less healthy condition and decrease in health more rapidly
than the control vegetation. Visually, it was seen that the NDVI
reached a threshold value between 0.35 and 0.40 by experiment
day 30, about which it oscillated through the remainder of the
deployment. The control vegetation continued a fairly linear
decline throughout the entire deployment and never reached a
threshold value. Taken to represent vegetation health, these data
showed a fairly monotonic decline in health for the control veg-
etation, which was dominated by seasonal factors shared with
the hot spot vegetation. In addition to seasonal stresses, the hot
spot NDVI data reflected the stress associated with the injected
CO .
A full model including both reflectance data and NDVI

was analyzed and reduced using a forward/backward stepwise
procedure. This process removed explanatory variables whose
regression coefficients were insignificant at a 0.05 significance
level. The generalized model used for analyzing the data is
shown in (3).

(3)

The variable selection process yielded the results shown in
Table IV. The residuals for the multiple regression model are
plotted in Fig. 9.
The variables excluded from the model were red reflectance

and near-infrared reflectance for the control vegetation, and an
additive initial offset term for the hot spot vegetation. The red
reflectance, near-infrared reflectance, and NDVI were all im-
portant in explaining the variability for the hot spot while NDVI
alone was sufficient for the control vegetation. After accounting
for NDVI in the control data, red and near-infrared reflectance
did not provide significant explanation of remaining variability.
The results of this model showed a notable difference in red re-
flectance, near-infrared reflectance, and NDVI trends for vege-
tation exposed to high soil CO concentrations. Although the
reflectance and NDVI data exhibit a threshold behavior near
day 30 of the analysis, the entire data set is used in the anal-
ysis to illustrate that the method can be used to detect CO -af-
fected vegetation without isolating specific subsets of data. A
more complete analysis and discussion of the data set is avail-
able elsewhere [16].

IV. CONCLUSIONS

During this experiment, vegetation reflectance changes that
correlated with root-level CO exposure were distinguishable
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TABLE IV
2010 REDUCED MODEL REGRESSION SUMMARY

Fig. 9. Time-series plot of the residuals of themultiple regressionmodel, which
considers red reflectance, near-infrared reflectance, and NDVI.

from changes attributed to seasonal factors including precipi-
tation, wind, temperature variation, soil conditions, etc. Impor-
tant observations that can be taken from this study include the
threshold behavior of NDVI and the constituent reflectances,
and more rapid reflectance and NDVI changes during exposure
to CO before reaching the threshold.
We note that different results may be obtained if this method

is applied in an area with different plant types or with vastly
differing conditions. Furthermore, the method is obviously only
useful during an active growing season. The method lacks the
ability to identify the exact cause of vegetation stress, but it
useful for identifying regions of abnormally high stress, which
warrant further investigation with in-situ measurements.
This study has shown that statistically significant results can

be obtained, which identify regions of high CO flux through
time-series analysis of measurements of vegetation reflectance
made with a very low-cost, compact imaging system. We note
that in this study it was necessary to deploy a calibration panel
so the data could be converted to reflectance values before cal-
culating the NDVI, but in general this is not required. Our use
of 8-bit images in this study made it necessary to adjust the
camera’s integration time as solar irradiance changed with time
of day, cloud conditions, etc., but by simply using the higher
bit depth available from the camera, the need for a reflectance
calibration can be eliminated and the analysis can make direct
use of the digital numbers from the images (after necessary cor-
rection for angle- and wavelength-dependent camera response,
etc.). Related to this, one of the potentially important findings
of this study is that there was no time of day that was better

than others, once dew had disappeared from the vegetation. The
numerical analysis presented here, using reflectance and NDVI
data, is preliminary to the development of automated leak de-
tection algorithms capable of identifying suspected leak areas
in the absence of a priori leak location information.
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