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Radiometry and the Friis transmission equation

Joseph A. Shaw
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(Received 1 July 2011; accepted 13 September 2012)

To more effectively tailor courses involving antennas, wireless communications, optics, and applied

electromagnetics to a mixed audience of engineering and physics students, the Friis transmission

equation—which quantifies the power received in a free-space communication link—is developed

from principles of optical radiometry and scalar diffraction. This approach places more emphasis on

the physics and conceptual understanding of the Friis equation than is provided by the traditional

derivation based on antenna impedance. Specifically, it shows that the wavelength-squared

dependence can be attributed to diffraction at the antenna aperture and illustrates the important

difference between the throughput (product of area and solid angle) of a single antenna or telescope

and the throughput of a transmitter-receiver pair. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4755780]

I. INTRODUCTION

It is becoming increasingly common for physics and elec-
trical engineering students to take courses together in optics,
photonics, and topics in applied electromagnetics such as
wireless communications, antennas, or remote sensing. For
effective learning with students from different disciplines, it
is helpful to identify examples where principles from one
subject area can be applied to another. Exactly such an op-
portunity arises when students encounter principles of radio-
metry in optics courses or the free-space Friis transmission
equation in antennas or wireless communications courses.

The Friis transmission equation relates the received power
to the transmitted power, antenna-separation distance, and
antenna gains in a free-space communication link.1 How-
ever, students first encountering the usual textbook deriva-
tion, based on equivalent dipole antenna impedance, tend to
gain little physical insight into the Friis equation. Even for
students familiar with impedance concepts, the physical ba-
sis of the Friis equation becomes more apparent with a deri-
vation based on radiometry2–4 and scalar diffraction
theory.5–8 Radiometry is the field of science devoted to
quantifying the amount of power carried by a beam of elec-
tromagnetic radiation using geometric optics, areas, and
solid angles. Scalar diffraction theory allows us to use simple
Fourier transform relationships to account for the beam-
spreading effects induced by the finite size of antenna or op-
tical apertures.5–8 (Vector diffraction theory does the same
thing more accurately by using Maxwell’s equations without
the simplifying scalar-field assumptions.9)

Textbooks on antennas and communications10–13 often
write the Friis equation as

Pr

Pt
¼ eret

k
4pR

� �2

DrDt ¼
k

4pR

� �2

GorGot; (1)

where P is power in Watts, e is the antenna efficiency, k is
the electromagnetic wavelength, R is the far-field line-
of-sight distance between the antennas, D is the antenna di-
rectivity relative to isotropic, G is the antenna gain (G¼ eD),
and the subscripts r and t denote the receiver and transmitter,
respectively. Friis actually developed the transmission equa-
tion in terms of effective areas Ar and At, of receiving and
transmitting antennas, respectively, resulting in

Pr

Pt
¼ ArAt

k2R2
: (2)

Following his derivation of the transmission equation
from geometry and antenna impedance,1 Friis proposed that
henceforth antennas should be described in terms of their
effective area rather than antenna gain or radiation resist-
ance, and that antenna radiation should be expressed as
power flow per unit area rather than field strength in Volts
per meter. In doing so, he effectively proposed moving from
a traditional circuit viewpoint, which deals with current and
voltage, to a radiometric one, which deals with power, power
density, etc. However, in textbooks and classroom presenta-
tions, the Friis equation is normally derived or explained in
terms of antenna impedance, leading to Eq. (1). Unfortu-
nately, without a deeper understanding of how the antenna
gain depends on wavelength, Eq. (1) can be mistakenly inter-
preted to mean that the received power increases with wave-
length, whereas in fact the opposite occurs. Additional
confusion often arises because the antenna impedance deri-
vation is based on the effective area of an infinitesimal
dipole, but applied broadly to antennas of any shape.10,11

Several authors have discussed alternate derivations of
the Friis equation. Friis himself presented an argument that
resembles a simpler form of the antenna derivation that is
common in modern antenna textbooks, but he left the result
in terms of antenna areas as seen in Eq. (2). Hogg14 derived
the Friis transmission equation using three different
approaches—Fresnel zones, Gaussian beams, and modes—
all of which lead to Eq. (2). Bush15 outlined a derivation
based on Fraunhofer diffraction integrals but did not com-
bine diffraction with radiometry. Shortly thereafter, Heald16

pointed out that the most significant benefit of Bush’s paper
was that it removed the oft-confusing antenna impedance
from the derivation.

The development presented here builds on this back-
ground to provide an even simpler path to the Friis equation
based on optical radiometry and a simple result of scalar dif-
fraction theory. Many undergraduate and graduate students
have been exposed to enough basic optical principles that
this development is intuitively appealing, particularly in a
mixed class of physics and engineering students. This paper
presents a combined discussion of the Friis transmission
equation and optical radiometry, relying on the geometric
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optics propagation of radiance (power per unit area per unit
solid angle) through free space. Beam spreading is intro-
duced via scalar diffraction at the antenna aperture. This
approach still relies on aperture areas, but in a much more
direct manner and without any reference to antenna imped-
ance. In this development, it becomes clear that the source of
the wavelength-squared dependence is diffraction at the
antenna aperture. This discussion also conveniently merges
several topics from antenna theory and radiometry. There-
fore, for students familiar with radiometry this approach
builds on familiar principles to enhance understanding of the
Friis equation, and for students not familiar with radiometry
this approach teaches radiometry in the practical context of a
free-space communication link.

II. BASIC CONCEPTS OF OPTICAL RADIOMETRY

The radiometric development of the Friis transmission
equation relies on the concepts of radiance and throughput,
both central to radiometry.2,3 As indicated in Table I, radi-
ance is the power incident on (emitted from) a surface
per unit area, from (into) a given solid angle, with units of
W/(m2 sr). Suggestive of its physical meaning, radiance of-
ten is called brightness in the microwave radiometry and ra-
dio astronomy communities.17,18 The concepts of radiance
and related radiometric quantities can be introduced and
used in courses ranging from antennas to photonics and opti-
cal design because they provide a consistent framework for
calculating power transmitted from or received by an optical
detector or antenna. While the five quantities in Table I are
sufficient for power flow calculations, radiance is the most
fundamental because it is invariant in a lossless system. Sim-
ilarly, conservation of energy requires that the product of
area and solid angle is invariant, a quantity referred to by op-
tical scientists and engineers as throughput (sometimes
called �etendue). Antenna texts10,11 and optical texts discus-
sing coherent receivers19 provide an added quantification of
this concept by showing that the area-solid-angle product for
a single-spatial-mode, diffraction-limited system is equal to
the wavelength squared. This provides a theoretical limit to
the field-of-view solid angle achievable with such systems
for a given aperture size and wavelength.

Whether or not the classroom discussion extends to a full
coverage of all the radiometric quantities in Table I, the most
basic of radiometric principles can be taught and used to
derive the Friis transmission equation,1 the radar range equa-
tion,20 and the lidar equation.21 One of the most important of
these radiometric principles is that the throughput is the
product of an area and a solid angle that always opens away
from the area, as shown in Fig. 1. Students often need to be
reminded that the steradian is a dimensionless unit of solid
angle and can be thought of in a manner similar to the more
common planar angle. As shown in Fig. 2, a planar angle in

radians is defined as the ratio of (circular) arc length to ra-
dius (s/r), whereas a solid angle in steradians is defined as
the ratio of (spherical) surface area to the square of the radius
(Asph/r2). In a more complicated situation, we can find a solid
angle x by integrating in spherical coordinates over the
appropriate range of polar and azimuthal angles

x ¼ � sin h dh d/: (3)

Although many antenna and physics textbooks use a capi-
tal omega (X) for all solid angles, in radiometry a careful dis-
tinction is made between solid angle x and projected solid
angle X. For a projected solid angle, we replace the spherical
surface area with a flat cross-sectional area, such as the pro-
jected aperture area of a lens, mirror, or antenna. The integral
definition of the projected solid angle X is the same as
Eq. (3) but includes a factor of cos(b) in the integrand, where
b is the angle between the area’s surface normal and the
viewing direction. The small-angle approximation allows us
to see that the projected solid angle subtended by an object
can be estimated simply as the ratio of the object’s projected
cross-sectional area divided by the square of the distance R
from the observer to the object

X ¼ A

R2
: (4)

From dimensional analysis, the power collected by a re-
ceiver with area Ar from a transmitter subtending solid angle

Table I. Radiometric quantities and antenna equivalents.

Quantity Symbol Units Antenna equivalent

Power P W Power, P

Irradiance E W/m2 incident Power density, W

Exitance M W/m2 leaving surface Power density, W

Intensity I W/sr Radiation intensity, U

Radiance L W/(m2 sr) Brightness, B (in radio astronomy)

Fig. 1. Geometry for radiometric calculations, showing that a solid angle

always opens away from the area (A) in which incident power is calculated.

Fig. 2. In plane geometry an angle h is defined as the ratio of circular arc

length s to radius r (left); in spherical geometry a solid angle x is the ratio

of spherical surface area A to the square of the radius r2. The projected solid

angle X results from considering the projected area instead of the actual

spherical area.
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Xt,r as seen from the receiver, is given by the product of the
source radiance L (W m�2 sr�1) and the geometric throughput
ArXt,r (m2 sr)

P ¼ LArXt;r ffi L
ArAt

R2
: (5)

For example, in a Friis transmission scenario the area Ar

represents the effective area of a receiving antenna and Xt,r

is the projected solid angle subtended by the transmitting
antenna with effective area At located a distance R from the
receiver (Xt,r¼At/R

2 is a common approximation where
the flat cross-sectional area At is used instead of integrating
over the projected spherical area). Because the resulting
throughput is equal to the product of the two areas divided
by the square of the distance between them, it is an invari-
ant of the system regardless of which area is the receiver
and which is the transmitter. This invariance means that as
the beam is compressed into a smaller area, its solid angle
expands proportionally. An important consequence of this
is that light focused onto a tiny single-mode fiber, for exam-
ple, often has a solid angle that exceeds the maximum angle
that can propagate in the fiber, resulting in a very low light-
coupling efficiency. A similar concern exists when one
attempts to focus any electromagnetic energy into a small
area.

When discussing antennas it is important to emphasize
that the receiver solid angle used in the Friis transmission
equation is not the “beam solid angle” of antenna theory,
except in the unlikely case of the transmit antenna beam
exactly filling the receiver field of view at distance R; rather,
we simply use the solid angle subtended by one antenna as
seen from the other, a solid angle that usually is smaller than
the antenna beam solid angle. One final note is that all solid
angles discussed in the remainder of this paper are projected
solid angles (the difference between solid angles and pro-
jected solid angles is tiny for small angles).

III. FRIIS EQUATION DEVELOPED FROM

RADIOMETRY AND SCALAR DIFFRACTION

To develop the Friis transmission equation from optical
radiometry and scalar diffraction theory, we begin with a
common antenna calculation to incorporate the concept of
directivity into radiometry. The directivity D is an important
measure of how an antenna radiates preferentially in a given
direction relative to an isotropic antenna that radiates uni-
formly in all directions (see Fig. 3). Directivity can be
defined as the ratio of an antenna’s radiation intensity
U (W sr�1) in a given direction, usually the direction of
maximum radiation, to the isotropic radiation intensity U0

(W sr�1). For total radiated power P, the radiation intensity
can be written as U¼P/X, while the isotropic radiation in-
tensity is U0¼P/(4p). Therefore, the directivity can be writ-
ten as either a ratio of antenna radiation intensity U to
isotropic radiation intensity U0 or a ratio of isotropic solid
angle 4p to the antenna’s beam solid angle X

D ¼ U

U0

¼ P

X

� �
4p
P

� �
¼ 4p

X
: (6)

Notice that a narrower beam solid angle X results in a
larger directivity D. This concept of solid angle ratio is used

often in optical radiometry but is not usually referred to as
directivity, a useful term that probably should be adopted by
the optics community. We can incorporate directivity into
the present discussion by writing the solid angle of the trans-
mitted beam as the cross-sectional beam area Ab divided by
the distance squared

Xt ¼
Ab

R2
: (7)

Using this result in Eq. (6) gives a transmitter directivity
of

Dt ¼
4pR2

Ab
: (8)

It is here that diffraction must be invoked to bring the
wavelength into the equation. Even for students who have
not studied scalar diffraction theory,5–8 an explanation can
be offered that diffraction causes a beam of electromagnetic
energy to spread into an angle hd that is proportional to the
ratio of wavelength k over the size d of the aperture or
obstruction causing the diffraction

hd ffi
k
d
: (9)

This result is exactly true for a square aperture, but if d is
the radius of a circular aperture, Eq. (9) must be multiplied
by 1.22 to obtain the Airy disk radius.5–8 This is a detail that
can be discussed or not, depending on student background,
available time, and instructor interest. At distance R suffi-
ciently large that the beam dimension is much greater than
the original aperture area, Eq. (9) and a small-angle approxi-
mation results in an estimate for the transverse dimension of
the beam

y ffi Rhd ffi
Rk
d
: (10)

Now the beam area can be approximated as

Ab ffi y2 ¼ R2k2

d2
¼ R2k2

At
; (11)

Fig. 3. Directivity is a concept that describes how much of an antenna’s

radiated power is transmitted into a given direction (per unit solid angle X)

relative to the amount radiated by an isotropic antenna radiating uniformly

into solid angle Xo¼ 4p sr.
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where At is the effective area of the transmit antenna.
Substituting this beam area into Eq. (8), we obtain a
wavelength-dependent expression for the transmit antenna
directivity

Dt ¼
4pR2At

k2R2
¼ 4pAt

k2
; (12)

which can be solved to obtain the standard relationship
expressing the antenna effective area in terms of transmitter
directivity

At ¼
k2

4p

� �
Dt: (13)

In this development students see directly that the
wavelength-squared term expresses the diffraction-induced
beam spreading of an electromagnetic wave launched from a
finite aperture. In fact, Eqs. (6) and (13) together reproduce
the traditional antenna result

AX ¼ k2; (14)

which says that the beam throughput is equal to the wave-
length squared.10,11,19 In both the antenna and radiometric
discussions of the Friis equation, this expression plays a cen-
tral role because it demonstrates that as the wavelength
increases, either the antenna area must increase even faster
(as the square of the wavelength) or the beam will spread
into a proportionally larger solid angle. We arrive at this
result using only simple geometric radiometry and a basic
result of scalar diffraction theory, without employing radia-
tion resistances, equivalent circuits, power-transfer relations,
or anything unique to an infinitesimal dipole. The derivation
using those quantities can be useful, but the radiometric
method is an alternative that enhances understanding of the
physics behind the equation and makes the material more ac-
cessible to a wider range of students.

The Friis equation derivation continues with the recogni-
tion that, in radiometric terminology, the transmit antenna
emits a radiance given by the ratio of transmitted power to
the transmitter throughput

Lt ¼
Pt

AtXb
ffi PtR

2

AtAb
: (15)

Using Eq. (11) for the beam area Ab, we find that

Lt ¼
PtR

2

At

At

R2k2
¼ Pt

k2
: (16)

Here we see that the transmitted radiance can be written
simply as the ratio of transmitted power to the wavelength
squared, again a result of the throughput equality expressed
in Eq. (14). Equation (16) is another relatively common
antenna concept that would be useful in discussions of
diffraction-limited optical systems.

Radiance propagates unchanged in a lossless medium,
so all that is required to find the received power is to multi-
ply the radiance by the appropriate receiver throughput.
This is where students sometimes make the mistake of mul-
tiplying by the effective receiver area (correct) and the

receive-antenna beam solid angle (incorrect). This mistake
is equivalent to multiplying Eq. (16) by k2, which would
result in 100% of the transmitted power being collected by
the receiver (although this is true in the special case where
the receiver beam exactly fills the area of the transmitter).
As indicated in Fig. 1, the correct solid angle to use in the
received-power calculation is the solid angle subtended by
the transmit aperture at the receiver At/R

2. Multiplying this
solid angle by the effective area of the receiver aperture
gives the correct throughput, which is not equal to k2. Equa-
tion (16) is then transformed into a variation of Eq. (2)

Pr ¼ LtArXtr ¼
Pt

k2

ArAt

R2
: (17)

The final step to obtain the Friis equation in the form of
Eq. (1) is to use Eq. (13) to convert the effective receiver and
transmitter areas into quantities involving directivities

Pr

Pt
¼ 1

k2

k2Dt

4p
k2Dr

4p
1

R2
¼ k

4pR

� �2

DrDt: (18)

For non-ideal antennas, we can include efficiency factors
and rewrite the resulting Friis transmission equation in terms
of both directivity and gain

Pr

Pt
¼ eret

k
4pR

� �2

DrDt ¼
k

4pR

� �2

GrGt: (19)

It is useful to note that whenever irradiance is encountered
in a class that also discusses electric fields, it is important to
use notation that avoids confusion between the two. Other-
wise there is minimal difficulty getting students to apply
antenna and optical radiometry concepts together.

IV. DISCUSSION AND CONCLUSION

Students are likely to be confused with the two forms of
the Friis equation given by Eqs. (1) and (2) because they
appear to depend on wavelength in entirely different ways.
In Eq. (2), the received-to-transmitted power ratio is inver-
sely proportional to the wavelength squared, whereas in Eq.
(1), the ratio appears to be directly proportional to the
wavelength squared. The reason for this difference is that
the directivities (or gains) in Eq. (1) depend inversely on
the wavelength-squared. Thus, Eq. (1) has a factor of k4

effectively hidden from view and naively gives the wrong
wavelength dependence. Conversely, Eq. (2) correctly pre-
dicts the appropriate diffraction behavior of lower received
power at longer wavelengths when the antenna areas are
unchanged.

In two offerings of a first-year graduate course on anten-
nas and a graduate course on remote sensing systems, with
both electrical engineering and physics students enrolled, the
Friis transmission equation was presented with both
the dipole effective area and radiometric derivations. Before
the radiometric derivation was presented, many of the stu-
dents could recognize and some could use the equation, but
all were entirely unable to describe the physical meaning of
the wavelength dependence of the Friis equation. In ques-
tioning immediately following the presentation of the dipole
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derivation, none of the students accurately identified the
wavelength dependence as arising from diffraction. How-
ever, immediately following the radiometric discussion
described here, 100% of the students identified the source of
the wavelength-squared dependence as diffraction and could
explain, in basic terms at least, how the wavelength entered
in and flowed through the derivation. Additionally, all of the
students selected the radiometric presentation as the one they
felt was most physically intuitive.

The Friis transmission equation is a sufficiently simple
and practical tool, and students generally enjoy using it as
the basis of discussion of radiometric concepts. Students
who have taken both antenna and optics classes have a par-
ticularly high level of appreciation for seeing the two fields
brought together into a common discussion. There are sev-
eral antenna concepts (e.g., directivity, throughput¼ k2,
etc.) that enhance optical radiometry, just as the radiomet-
ric approach allows an alternate development of the
wavelength-squared dependence that helps students better
understand its diffraction roots.
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