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Abstract—Recent research demonstrated that gas leaking
fromunderground can be identified by observing increased stress in
overlying vegetation using spectral imaging. This has been accom-
plishedwith both visible/near-infrared (Vis/NIR) sunlight reflection
and long-wave infrared (LWIR) thermal emission. During a 4-week
period in summer 2011, a controlled release experiment was
conducted in Bozeman, Montana, as part of a study of methods for
monitoring carbon sequestration facilities. As part of this experi-
ment, reflective and emissive imagers were deployed together to
enable a comparison of these two types of imaging systems for
vegetation-based leak detection. A linear regression was
performed using time as the response variable with red and NIR
reflectances, Normalized Difference Vegetation Index (NDVI), and
LWIR brightness temperature as predictors. The regression study
showed that the reflectance andLWIRbrightness temperature data
together explained the most variability in the data (96%), equal to
the performance of the Vis/NIR reflectance data alone, followed by
NDVIalone (90%), andLWIRdata alone (44%). Therefore, the two
types of imagers contributed in a synergistic fashion, while either
method alone was capable of gas detection with increased statistical
variability.

Index Terms—Environmental monitoring, gas detection,
multispectral imaging, thermal imaging.

I. INTRODUCTION

G EOLOGIC carbon sequestration is being explored for its
potential to reduce emission into the atmosphere of

greenhouse gases released in combustion processes [1]–[3].
However, for both safety and effectiveness, sequestration re-
quires reliable methods of monitoring and verifying that the gas
remains underground without leaking back into the atmosphere
[4], [5]. This is one of the primary objectives being pursued at the
Zero Emissions Research and Technology (ZERT) Center at
Montana State University (MSU) in Bozeman,Montana. During
the summers of 2007–2013, controlled release experiments
were conducted at an agricultural field west of the MSU campus,
where a perforated horizontal well was installed to test leak
detection methods [6]. Technologies tested during the ZERT
experiments included eddy covariance measurements [7], [8],
soil conductivity sensing [9], atmospheric tracer plume monitor-
ing [10], inelastic neutron scattering [11], closed-path laser
absorption and radon gas measurements [12], [13], open-path
laser absorption measurements [14]–[16], in-situ visible and
near-infrared (Vis/NIR) spectral reflectance measurements of
vegetation overlying the well [17], Vis/NIR hyperspectral im-
aging [18], [19] and multispectral imaging of vegetation
[20]–[22], and long-wave infrared (LWIR) thermal imaging of
vegetation [23], [24] to identify the location of gas leaking
from the underground well.

The basic concept driving the use of vegetation imaging to
locate leaking is that higher soil gas concentrations of
will stress the vegetation, leading tomeasurable changes in short-
wave reflectance and/or long-wave emission. Higher soil gas
concentrations of could result in less oxygen and water
being drawn from the soil into the plants, resulting in a leaf
stomata response and changing the reflectance and radiative
properties of the vegetation. The increased plant stress results
in increased red reflectance and decreased NIR reflectance [23],
[24]. Similar methods have been usedwith airborne and satellite-
based sensors to identify regions of natural seepage from
Vis/NIR, short-wave infrared, and LWIR images of vegetation
and soil [25]–[27]. Some studies have suggested that leaks can be
identified through -induced changes in plant species [28],
[29], although most have been based on measuring changes in
plant stress. The earlier study by Bateson et al. [25] showed that

gas vents appeared as warm regions in thermal infrared
images, and hypothesized that thismight be a result of the leaking
gas or the soil at the gas vent being warmer than the surrounding
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vegetation. To these initial hypotheses, our study adds interpre-
tation in terms of plant stress leading to impaired thermoregula-
tion by vegetation, which leads to increased vegetation temper-
ature during day and increased variation in vegetation tempera-
ture during day and night [24].

During our experiments at the ZERT facility, Vis/NIR reflec-
tance imaging experiments were initiated in 2008 using a
commercial multispectral imager [20], and later continued with
a custom-designed, wide-angle imager that uses red and NIR
reflective bands [21]–[23]. In comparing measured reflectance
values of healthy vegetation to those of vegetation exposed to the
leaking , there were statistically significant temporal and
spatial variations in Vis/NIR reflectance and vegetation indices
derived from the reflectance. The leak location was identi-
fied by a more rapid rate of plant stress relative to the usual
seasonal decay in the control regions.

During the summer 2011 controlled release experiment, we
also deployed a LWIR imager to measure vegetation stress and
thereby indirectly identify the gas leak location from thermal
emission [23], [24]. The mechanism was expected to be essen-
tially the same, but in this case, the stress caused by high soil gas
concentrations of at the plant roots was hypothesized to
result in an impairment of the vegetation’s temperature regula-
tion. A consequence of this was that over time, the vegetation
nearest to the leak exhibited larger diurnal temperature variations
and, most significantly, higher maximum daytime brightness
temperatures (temperature of an ideal blackbody emitting the
same amount of radiation, equal to the physical temperature
when the object is an ideal blackbody).

The side-by-side deployment of reflective and emissive im-
agers in the summer 2011 experiment enabled a direct compari-
son of these two remote sensing instruments for locating a
gas leak through optical signatures of induced vegetation stress.
This paper reports the results of this comparison, showing that
the data from the two types of imagers are statistically significant
alone and provide a moderate level of synergy when combined.
The LWIR imager can be deployed without an in-field calibra-
tion source, giving it a practical advantage, especially for aerial
monitoring of large areas.

II. METHODS

The vegetation imagers were mounted on a 3-m scaffold,
looking down at approximately 45 onto a vegetation test
area (Fig. 1). The horizontal well, buried at a nominal depth
of 2 m, ran just in front of the scaffold, across the bottom of the
images. The released exited the ground in a highly
nonuniform pattern [6], [30]–[32], creating localized regions
of elevated concentrations that we refer to as “hot spots.”
The 2011 release ran from July 18 to August 15, 2011, with a
flow rate of 0.15 tons/day. Imageswere acquired once perminute
throughout daylight hours for the reflective imager and through-
out both day and night for the emissive imager. Images
were analyzed in a hot spot region known to have high
flux and two control regions with near background-level

flux (Fig. 2). The use of two control regions allowed us
to find that there is no substantial view-angle dependence in the
results [23], [24].

The reflective imager has pixels and custom
front-end optics that provide wide-angle imaging through inter-
ference filters mounted in a rotating filter wheel. The filters have
40-nm half-power bandwidths, centered at 800 nm for the NIR
channel and 630 nm for the red channel [21]. The reflective
imager has an embedded computer that runs custom software to
control the instrument. During this deployment, red and NIR
image pairs were acquired once each minute. A Spectralon
99%-reflectance panel was deployed on a tripod mount in the
midst of the vegetation test area, so that it was included in a
portion of each image. A laboratory calibrationwas used to relate
the pixels in that particular portion of each image to all of the
pixels throughout the image, resulting in a calibration that
converted digital numbers to reflectance. From these reflectance
data, Normalized Difference Vegetation Index (NDVI) values
were calculated from (1), and then the 1-min reflectance and
NDVI data in the hot spot and two control regions were averaged
from 10 AM to 2 PM (when the Sun is sufficiently high to reduce
shadows in the vegetation) to create a single value of red reflec-
tance, NIR reflectance, and NDVI for each region on each day

Note that the NDVI is a nonindependent interaction term for red
and NIR reflectance [33], which has been shown in previous
studies to have substantial statistical explanatory effect
[20]–[22], [33].

The LWIR imager was mounted on the same scaffold, imme-
diately beside the reflective imager (Fig. 1). The FLIR photon
320 LWIR camerawith pixels produced 14-bit digital
images, whose digital numbers were calibrated using a method
developed at Montana State University for maintaining radio-
metric calibration even with widely varying camera temperature
and no calibration target in the field [34]. The resulting values of

Fig. 1. Side-by-side Vis/NIR and LWIR imagers mounted on a scaffold to
measure vegetation reflectance and emission, respectively, at the ZERT field in
Bozeman, Montana. The tripod in front of the scaffold is a mount that holds a
reflectance panel to calibrate the Vis/NIR images.
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radiance [ ] at each pixel were converted to bright-
ness temperature ( ), in C, with a lookup table computed by
integrating the product of the Planck blackbody function and the
8- to spectral response function of the imager. The
values in all the thermal images were spatially averaged within
the hot spot region and the two control regions to produce a time
series of region-average .

III. COMPARISON OF REFLECTIVE AND EMISSIVE IMAGES

To facilitate a statistical comparison of the performance of the
two types of imagers during the 2011 release experiment,
linear regressions were calculated using DAY (number of days
since the start of operation with side-by-side imagers) as the
response variable and reflectance, NDVI, and as predictors.
We used DAY as the response variable because although DAY
does not respond to the spectral responses, it enables comparison
of the correlations between DAY and spectral responses even
when there aremultiple spectral responses being tested in a single
regression. Furthermore, DAY acts as a surrogate for exposure
level to the constantly flowing gas, which is the biophysical
driver of the response we were measuring.

This procedure was similar to the analysis implemented in
prior years for the reflective data alone [20]–[22], but this
iteration added thermal brightness temperature data and the
second control region. Thermal images were acquired during
day and night, starting in early June 2011, whereas reflective
images were acquired only during day, starting in early July
2011. Although the extra images acquired prior to the start of the
release and during hours other than at midday increased the
amount of variance explained by the thermal data [23], [24],
the comparison reported here uses images only from midday
(10 AM–2 PM) on the common days when both the reflective and
emissive imagers were operating together (14 July–23 August
2011, with gas flowing from 18 July to 15 August).

We began the analysis by performing separate linear regres-
sions on NDVI data alone, red and NIR data alone, and thermal
brightness temperature data alone to determine whether each of
these data types by itself was able to produce statistically
significant results that allowed us to distinguish between the hot

spot and control regions [23]. The linear regression model for the
NDVI was formulated as follows:

In (2), DAY is the response variable representing the number of
days elapsed since the start of operation for both side-by-side
imagers, REGION is a categorical variable that selects from the
three regions of interest (hot spot, horizontal control, or vertical
control), and the terms are the regression coefficients. We
created a reduced model by removing terms that were not found
to be statistically significant, starting with the least significant
term. Statistical significance was determined by a term having a
-value less than or equal to 0.05 (the -value is the probability of

observing a sample statistic that is as extreme as the test statistic).
The reduced model for the NDVI regression (3) resulted in a
residual standard error of 3.76 on 109 degrees of freedom, with
an adjusted value of 0.90

Fig. 2. Approximate locations of the hot spot (HS), horizontal control (HC), and vertical control (VC) regions shown on images of the vegetation test area from 14
August 2011: (left) NDVI and (right) LWIR brightness temperature in C.

Fig. 3. NDVI versus day of the experiment plotted for three test regions. The
vertical lines mark the start and end of the gas release on 18 July and 15
August 2011, respectively.
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In (3), VC and HS are the values of the categorical variable
REGION, representing the vertical control or hot spot regions,
respectively. In this case, both regions were compared with the
horizontal control region in the regression; i.e., for observations
in VC, and , for observations in HS, and

, and for observations in HC, and . This
enables three possiblemodels, depending on the value of VC and
HS. The three models are represented by the three regression
lines shown in Figs. 3–5.

These results show that there was a statistically significant
difference between the vertical control and hot spot regions. The
coefficient estimated for the hot spot intercept was substantially
larger than the coefficient for the vertical control intercept,
meaning the hot spot had a much greater difference from the
horizontal control than the vertical control, which was quite
similar to the horizontal control.

Fig. 3 is a time-series plot of daily average NDVI plotted with
time on the horizontal axis for convenience (although to interpret
the regression values in the table, it is important to keep in mind
that the regressionswere actually performedwith experiment day
as the response variable). The vertical lines indicate the start and
end of the release. This figure shows that the NDVI data
from all three regions started out similar, but decayed with
different rates for the control and hot spot regions after the onset
of the release. The similarity of the curves from the two

control regions indicates that there is no substantial view-angle
difference in the data. As expected, the NDVI data from the
hot spot region decayed at a much higher rate than in either
control region.

A similar linear regression was calculated for the red and NIR
reflectance data

Again, a reduced model was obtained by eliminating terms that
were found to not have statistical significance according to the
requirement that -value . This regression gave a residual
standard error of 2.39 on 106 degrees of freedomwith an adjusted

value of 0.96. The reduced reflectance regression model is
shown in (5), and the reflectance versus experiment day is plotted
in Fig. 4. The temporal trends were as expected, with the red
reflectance rising and the NIR reflectance falling as the vegeta-
tion dried out through the summer, but with the highest rate of
change in the hot spot region because of the additional stress
caused by the high soil gas concentration. It is interesting to note
the similarity in the slope of the hot spot and vertical control lines
for the NIR reflectance in Fig. 4. TheNIR reflectance is primarily
responsive to leaf structure, but the lack of biophysical measure-
ments prevents us from interpreting this with confidence

The same type of analysis was performed on the infrared
brightness temperatures for the days when both imagers were
operating together. To isolate the plant health-related thermal
signature from the meteorological variations, the ambient air
temperature was subtracted from the infrared brightness temper-
ature for all readings. The full linear regression model for the
emissive thermal image data used the same REGION categorical
variable as our previous models, along with a term repre-
senting the difference of IR brightness temperature and air
temperature ( ), as follows:

Fig. 4. Reflectance versus day of the experiment plotted for all three test regions: (left) red and (right) NIR.

Fig. 5. Plot showing difference in LWIR brightness temperature and air temper-
ature versus day of the experiment for the three test regions.
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The reduced regression model in (7) resulted in a residual
standard error of 8.71 on 110 degrees of freedomwith an adjusted

value of 0.44. Again, the temporal trend shown in Fig. 5 was
as expected, with increasing as the vegetation became
stressed while summer progressed, but with the highest rate of
increase in the hot spot region

The trend shown in Fig. 5 arose because increased as the
stressed vegetation lost its ability to regulate its own temperature,
resulting eventually in an IR that was higher than the ambient
air temperature because of solar heating during the day.
The vegetation nearest to the hot spot region showed markedly
higher values than the unexposed vegetation. In this case, the
difference between the slopes of the regression lines for the two
control regionswas slightly significant, indicating that there is no
substantial concern with view angle. Note that the plant–air
temperature difference has been shown previously to carry
information related to plant water stress; specifically, for a well-
irrigated crop, the temperature difference was shown to start out
slightly negative because evapotranspiration cooled the sunlit
plants below the ambient air temperature, and increasing water
stress caused the temperature difference to pass through zero and
then become increasingly positive as the plants progressively lost
their ability to regulate their own temperature [35].

Having shown that both the Vis/NIR imager data and
the LWIR imager data independently yielded statistically signif-
icant results, we next combined the NDVI, reflectance, and
brightness temperature data into the following single regression
model:

The full-model reduced regression in (9) resulted in a residual
standard error of 2.24 on 103 degrees of freedomwith an adjusted

value of 0.96

This full regression model using combined reflective and emis-
sive data shows that the reflectance, NDVI, and thermal infrared
measurements are all significant for identifying -affected
regions from unaffected regions of vegetation. The individual
regressions [(3), (5), and (7)] also are each strong by themselves,
indicating that a -affected region can be identified by one
method alone (reflectance, NDVI, or LWIR emission). The
highest value (0.96) occurred for both the reflectance regres-
sion and the combined reflective-and-emissive regression.

This suggests that the most effective single type of measurement
may be Vis/NIR reflectance, although there is statistically sig-
nificant value in measuring both reflectance and emission.

IV. CONCLUSION

Through comparison of the regression results, it is evident that
the emissive data combine in a statistically significant manner
with the reflectance-band data. However, either reflective or
emissive imaging alone can distinguish between regions with
and without a leak. Nevertheless, in the manner that the
imagers were deployed in our experiment, the LWIR imaging
method was simplest because it did not require a reflectance
calibration panel in the field, only air temperature data, which are
generally readily available. Thus, if this method was used for
airbornemonitoring, thermal imagingwould require deployment
of air temperature sensors in the area being monitored (along
with the use of an appropriate model to compensate for atmo-
spheric emission and attenuation), whileVis/NIR imagingwould
require either field deployment of a sufficiently large reflectance
calibration panel, deployment of downwelling solar irradiance
sensors in the field, or use of other calibration methods that allow
the images to be processed for reflectance (along with appropri-
ate compensation for atmospheric scattering and attenuation).
Finally, the use of two control regions in this analysis shows that
there is no substantial concern over viewing angle. Continuing
work includes testing imagers from balloons or aircraft to allow
viewing of larger areas. In practical use, thismethod suggests that
elevated LWIR brightness temperatures relative to ambient air
temperature or rapidly changing Vis/NIR reflectance could
indicate a potential leak for which final confirmation could be
made using ground-based measurements.
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