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An Improved Method for Estimating
Inbreeding Depression in Pedigrees
Steven T. Kalinowski* and Philip W. Hedrick
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Fitness is expected to decrease with inbreeding in proportion to the amount of
deleterious genetic variation present in a population. The effect of inbreeding on
survivorship is usually modeled as a negative exponential relationship, and this
model has been widely used to estimate the amount of deleterious genetic varia-
tion in populations. Linear regression has traditionally been used to estimate the
parameters of the model, including the number of lethal equivalents. This article
describes an alternative method for estimating parameters and their confidence
limits: the maximum likelihood approach. The accuracy of regression and maxi-
mum likelihood estimates of the number of lethal equivalents is compared through
simulation. The maximum likelihood approach is found to be both median unbi-
ased and capable of estimating confidence limits with nearly the stated degree of
accuracy, while the linear regression approach is found to be median biased. The
significance of this on previous estimates of inbreeding depression is discussed.
Zoo Biol 17:481–497, 1998. © 1998 Wiley-Liss, Inc.
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INTRODUCTION

The deleterious effects of inbreeding have long been recognized in domesti-
cated species [Darwin, 1868, 1876], and more recently were documented in both
captive [Ralls et al., 1979, 1988] and wild [Jimenez et al., 1994; Keller et al., 1994]
populations. Most evidence suggests that a large proportion of inbreeding depression
is caused by deleterious recessive alleles [for review, see Charlesworth and
Charlesworth, 1987]. Inbreeding is expected to affect many aspects of fitness, but
the impact of inbreeding on viability is often the most straightforward to examine.

To quantify the number and impact of deleterious alleles on survivorship, Morton
et al. [1956] defined a lethal equivalent as an unit of deleterious genetic variation
and developed a model to estimate the genetic load present in a genome. One lethal
equivalent is defined as a set of alleles of such number that, if dispersed in different
individuals, would, on average, be lethal in one individual of the group. For ex-
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ample, if an allele or set of alleles causes death 50% of the time, this is equal to one-half
of a lethal equivalent. Morton et al. chose the number of lethal equivalents in a doubled
haploid genome as a statistic to quantify the deleterious alleles present in a genome. This
statistic originally was called the total mutational damage of an individual, a term no
longer used. In this article, we continue the imprecise, but common and convenient,
practice of using the term lethal equivalent as an abbreviation for the number of lethal
equivalents in a doubled genome (either haploid or diploid). Morton et al. [1956] showed
that survivorship is expected to decline in inbred individuals in proportion to the number
of lethal equivalents within the population and used this relationship to estimate the aver-
age number of lethal equivalents per gamete from pedigrees with known levels of in-
breeding. The number of lethal equivalents within a genome, therefore, also serves as a
measure of the magnitude of inbreeding depression.

The model of Morton et al. [1956] has been used to estimate the number of
lethal equivalents in many populations, and such research has influenced conserva-
tion priorities and actions. For example, in a classic study, Ralls et al. [1988] exam-
ined 40 mammalian zoo pedigrees and found decreased survivorship among inbred
individuals in 36. The median estimate for the number of lethal equivalents per ga-
mete in these 40 pedigrees was 1.57 and the mean was 2.33. These results and others
have made inbreeding depression a concern for small population conservation, both
in captivity and the wild [Bleich et al., 1990; Hedrick and Miller, 1992; Ballou et al.,
1995]. In addition, recognition of the detrimental consequences of inbreeding has
led to increased interest in the possibility of removing deleterious genetic variation
from captive populations [Templeton and Read, 1983; Hedrick, 1994; Ballou, 1997;
Lacy and Ballou, 1998].

Unfortunately, the linear regression method normally used to estimate the
number of lethal equivalents within pedigrees [Templeton and Read, 1983] has at least
one limitation that may lead to flawed estimates. Templeton and Read circumvented this
problem with a data transformation that has become common [Ralls et al., 1988] and
controversial. Willis and Wiese [1997], however, argued that the statistical technique is
flawed, and Lacy [1997] has maintained it produces inappropriately low estimates. In
response, Templeton and Read [1998] admitted that their method will produce biased
estimates but argue that the bias is small and the method sound. This discussion, how-
ever, lacked a thorough quantitative analysis of how well the linear regression method
works, and the issue remains unresolved. We begin this article by describing how the
traditional linear regression method estimates the number of lethal equivalents in a pedi-
gree. Next, we describe an alternative mathematical technique, maximum likelihood, that
avoids the shortcomings of linear regression estimation in this application. Last, we test
how well both of these techniques estimate the number of lethal equivalents in simulated
data when the true value is known a priori.

ESTIMATING THE NUMBER OF LETHAL EQUIVALENTS
Modeling the Impact of Inbreeding on Viability

Estimating the number of lethal equivalents in individuals of a population is usu-
ally done from captive populations with a known pedigree. Each individual in the pedi-
gree is characterized by two values: its inbreeding coefficient and its viability (survival
or not to a specified age). To summarize these data, let us define an inbreeding class as
all the individuals in a pedigree sharing the same inbreeding coefficient. Let Ni represent
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the number of individuals born with the inbreeding coefficient fi and let Ns(i) equal the
number of the individuals in the ith inbreeding class that survived to a specified age. The
observed viability Sobs(i) in the ith inbreeding class equals
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s i

i
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If m represents the number of inbreeding classes in the pedigree, then the total num-
ber of births in the pedigree N equals
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Morton et al. [1956] developed a model to describe the relationship between
survivorship and inbreeding. This model assumes all individuals with the same in-
breeding coefficient have the same probability of surviving, independent of other
factors such as location or year of birth. If loci affecting survivorship have indepen-
dent, deleterious, and multiplicative effects, then survivorship is expected to decline
approximately exponentially as a function of the inbreeding coefficient. This can be
expressed as

Si = S0e
–Bfi (1a)

where Si is the probability of an individual with an inbreeding coefficient of fi sur-
viving to a specified age, S0 is the survivorship of non-inbred individuals, and B is a
constant describing the rate of decline of survivorship with inbreeding for the popu-
lation. In addition, B is approximately equal to the number of lethal equivalents in a
haploid genome [Morton et al., 1956]. This model has the advantages of making few
assumptions and having biologically meaningful parameters. Consequently, many
studies used this model to estimate the number of lethal equivalents, 2B, in the dip-
loid genomes of various species by fitting the model to survivorship data obtained
from pedigrees. Because other traits besides viability may be affected by inbreeding,
the magnitude of inbreeding depression quantified by B may be an underestimate of
the true cost of inbreeding.

Estimating B with Linear Regression

Two methods commonly used to estimate model parameters are least-squares
linear regression and maximum likelihood. Both methods have advantages and
potentially significant drawbacks. We first consider linear regression, as it has
traditionally been used to estimate S0 and B [Templeton and Read, 1983; Ralls et
al., 1988].

B can be estimated by expressing Equation (1a) in a linear form,

lnSi = lnS0 – Bfi (1b)

and fitting this relationship to the data with weighted least-squares regression. The inter-
cept of the fitted line will be an estimate of lnS0, and the slope of the fitted line will be an
estimate of B. Specifically, estimates of S0 and B, S^0 and B

^
, can be calculated
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[Sokal and Rohlf, 1995, Box 14.4]. However, in practice, this method will not work
when there have been no survivors in an inbreeding class (i.e., a Sobs(i) = 0), for the
logarithm of zero is undefined. Templeton and Read [1983] advocate dealing with
this problem by adjusting observed viabilities with a “small sample size correction.”
Specifically, they replaced Sobs(i) with Sadj(i)
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in Equations (2a), (2b), (2c), and (2e). In this article, we call estimates of B obtained
in this way “adjusted linear regression” estimates.

Confidence intervals of width 1 – α for B are typically obtained [Sokal and
Rohlf 1995, Box 14.5]
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Estimating B with Maximum Likelihood

Maximum likelihood theory offers a general and commonly used method for
estimating parameters in models. The first step in obtaining maximum likelihood
estimates for a parameter is to model how the data were obtained and define the
probability of obtaining the observed data from the model. This probability is the
likelihood of the parameters in the model, given the data. The model of Morton et al.
[1956] implies the likelihood L, of S0 and B, given pedigree data, to be

L C S Si i
N

i
N N

i

m
s i i s i= − −

=
∏ ( $ ) ( $ )( ) ( )1

1
(4a)

where S
^

i = S0
e-Bfi and Ci is the appropriate binomial coefficient. Note that L is a func-

tion of S0 and B. The maximum likelihood estimates of S0 and B are those that maxi-
mize L. Likelihood equations are typically log transformed as
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to ease computation, maximizing the log-likelihood is equivalent to maximizing the
likelihood. Maximum likelihood estimates for S0 and B may be obtained analytically
or with maximization algorithms, such as those in widely available in software pack-
ages [e.g., Microsoft Excel 97].

We now construct maximum likelihood confidence intervals for B based on a
region of acceptance obtained with likelihood ratio tests, as this method is preferred
when dealing with small samples [Kendall and Stuart, 1979]. A confidence interval
for B contains all values of B that the data cannot reject as significantly different
from the maximum likelihood estimate of B. Likelihood ratio tests begin by defining
two hypotheses, H1 and H2. In our case, let us define H1:B ≥ 0, 0 ≤ S0 ≤ 1, and H2:B =
BAlt, 0 ≤ S0 ≤ 1. Let us define, L1 and L2 as the highest likelihood possible under H1

and H2, respectively. L1 is obtained with the maximum likelihood estimates of S0 and
B, and L2 is obtained by selecting the value of S0 that maximizes the likelihood given
BAlt. A 95% confidence interval for B can be obtained [Rice, 1995] by finding the
highest and lowest values of BAlt that conform to the inequality
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An Example

As an example, consider the survivorship data of the black and white ruffled lemur
Varecia variegata variegata [summarized by Berg, 1997], presented in Appendix I. Table
1 presents the adjusted linear regression and maximum likelihood estimates of B along
with 95% confidence intervals for B for this example. Appendix I details how a spread-
sheet can be used to obtain a maximum likelihood estimate of B. Figure 1 shows the
observed viability of each inbreeding class and the maximum likelihood curve. On this
graph, B represents the rate at which expected viability declines.
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TABLE 1. Adjusted linear regression and maximum likelihood estimates of S0 and B, with 95%
confidence interval minima and maxima for B, calculated for 10 pedigree data sets

Adj. linear regression Maximum likelihood

N m f
–

S
^
0 B^ (Bmin, Bmax) S

^
0 B^ (Bmin, Bmax)

Amur leoparda 340 32 0.15 0.64 –0.12 (–0.69, 0.46) 0.70 0.00 (0.00, 0.30)
Ceylon leoparda 142 7 0.05 0.54 –0.91 (–2.09, 0.27) 0.59 0.00 (0.00, 0.51)
Chinese leopardc 531 30 0.21 0.49 0.15 (–0.79, 1.08) 0.52 0.09 (0.00, 0.67)
Black and white lemura 85 12 0.10 0.88 2.84 (1.99, 3.69) 0.92 2.72 (1.37, 4.48)
Black lemura 132 5 0.06 0.53 1.94 (–0.93, 4.80) 0.53 2.14 (0.05, 4.77)
Speke’s gazelleb 64 5 0.11 0.80 3.09 (1.39, 4.79) 0.81 2.75 (0.96, 4.97)
Speke’s gazellec 46 11 0.18 0.81 1.35 (–0.12, 2.83) 0.86 1.18 (0.00, 3.10)
Mohr gazellea 150 29 0.18 0.82 1.36 (0.50, 2.22) 0.97 1.76 (0.63, 2.54)
Humand 1744 4 0.01 0.91 1.59 (–0.58, 3.76) 0.91 1.48 (0.70, 2.36)
Humane 5273 3 0.01 0.88 0.99 (–6.51, 8.49) 0.88 1.03 (0.45, 1.67)

N, the number of individuals in each pedigree.
m, the number of inbreeding classes.
f, the average inbreeding coefficient.
aData summarized by Berg [1997].
bData of Templeton and Read [1983], offspring of non-inbred parents.
cData of Templeton and Read [1983], offspring of inbred parents.
dData of Sutter and Tabah from Loir et Cher including all deaths, see Morton et la. [1956] for data and
reference.
eData of Arner, see Morton et al. [1956] for data and reference.

Fig. 1. Observed viability of the black and white ruffled lemur data of Appendix I (circles) and
maximum likelihood fit of the model of Morton et al. [1956] to the data. The area of circles is propor-
tional to the number of individuals born.
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METHODS

We first compare adjusted linear regression and maximum likelihood estimates
of S0 and B obtained from 10 real pedigree data sets. These pedigrees include the
amur leopard (Panthera pardus orientalis), Ceylon leopard (Panthera pardus kotiya),
Chinese leopard (Panthera pardus japonensis), black and white ruffled lemur (Varecia
variegata variegata), black lemur (Elemur fulvus mayottensis), mohr gazelle (Gazella
dama mohr), two Speke’s gazelle (Gazella spekei) data sets, and two human data
sets. Regression calculations used the small sample size correction of Templeton and
Read [1983]. Maximum likelihood values for S0 and B were calculated as described
above, with the restriction that B ≥ 0.

Next we sought to evaluate how well adjusted linear regression and maxi-
mum likelihood methods estimate B. To do this, we generated large numbers of simu-
lated pedigree data sets from hypothetical populations with a defined value of B and
then compared how well each statistical method estimated the known value of B. In
each simulated pedigree, the number of individuals born in each inbreeding class
was defined. Viability was simulated using the model of Morton et al. [1956] to
determine expected viability and a random number generator to decide whether each
simulated birth was a survivor or non-survivor.

We examined three variables that might affect estimates of B: the total number
of births in the pedigree, the actual magnitude of B, and the structure of the pedigree
(i.e., the distribution of inbreeding coefficients in the pedigree). In our simulations,
we used 40, 80, 160, and 1,000 for values of N, and 0.0, 1.0, 2.0, and 4.0 for para-
metric values of B. In all cases S0 equaled 0.75. From the infinite diversity of pos-
sible pedigree structures, we defined four hypothetical pedigrees: even, outbred,
endangered, and complex (Table 2). The even pedigree has the same proportion of
births in each of five inbreeding classes. The outbred pedigree consists of 75% non-
inbred births and 25% inbred births distributed in three inbreeding classes. The en-
dangered pedigree is modeled to represent the distribution of births in a small captive
population managed to minimize inbreeding. Last, the complex pedigree contains 13
inbreeding classes with most classes containing a small percentage of the births.

TABLE 2. The percentages of births in four hypothetical pedigrees (even, outbred, complex, and
endangered) having the inbreeding coefficient f i

Pedigree structure

fi Even Outbred Complex Endangered

0.00000 0.200 0.750 0.400 0.050
0.03125 — — 0.025 —
0.06250 — — 0.050 —
0.09375 — — 0.025 —
0.12500 0.200 0.100 0.150 0.200
0.15625 — — 0.025 —
0.18750 0.200 0.050 0.050 0.500
0.21875 — — 0.025 —
0.25000 0.200 0.100 0.100 0.200
0.28125 — — 0.025 —
0.31250 — — 0.050 —
0.34375 — — 0.025 —
0.37500 0.200 — 0.050 0.050
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Fifty thousand data sets were generated from each of the 64 combinations of
these three variables, and adjusted linear regression and maximum likelihood esti-
mates of B were calculated. Maximum likelihood estimates of B were constrained to
be positive. Figure 2 shows the distribution of adjusted linear regression and maxi-
mum likelihood estimates of B for the complex pedigree with 80 members when B
equaled one and when B equaled four. The two distributions of adjusted linear re-
gression estimates of B both appear symmetric. In contrast, the distribution of maxi-
mum likelihood estimates was close to symmetric only when B equaled four. When
B equaled one, many of the maximum likelihood estimates were zero.

Our first evaluation of these two methods of estimating B was to examine how
well estimates of B clustered around the parametric value of B used to generate the
data. Traditionally, this is done by calculating (or estimating) the bias of a statistic

estimated bias = B – mean(B
^
). (5a)

However, the asymmetry of maximum likelihood estimates of B created by the re-
striction to non-negative values makes the median a more appropriate measure of
central tendency. Therefore, we estimated median bias

estimated median bias = B – median(B
^
). (5b)

to evaluate how well estimates of B clustered around the parametric value.
Our second evaluation of the two methods of estimating B was to determine

how well confidence intervals for B captured the actual value of B. We calculated
adjusted linear regression and maximum likelihood 95% confidence intervals for each
estimated value of B and recorded the proportion of times these confidence intervals
contained the value of B used to generate the data.

RESULTS

Table 1 shows that the adjusted linear regression and maximum likelihood esti-
mates of B in 10 real pedigrees were fairly similar. Estimates of B ranged from near
zero to approximately three. The largest difference between adjusted linear regres-
sion and maximum likelihood estimates of B occurred in the mohr gazelle pedigree,
with an adjusted linear regression estimate of 1.36 and a maximum likelihood esti-
mate of 1.76. Estimates of the non-inbred viability S0 were also fairly similar, with
the largest difference occurring, again, in the pedigree of the mohr gazelle. Confi-
dence intervals for B were similar, expect for the Human 2 data, for which the ad-
justed linear regression method produced an exceptionally wide interval [–6.51, 8.49].

Simulation showed that the magnitude of median bias for least-squares esti-
mates of B ranged from very small to substantial, depending on characteristics of the
pedigree. As can be seen in Table 3, all three variables that we examined affected the
amount of median bias of adjusted linear regressions estimates of B. Two trends are
apparent. First, increasing the size of the pedigrees led to decreased median bias.
Second, the median bias of estimates of B was dependent on B. For example, ad-
justed linear regression estimates of B were too high for the complex pedigree when
B equaled zero but were too low when B was greater than ~1.5. Last, we found that
the pedigree structure affected the magnitude of direction of median bias. As ex-
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Fig. 2. The distribution of 50,000 maximum likelihood (histogram) and adjusted linear regression
(line) estimates of B when S0 equaled 0.75 and B equaled 1.0 (a) and 4.0 (b).

pected, the pedigree with the least number of individuals per inbreeding class (com-
plex) produced the most median biased estimates.

As Table 3 also shows, maximum likelihood estimates of B were much less
median biased than adjusted linear regression estimates, with a mean absolute value
of only 0.024. Two minor trends are apparent. First, increasing the size of the pedi-
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gree appears to have decreased the median bias, and second, the endangered pedi-
grees appear to have slightly more median bias than the other three pedigree struc-
tures we examined.

Table 4 shows that adjusted linear regression 95% confidence intervals for B

TABLE 3. Estimated median bias, B – median (B^), for 50,000 estimates of B obtained from
simulated pedigrees data sets

Linear regression Maximum likelihood

N B Even Out Com End Even Out Com End

40 0 0.00 –0.59 –0.52 0.00 0.00 0.00 0.00 0.00
80 0 0.00 –0.36 –0.36 0.00 0.00 0.00 0.00 0.00

160 0 0.00 –0.20 –0.23 0.00 0.00 0.00 0.00 0.00
1,000 0 0.00 –0.04 –0.05 0.00 0.00 0.00 0.00 0.00

40 1 0.16 –0.34 –0.14 0.25 –0.02 0.02 0.00 –0.20
80 1 0.08 –0.21 –0.14 0.21 –0.01 0.01 0.01 –0.06

160 1 0.05 –0.13 –0.10 0.11 0.00 0.00 0.00 –0.03
1,000 1 0.01 –0.02 –0.02 0.02 0.00 0.00 0.00 0.00

40 2 0.34 –0.03 0.33 0.70 –0.03 0.03 –0.01 –0.29
80 2 0.18 –0.07 0.15 0.46 –0.01 –0.01 –0.01 –0.06

160 2 0.10 –0.04 0.06 0.25 –0.01 0.00 –0.01 –0.02
1,000 2 0.02 –0.01 0.00 0.05 0.00 0.00 0.00 0.00

40 4 0.92 0.71 1.57 1.87 –0.06 –0.10 –0.05 –0.42
80 4 0.53 0.41 1.02 1.14 –0.02 –0.04 –0.03 –0.13

160 4 0.28 0.19 0.59 0.69 –0.01 –0.03 0.00 –0.05
1,000 4 0.05 0.03 0.09 0.13 0.00 –0.01 0.00 0.00

Simulated pedigrees varied by structure (even, outbred, (out) complex (Com) and Endangered (End),
size (N = 40, 80, 160, and 1,000), and the value of B used to generate the data (B = 0, 1, 2, and 4).

TABLE 4. The proportion of 50,000 95% confidence intervals for B that did not contain the value
of B used to generate simulated data

Linear regression Maximum likelihood

N B Even Out Com End Even Out Com End

40 0 0.04 0.04 0.17 0.01 0.04 0.03 0.03 0.01
80 0 0.05 0.04 0.13 0.03 0.03 0.03 0.03 0.03

160 0 0.05 0.05 0.09 0.04 0.03 0.03 0.02 0.03
1,000 0 0.05 0.05 0.06 0.05 0.03 0.02 0.02 0.03

40 1 0.05 0.06 0.09 0.03 0.05 0.03 0.04 0.01
80 1 0.05 0.06 0.07 0.03 0.05 0.04 0.05 0.04

160 1 0.05 0.05 0.06 0.04 0.05 0.05 0.05 0.05
1,000 1 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05

40 2 0.05 0.04 0.12 0.04 0.06 0.05 0.06 0.02
80 2 0.05 0.05 0.08 0.04 0.06 0.06 0.05 0.05

160 2 0.05 0.05 0.07 0.04 0.05 0.05 0.05 0.07
1,000 2 0.05 0.05 0.06 0.04 0.05 0.05 0.05 0.05

40 4 0.08 0.11 0.56 0.06 0.06 0.06 0.06 0.03
80 4 0.06 0.07 0.28 0.05 0.05 0.05 0.05 0.06

160 4 0.05 0.06 0.16 0.05 0.05 0.05 0.05 0.07
1,000 4 0.05 0.05 0.08 0.03 0.05 0.05 0.05 0.05

Pedigrees varied by structure (even, outbred, (out) complex (Com) and Endangered (End), size (N =
40, 80, 160,and 1,000), and the value of B used to generate the data (B = 0, 1, 2, and 4).
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often had a type I error rate of 5% as desired. However, when samples were small or
when B was large, the type I error rate was high. Again, the complex pedigree per-
formed the most poorly.

In contrast, we found that maximum likelihood 95% confidence intervals con-
tained the value of B used to generate the simulated data ~95% of the time. In other
words, the type I error rate was quite close to its desired value of 0.05. Specifically,
the error rate ranged from 0.012 to 0.071, as shown in Table 4. A few trends are
apparent. First, the error rate for samples drawn from a species with B = 0 was <0.05
and closer to 0.025, which is the expected value when B = 0 as discussed below.
Second, the structure of the pedigree influenced the error. When N was small and B
> 0, the endangered pedigree had an error rate that was both <0.05 and lower than
the error rates of the other three pedigree structures. Last, the reliability of the maxi-
mum likelihood confidence intervals appears to approach 0.05 with increasing sample
sizes when B > 0.

DISCUSSION

To evaluate how biased previous estimates of B might be, we now focus on
identifying and understanding circumstances in which the adjusted linear regression
method performs poorly. To do this, we produced a detailed description of median
bias of adjusted linear regression estimates of B using simulations similar to those
described above. Figure 3a and b depict the estimated median bias of estimates of B
in the complex, and endangered pedigrees with N varying from 40 to 240, B varying
from 0 to 5, and S0 equaling 0.75. From these figures, we see that median bias of
adjusted linear regression estimate of B can be quite substantial but also see that a
broad region exists where the median bias of adjusted linear regression estimates of
B is small. These figures suggest that estimates of B for species with an average
number of lethal equivalents (B ≈ 1.5–2.5) [Ralls et al., 1988] may have little bias.
The similarity of estimates of B in the 10 real data sets presented above seems to
corroborate this.

Figure 4 directly illustrates the relationship between the parametric value of B
and adjusted linear regression estimates of B for the complex, outbred, and endan-
gered pedigrees. The figure shows that each pedigree type can closely estimate B for
some ranges of B. This implies that general conclusions regarding the effect of in-
breeding on viability are unlikely to be affected by bias.

Along with B, S0 affects bias. Simulations showed that raising S0 from 0.75 to
0.90 affected the bias of estimates of B. Compare Fig. 3c, which shows the bias in
the complex pedigree when S0 equaled 0.90, to Fig. 3a, where S0 equaled 0.75.

Templeton and Read [1983, 1984, 1998] describe their small sample size ad-
justment as a correction that “smoothes over the irregularities” in the data [1983] to
produce “conservative” [1984] estimates of viability. Despite these seemingly posi-
tive attributes, the small sample adjustment only improves estimates of viability in
the sense that it forces them to conform to the assumptions of linear regression.
Three lines of reasoning show that the consequence of this is to produce the bias that
we have measured in our simulations. First, linear regression should produce unbi-
ased estimates of B, without making assumptions not implicit in the model of Morton
et al. [1956] [Guttman, 1982, p. 14]. That this expectation was not met in our
simulations suggests that the median bias that we observed was created by the
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Fig. 3. Estimated median bias of adjusted linear regression estimates of B. a: Complex pedigree with S0

equal to 0.75, small sample size adjustment of Templeton and Read. b: Endangered pedigree with S0 equal
to 0.75, small sample size adjustment of Templeton and Read. c: Complex pedigree with S0 equal to 0.90,
small sample size adjustment of Templeton and Read. d: Complex pedigree with S0 equal to 0.75, the small
sample size adjustment of Templeton and Read used only in inbreeding classes with no survivors.

small sample size adjustment of Templeton and Read. The plausibility of this
explanation is supported by the apparently arbitrary nature of the small sample
size adjustment of Templeton and Read. This small sample size adjustment was
used in general surveys of inbreeding depression [Ralls et al., 1988], but no jus-
tification for its use has been provided. Instead, Templeton and Read argued that
their small sample size adjustment is intuitively reasonable [1984] and that its
bias is low in one pedigree [1998].

Empirically, we can see the small sample size adjustment causes bias by
using a less influential small sample size adjustment and observing that bias de-
clines. We applied the small sample size correction of Templeton and Read only
when there were no survivors in an inbreeding class and found much less median
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bias with this alternative method. Compare the median bias in Fig. 3a with the
decreased median bias in Fig. 3d. Many other small sample size adjustments
could be proposed and tested, but we see no compelling reason not to use maxi-
mum likelihood estimates of B.

Last, we can see that the small sample size adjustment of Templeton and Read
causes bias by observing how it changes estimates of viability. Pedigree structure, para-
metric values of S0 and B, and the small sample adjustment all interact to cause bias in
ways that may be difficult to predict, but simple examples demonstrate the dynamics of
these variables. Consider the idealized effects of the small sample adjustment on esti-
mates of viability in two symbolic pedigrees illustrated in Fig. 5. When B = 0, S0 > 0.50,
and individuals are distributed evenly across inbreeding classes (Fig. 5a), the small sample
correction reduces estimates of viability equally in all inbreeding classes. This will change
the intercept of a fitted line but will not affect the slope. When B = 0 and there are more
non-inbred than inbred individuals (Fig. 5b), the small sample size adjustment will lead
to inappropriately high estimates of B. When B and S0 are high (Fig. 5c and d), the small
sample size adjustment decreases estimates of B. The results of our simulations are con-
sistent with these illustrations.

Fig. 4. Medians of 50,000 adjusted linear regression estimates of B compared to the parametric value
of B in the outbred (circles), complex (squares), and endangered (triangles) pedigrees.
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Unlike least-squares estimates, maximum likelihood estimates of parameters
are generally only asymptotically unbiased [Wetherill, 1981, p. 79], which means
that their bias decreases to zero as sample sizes increase to infinity. Our results sug-
gest that the magnitude of this bias is small enough to be inconsequential.

Our use of median bias instead of bias is unusual but reasonable and appropri-
ate. Kendall and Stewart [1977, p. 4] noted “there is nothing except convenience to
exalt the arithmetic mean above other measures of location as a criterion of bias. We
might equally well have chosen the median of the distribution’’ or its mode. The
mean value is used, as always, for its mathematical convenience.” In any case, our
conclusions regarding the bias of adjusted linear regression estimates are not af-
fected by the measure of central tendency that we used. We calculated the mean of
all distributions, as well as the median, and found the mean and median adjusted
linear regression estimates to be very similar. Maximum likelihood estimates of me-
dian bias become similar to estimates of bias when B and N are large.

A noteworthy characteristic of the maximum likelihood approach to estimating

Fig. 5. Observed (shaded circles) and adjusted (open circles) viabilities in two idealized pedigrees
when B equaled zero (a,b) and four (c,d).
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B presented here is that B is restricted to be non-negative. In other words, the ex-
pected viability of an inbreeding class is not permitted to rise with increasing levels
of inbreeding. This restriction is imposed to prevent viabilities from becoming greater
than one. Besides being biologically impossible, viabilities greater than one would
make the log likelihood undefined. The restriction of B to non-negative values ap-
pears to have caused the low error rate for pedigree data sets drawn from a popula-
tion with B = 0. When pedigrees are generated from a population with B = 0, half of
the pedigrees produced are expected to have increased survivorship in inbred indi-
viduals. All these samples will be assigned a maximum likelihood value of 0.0 for B,
and their confidence intervals will include 0.0 as a lower bound. Since 0.0 is the
value of B used to generate the samples, the confidence intervals will be correct each
time there is an apparent trend toward increasing survivorship, which means that the
expected error rate for the maximum likelihood technique is 2.5%. This expectation
is approached in pedigrees with large sample sizes.

We conclude by mentioning that the small sample size correction of
Templeton and Read is intuitive and reasonable when viewed as pragmatic solu-
tion to a statistical obstacle. In many pedigrees, including perhaps the majority
of typical ones, adjusted linear regression produces estimates of B with little
bias. However, because the bias can be fairly large and because estimating the
impact of inbreeding can be an important part of population viability analysis,
we see no reason to continue using this method of estimating B. Until a new data
transformation is demonstrated to produce estimates of B with less median bias
than the maximum likelihood method or can produce estimates of B with an equal
median bias and less variance, we recommend using the maximum likelihood
method to estimate B.
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APPENDIX I. Using Microsoft Excel 97 to find maximum likelihood estimates of S0 and B. The
spreadsheet below can be used to obtain maximum likelihood estimates of S0 and B for the black
and white ruffled lemur data [summarized by Berg, 1997] below. Once the spreadsheet has been
set up with the data and formulas as shown below, the Solver macro found in the Tools menu can
be used to find values for S0 and B that maximize the likelihood of the data. To do this, set the
target cell, E20, to be maximized, by changing cells B1 and B2 subject to the constraints B1 > 0,
B1 < 1, and B2 > 0. Then press Solve. Note that the binomial coefficients log Ci have been omitted
because they do not affect the relative likelihoods of different values of S0 and B.
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