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Abstract: Genetic data can be used to estimate the stock composition of mixed-stock fisheries. Designing efficient
strategies for estimating mixture proportions is important, but several aspects of study design remain poorly understood,
particularly the relationship between genetic polymorphism and estimation error. In this study, computer simulation was
used to investigate how the following variables affect expected squared error of mixture estimates: the number of loci
examined, the number of alleles at those loci, and the size of baseline data sets. This work showed that (i) loci with
more alleles produced estimates of stock proportions that had a lower expected squared error than less polymorphic
loci, (ii) highly polymorphic loci did not require larger samples than less polymorphic loci, and (iii) the total number
of independent alleles examined is a reasonable indicator of the quality of estimates of stock proportions.

Résumé : Les données génétiques peuvent servir à déterminer la composition des stocks dans une pêche commerciale
qui englobe plusieurs stocks. La planification de stratégies efficaces pour estimer les proportions du mélange est
importante, mais plusieurs aspects du plan d’expérience restent mal compris, particulièrement la relation entre le
polymorphisme génétique et l’erreur d’estimation. Une simulation à l’ordinateur a servi dans cette étude à examiner
comment les variables ci-dessous affectent l’erreur au carré attendue dans ces estimations des mélanges, soit le nombre
de locus examinés, le nombre d’allèles à ces locus et la taille des banques de données de base. La simulation indique
que (i) les locus avec plus d’allèles donnent lieu à des estimations des proportions des stocks dont l’erreur au carré
attendue est plus faible que les locus moins polymorphes, (ii) les locus fortement polymorphes ne requièrent pas
d’échantillons plus grands que les locus moins polymorphes et (iii) le nombre total d’allèles indépendants examinés est
un indicateur acceptable de la qualité des estimations des proportions de stocks.
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Introduction

Management of mixed-stock fisheries requires an accurate
description of the composition of the fisheries. Several ap-
proaches have been used effectively. Mark and recapture
methods provided the first estimates of stock composition
(e.g., Gilbert 1924). Variation in morphological traits such as
scale patterns (e.g., Hamilton 1947; Mosher 1963) was used
extensively for mixture analysis until electrophoretic meth-
ods were developed that could identify allozyme variation
(e.g., Utter et al. 1974; Grant et al. 1980). Allozymes remain
an important tool for mixture analysis but have been eclipsed
by DNA markers, including microsatellites, minisatellites,
mitochondrial DNA, and MHC genes (Wirgin et al. 1997;
Scribner et al. 1998; Shaklee et al. 1999). DNA markers
have several advantages over allozymes: sampling is non-
lethal, loci are essentially innumerable, and loci are usually
more variable. The latest promising class of molecular mark-
ers is single-nucleotide polymorphisms (SNPs). SNPs only
have two variants per locus but may surpass microsatellites
in popularity because genotyping is unambiguous and can be
inexpensive (see Moran (2002) for a review).

The wide range of molecular markers available for mix-
ture analysis motivates the question which provide the most
cost effective and accurate estimates of mixture proportions?
And, within a class of markers, what specific loci are most
useful? Empirical comparisons of different marker classes
and different sets of loci are accumulating (e.g., Scribner et
al. 1998; Allendorf and Seeb 2000; Winans et al. 2004) but
are expensive. A more thorough understanding of the gen-
eral principles of study design for mixture analysis would be
useful. One of the most fundamental differences between
classes of molecular markers is the amount of polymorphism
that they have. For example, SNPs have two alleles per lo-
cus, while microsatellite and MHC loci can have over 100.
In this study, I used computer simulation to address two
questions related to polymorphism and study design: (i) how
does polymorphism affect the how close estimates of mix-
ture proportions are to parametric proportions and (ii) do
highly polymorphic loci require larger baseline samples than
less polymorphic loci to achieve comparable results?

Estimating mixture proportions
Both maximum likelihood and Bayesian methods are

available for estimating mixture proportions within a fishery
(e.g., Millar 1987; Pella and Masuda 2001). Although each
method is computationally and philosophically different, both
methods are built upon estimates of the probability of a fish
in the baseline populations having the genotype of a fish ob-
served in the fishery. If mating is random within each popu-
lation, then the probability of obtaining the genotype AiAj
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from a population is a simple function of the allele frequen-
cies in the population:

Pr
if

if
( )A A

f f i j

f f i ji j
i j

i j
=

=
≠







2

where fi is the frequency of Ai and fj is the frequency of Aj in
the population. These allele frequencies are usually unknown
and must be estimated from baseline data. If ni copies of al-
lele Ai have been observed in a baseline sample of n genes,
then ni /n is a maximum likelihood estimate of fi, the fre-
quency of Ai in the population. The probability of observing
genotype AiAj in the population can then be estimated:
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This approach works well when all of the alleles found in
the fishery are found in the baseline population samples.
However, if a fish sampled from the fishery has an allele not
found in a baseline population sample (i.e., ni = 0), this
method of estimating probabilities (eq. 1) excludes that fish
from that baseline population. When highly polymorphic loci
such as microsatellites are examined, this phenomenon be-
comes common, and fish are frequently excluded from their
population of origin.

One way to deal with this problem is to modify estimates
of allele frequencies so that they will not be zero. This can
be accomplished by assigning a frequency of 1/(n + 1) to an
allele not found in a population. An alternative approach,
with more justification, is to use a Bayesian method devel-
oped by Rannala and Mountain (1997). Rannala and Moun-
tain (1997) have shown that the probability of obtaining the
genotype AiAj from a population can be estimated by
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where k equals the total number of alleles observed at the
locus. Inspection of eq. 2 shows that it is similar to eq. 1, es-
pecially when sample size is large.

Once the probability of observing each fish has been cal-
culated, maximum likelihood estimates of the mixture pro-
portions can be found using established techniques such as
the expectation-maximization algorithm (e.g., Millar 1987).

Sources of error
The goal of study design for mixed-stock fisheries is to

identify sampling methods that minimize the expected dif-
ference between estimates of mixture proportions and the
actual stock proportions. There are several potential sources
of estimation error. A few include nonrandom sampling of
the fishery, baseline data that do not include all of the popu-
lations in the fishery, and estimates of baseline allele fre-
quencies that differ from the actual allele frequencies in the

populations. Efficient study design requires knowing which
sources of error are likely to be largest.

Estimating mixture proportions is a two-step process: first,
fish are randomly sampled from a mixed-stock fishery; sec-
ond, genetic data are used to estimate the mixture propor-
tions within this sample. (By genetic data, I mean both the
loci genotyped from the fish sampled from the fishery and
the fish sampled from the baseline population.) Both steps
contribute to estimation error. Consider the ideal case where
all fish in the fishery are tagged so that their stock can be
recognized unambiguously. Even in this enviable circum-
stance, sampling error from the fishery will cause estimates
of stock proportions to differ from the actual mixture pro-
portions. This error is minimized by sampling many fish
from the fishery but can never be eliminated altogether. I
call this fishery sampling error. When genetic data are used
to estimate mixture proportions within a sample, additional
error is expected. This is the second source of estimation er-
ror. I call this genetic estimation error. Understanding the
difference between these two sources of error is essential. If
the sample from the fishery does not represent the mixture
proportions in the fishery, perhaps because the sample is
small, genetic data cannot compensate, and estimates of stock
proportions will be poor.

Quantifying the quality of estimates of mixture
proportions

A useful statistic to describe the quality of an estimate of
a stock proportion is the expected squared error (ESE) of
that estimate. I represent the parametric proportion of the ith
stock in the fishery as πi and an estimate of that proportion
as �πi. The ESE of �πi is defined as

(3) ESE 2
i i iE= −(� )π π

where E denotes expectation.
Both bias and variance contribute to estimation error. ESEi

is equal to the bias (of estimates of πi) squared plus the vari-
ance of �πi (Appendix A). There is no analytic method avail-
able to calculate ESEi, but it can be estimated in simulations.

The ESE for the ith stock can be partitioned into two
components: fishery sampling error, ESEi,fishery, and genetic
estimation error, ESEi,genetic (Appendix A):

(4) ESEi = ESEi,fishery + ESEi,genetic

ESEi,fishery is reduced by sampling more fish from the fish-
ery. ESEi,genetic is reduced by collecting more genetic data
(increasing the number of loci genotyped or increasing the
number of individuals in the baseline data).

Equation 4 is useful because it can be used to compare the
relative magnitude of both sources of estimation error. There
is no formula available to calculate ESEi,genetic, but it can be
estimated in simulations. ESEi,fishery can be calculated when
the mixture proportions in the fishery are known:

(5) ESE
1

,fishery
fishery

i
i i

N
= −π π( )

To summarize the quality of estimates of all stocks being es-
timated, the expected squared errors for each stock can be
summed:
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where s is the number of stocks in the mixture.
Interpreting the magnitude of ESEi is difficult (this is also

true for the variance of �πi). I introduce a more meaningful
statistic that I call “effective sample size” with a thought ex-
periment.

Consider a mixed-stock fishery in which a stock of inter-
est (stock j) composes 40% of the fish in the fishery, i.e.,
πj = 0.4, and genetic baseline data are available so that mix-
ture proportions from the fishery can be estimated. Let us
assume that when 50 fish are sampled from the fishery and
genotyped, the expected squared error for estimate πi equals
0.01. To evaluate whether 0.01 is high or low, let us assume
that all of these fish were tagged so that their origin could be
identified unambiguously. Equation 5 shows that the ESEj
for tagged fish would be 0.0048. This is substantially less
than the value of 0.01 obtained from the hypothetical genetic
data. This indicates that the genetic data is only moderately
effective in estimating mixture proportion. Equation 5 also
shows that if 20 fish were sampled from the fishery and their
origin identified by reading their tags, ESEj would equal
0.012. This shows that (in this hypothetical example) read-
ing tags from 20 fish is not as effective as sampling 50 fish
and using genetic data to estimate mixture proportions. In
this hypothetical example, genotyping 50 fish would produce
the same ESEj as genotyping reading tags from 24 fish. I in-
terpret this as indicating that the effective sample size of 50
genotyped fish is 24.

More formally, the effective sample size Nes is related to
the size of the sample taken from the fishery by
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Effective sample sizes will always be less than the number
of fish sampled from the fishery (i.e., Nes < Nfishery). This is
because genetic data cannot estimate the mixture proportions
in a sample without error. Comparing Nes and Nfishery is use-
ful. If Nes is only slightly less than Nfishery, genetic data are
producing good estimates of mixture proportions. If Nes is
only a small fraction of Nfishery, then the genetic data are not
producing good estimates of mixture proportions.

Deciding whether an effective sample size is sufficiently
large is facilitated by graphing the distribution of estimates
of stock proportions for different sample sizes and stock pro-
portions (e.g., Fig. 1).

Methods

Simulated genetic data were used to examine how effec-
tive sample size was affected by: the number of fish sampled
from baseline populations (Nbaseline), the number of loci ex-
amined (Nloci), the number of alleles per locus (Nalleles), and
the amount of genetic divergence between the baseline popu-
lations (as measured by FST). The general procedure was as
follows. Genetic data for baseline data sets and mixture sam-
ples was simulated from a specified evolutionary history,
stock proportions were estimated from the simulated mixture

sample, and the source of the observed error was partitioned
into its two component parts. This was done as follows.
Multinomial sampling was used to determine the number of
fish in the sample observed from each stock. Fishery sam-
pling error, εfishery, was calculated for each trial by subtract-
ing the parametric proportion of each stock within the fishery
from the realized proportion within the sample. Stock pro-
portions within the fishery sample were then estimated using
the simulated data. Genetic estimation error, εgenetics, was
calculated as the difference between these estimates and the
actual stock proportions within the sample. The expected
value of these errors and their squares and products were ob-
tained by averaging their values across thousands of simula-
tions. The effective sample size was then calculated for each
combination of variables.
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Fig. 1. Binomial distributions for events with varying probability
(0.05, 0.1, 0.2, and 0.4) and varying number of trials: (a) N =
50, (b) N = 100, (c) N = 200, and (d) N = 400. These distribu-
tions approximate the distribution of the proportion of fish in a
sample taken from a mixed-stock fishery that belong to stocks
having frequencies of 0.05, 0.1, 0.2, and 0.4 in the fishery.



A bifurcating model of population fragmentation was used
in all simulations. I assumed that the eight potential source
populations that were sampled had an effective population
size of 1000 individuals. These populations were descended
from a single ancestral population of 8000 individuals that
instantaneously split into two populations, each having an
effective size of 4000 individuals. Subsequent fragmentation
events split these two populations of 4000 into four popula-
tions of 2000, which later split into eight populations of
1000 individuals. Three degrees of population differentiation
were examined. The timing of the population fragmentation
events was 12, 25, and 50 generations in the past for the
least differentiated populations (FST = 0.01), 50, 100, and
200 generations in the past (FST = 0.04) for the second set of
populations, and 200, 400, and 800 generations for popula-
tions with the most differentiation (FST = 0.16) (FST for each
evolutionary history was estimated by calculating FST across
10 000 biallelic loci).

Genotypic data were simulated using the standard coales-
cent approach (e.g., Hudson 1990; Hartl and Clark 1997;
Avis 2000). This method has not been widely used in the
fisheries literature, but it is common in the human genetics
literature (e.g., Nordborg 2001; Rosenberg and Nordborg

2002; Felsenstein 2003). Coalescent simulation produces
genotypic data with allele counts in the proportion specified
by neutral theory and the evolutionary history of the popula-
tions. This technique proceeds by first simulating the ances-
tral gene tree of the sample backwards in time until all of
the genes sampled share a common ancestor (Fig. 2). The
shape of this gene tree is influenced by the effective size and
fragmentation history of the populations. Once a gene tree
was simulated for the sample, mutations were placed on the
tree. Longer tree branches have a higher probability of being
assigned a mutation than short branches. Loci having 2–512
alleles were simulated by placing mutations on the gene tree
until the desired number of alleles in the sample was ob-
tained. Samples for each locus were simulated independ-
ently.

Simulating sample sizes from loci with varying numbers
of alleles must account for the expectation that, everything
else being equal, large samples will have more alleles than
small samples. I dealt with this by standardizing the sample
size used to count the number of alleles at each simulated lo-
cus. I chose 512 individuals, distributed equally among eight
populations, as the standard. For example, Nalleles = 16 indi-
cates that 16 alleles were observed in 512 randomly selected
individuals distributed among the eight baseline populations.
Therefore, Nalleles is a measure of how much variation there
is at a locus (as opposed to a sample). If the baseline sample
included more than 512 individuals, then additional alleles
might be present in the sample. If the total baseline sample
included less than 512 individuals, then not all of the 16 al-
leles might be found in the baseline used to estimate mixture
proportions. This assures that loci with the same number of
alleles have the same expected heterozygosity. Heterozygo-
sity ranged from 0.13 for loci with two alleles to 0.98 for
loci with 512 alleles (Table 1).

The stock proportions within the fishery were set at {0.4,
0.2, 0.1, 0.1, 0.1, 0.05, 0.05, 0.0} for all simulations. In all
simulations, 200 simulated fish were sampled from the fish-
ery.
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Fig. 2. Example of a gene tree with mutations produced by co-
alescent simulation for a simple model of population divergence.
In this example, the ancestry of four samples of 10 genes was
simulated from an ancestral population that split into two popu-
lations 200 generations before sampling (which each in turn split
into two more populations 50 generations before sampling). As-
terisks indicate the location of simulated mutations on the gene
tree. The ancestral allele was type “0”.

Nalleles H

2 0.13
4 0.32
8 0.51

16 0.71
32 0.83
64 0.90

128 0.94
256 0.96
512 0.98

Note: The gene diversities of popu-
lations with small divergence times are
slightly higher, and the gene diversities
of populations with longer divergence
times are slightly lower.

Table 1. Gene diversities (H) at
loci with different numbers of al-
leles (Nalleles) for eight simulated
populations with divergence times
of 50, 100, and 200 generations.



The expectation-maximization algorithm as described by
Millar (1987) was used to obtain maximum likelihood esti-
mates of stock proportions within the sample of fish taken
from the simulated fishery, with the exception that eq. 2 was
used to estimate the probability of each genotype from each
population. This algorithm uses iteration to find maximum
likelihood estimates of stock proportions. At least 50 itera-
tions were performed for each estimate. After that, iteration
was stopped when the sum of the absolute value of changes
in frequency of stock proportions was less than 10–6. A max-
imum of 1000 iterations were performed. Slow convergence
was only a problem with very small data sets (e.g., two loci
with two alleles each).

Results

Number of loci and degree of evolutionary divergence
Increasing the number of loci produced better estimates of

stock proportion until the effective sample size reached the
actual sample size from the fishery (Fig. 3). The degree of
evolutionary divergence among the populations also had a
strong influence on the effect of increasing the number of
loci examined. When populations were relatively genetically
similar, estimating mixture proportions was difficult and many
loci needed to be examined to accurately estimate the mix-
ture proportion within the sample from the fishery. When
populations were strongly genetically differentiated, estimat-
ing mixture proportions was much easier and fewer loci
were needed (Fig. 3).

Number of alleles per locus
Increasing the number of alleles at loci produced increas-

ingly better estimates of mixture proportions until a turning
point was reached (Fig. 4). This point of “too much poly-
morphism” was approximately 128 alleles for 512 individu-
als. This number of alleles corresponds to a heterozygosity
of 0.94. This turning point appears to be weakly affected by
FST: high levels of polymorphism are slightly less informative
when FST is high than when FST is low (Fig. 4). Interestingly,
the ideal level of polymorphism appeared to be independent
of baseline sample sizes (Fig. 4). For example, loci with 128
alleles produced better estimates of stock proportions than
loci with fewer alleles, even when baseline sample sizes

were small (two, four, eight, etc., individuals per baseline
population). Highly polymorphic loci, therefore, do not re-
quire larger sample sizes than less polymorphic loci. Nor do
they appear to benefit more from large sample sizes than
less polymorphic loci.

The accuracy of estimates of mixture proportions can be
improved by increasing either the number of loci (Fig. 3) or
the number of alleles at loci (Fig. 4). This motivates the fol-
lowing question. Which data produce better results: a few
loci with many alleles or many loci with few alleles? The
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Fig. 3. Effective sample size of estimates of the mixture propor-
tions of eight stocks in a mixed-stock fishery as a function of
the number of loci examined. Three degrees of evolutionary di-
vergence were examined: FST = 0.01 (solid circles), 0.04 (open
circles), and 0.16 (triangles). All samples from the fishery had
200 fish and all loci examined had eight alleles.

Fig. 4. Effective sample of estimates of the mixture proportions
of eight stocks in a mixed-stock fishery as a function of the
number of alleles per locus and the size of baseline samples.
Three degrees of evolutionary divergence were examined:
(a) FST = 0.01, 16 loci, (b) FST = 0.04, eight loci, and (c) FST =
0.16, four loci. All samples from the fishery had 200 fish and
were genotyped at eight loci.



answer is that each approach works equally well, as long as
the number of alleles per locus is not excessive (Fig. 5). The
relevant number of alleles here is the number of independent
alleles (a locus with k alleles has k – 1 independent alleles).
One locus with 32 independent alleles is equivalent to 32
loci with one independent allele each (Fig. 5). This trend
breaks down at loci with too many alleles (Fig. 5). For ex-
ample, one locus with 128 independent alleles is not as ef-
fective as 128 loci with one independent allele.

Baseline size
Large baseline samples produce better estimates of stock

proportions than small baseline samples (Figs. 4 and 6).
However, increasing baseline sample size produces dimin-
ishing results. In all cases examined, increasing baseline
sample sizes past 100 individuals resulted in limited im-
provement (Fig. 6). This occurred for loci with 128 alleles as
well as for loci with two alleles.

Discussion

Two significant results were obtained: (i) when polymor-
phism is not extreme (greater than 0.90 heterozygosity or 64
alleles), the total number of independent alleles across loci is
a good indicator of how accurate mixture estimates are likely
to be and (ii) loci with many alleles do not require larger
baseline sample sizes than loci with few alleles (and 100 in-
dividuals per population should be sufficient).

The results presented here describe how polymorphism is
expected to affect estimates of stock proportions. For exam-
ple, I have shown that, on average, loci with four alleles pro-
duce better mixture estimates than loci with two alleles. This
does not mean that every locus with four alleles will produce
better estimates of stock proportions than every locus with
two alleles. The actual allele frequencies will also affect the

quality of mixture estimates. A locus with two common al-
leles could easily work better than a locus with one common
allele and three rare alleles.

The algorithm used here to estimate mixture proportions
appears to be novel. It was chosen for three reasons: (i) it is
similar to maximum likelihood approaches with a history of
use, (ii) it should minimize problems associated with highly
polymorphic loci, and (iii) it is quick enough to be used on
thousands of simulated data sets. I expect that the results
discussed here also apply to a complete Bayesian approach
(BAYES) recently developed by Pella and Masuda (Masuda
2000; Pella and Masuda 2001). Applying the small sample
size correction in eq. 2 appears to be essential for using
highly polymorphic loci when baseline sample sizes are mod-
est. If eq. 2 is not used, loci with many alleles do not pro-
duce good estimates of mixture proportions unless baseline
sample sizes are very large (results not shown). In addition,
increasing the number of the loci examined can decrease the
accuracy of mixture estimates. This occurs because the prob-
ability of individual in the mixture having an allele not pres-
ent in the baseline data from its population increases when
more loci are examined.

Recent empirical work has been concordant with the results
presented here. Winans et al. (2004) showed that (i) eq. 2
produced better mixture estimates than eq. 1, (ii) more loci
produced better estimates than fewer loci, (iii) five micro-
satellite loci with 63 independent alleles produced almost as
good estimates as 32 allozyme loci with 77 independent al-
leles, and (iv) sampling more than 100 individuals resulted
in little benefit.

Several questions deserve further research. First, I do not
have an adequate explanation for why highly polymorphic
loci do not benefit more from larger samples than less poly-
morphic loci. This result does not contradict any theory that
I am aware of, but it seems paradoxical. Second, more work
will be necessary to identify the evolutionary and statistical
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Fig. 5. Effective sample size of estimates of mixture proportions
of eight stocks in a mixed-stock fishery as a function of the
number of loci (Nloci) examined and the number of independent
alleles per locus (Nalleles). Circles indicate samples with a total of
32 independent alleles (e.g., 16 loci with three alleles each). All
samples from the fishery had 200 fish. The baseline data set
consisted of 64 fish per stock. The FST for the eight stocks
equaled 0.04.

Fig. 6. Effective sample size of estimates of mixture proportions
of eight stocks in a mixed-stock fishery as a function of baseline
samples sizes. The FST for the eight stocks equaled 0.04.



variables that determine how much variation is ideal. The re-
sults that I present here suggest that a heterozygosity of 0.9
is not too much, but my simulations were not exhaustive.
Third, my simulations assumed that all baseline populations
that contributed to the mixture were present in the mixture.
This will not be true in many applications. Fourth, further
work is necessary to understand the effect of temporal varia-
tions in allele frequency on mixture estimates (e.g., Jorde
and Ryman 1995). Multiple baseline samples or sample sizes
greater than 100 individuals may be necessary.

These results suggest that geneticists estimating stock pro-
portions in mixed-stock fisheries have a great deal of flexi-
bility in study design. For example, either a few highly
polymorphic loci might be used or many less polymorphic
loci, such as SNPs, might be used. Because each of these ap-
proaches can work, technical considerations such as ease or
expense of scoring can be used to select the strategy most
appropriate for a specific laboratory.
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Appendix A

The estimate of the ith stock proportion (�πi) can be mod-
eled:

(A1) �π = π ε β+ +estimation

where εestimation is a random variable with mean 0 and β is a
constant. For simplicity, I have dropped the subscript i. By
definition, the variance of �π is given by

(A2) Var 2(�) (� (�))π π π= −E E

By inspection of eq. A1, we observe that E(�)π π β= + . When
we substitute this and �π π ε β= + +estimation (eq. A1) into
eq. A2, we obtain

(A3) Var estimation
2(�) ( )π π ε β π β= + + − −E

which simplifies to

(A4) Var estimation
2(�) ( )π ε= E

This makes sense because εestimation is the only source of
variation in �π.

Equation A1 shows that the expected squared error for �π
is

(A5) E E( �) ( )π π π π ε β− = − + +estimation
2

which simplifies to

(A6) E E E E( �) ( ) ( ) ( )π π ε βε β− = + +estimation
2

estimation
22

The middle term on the right is equal to 2βE(εestimation),
which is equal to zero (because the expected value of
εestimation is equal to zero). This leaves us with

(A7) E E E( �) ( ) ( )π π ε β− = +estimation
2 2
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or

(A8) E E( �) (�) ( )π π π β− = +Var 2

Alternatively, the estimate of the ith stock proportion can be
modeled:

(A9) �π π ε ε− + +fishery genetics

where εfishery is a random variable with an expected value of
zero that models how sampling a finite number of fish from

the fishery affects mixture estimates and εgenetics is a random
variable that models how genetic data affects estimates. We
have

(A10) E E E( �) ( ) ( )π π ε ε ε− = +fishery
2

fishery genetics2

+ E( )εgenetics
2

I define the first term on the right hand side of eq. A10 as
ESEfishery and the remaining two terms (on the right) as
ESEgenetics.
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