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Abstract

The number of alleles (allelic richness) in a population is a fundamental measure of genetic variation, and a
useful statistic for identifying populations for conservation. Estimating allelic richness is complicated by the
effects of sample size: large samples are expected to have more alleles. Rarefaction solves this problem. This
communication extends the rarefaction procedure to count private alleles and to accommodate hierarchical
sampling designs.

Introduction

The amount of genetic diversity within popula-
tions is a fundamental parameter in evolutionary
and conservation biology. High levels of genetic
variation are expected to increase the potential of
populations to respond to selection and to main-
tain the health of individuals. The simplest mea-
sure of genetic diversity at a locus is the number of
alleles (allelic richness). A related statistic, the
number of unique alleles in a population (private
allelic richness) is a simple measure of genetic
distinctiveness.

The primary disadvantage of using allelic rich-
ness as a measure of genetic diversity is that it is
highly dependent on sample size: large samples are
expected to containmore alleles than small samples.
Similarly, more alleles are expected to be found in a
region sampled many times than in a region sam-
pled few times. Private allelic richness has the same
problem: large samples are expected to have more
private alleles than small ones. On the other hand,
intensive sampling of genetically similar popula-

tions may reduce the number of alleles private to
any population. Therefore, a region that has been
sampled intensively may appear to have fewer pri-
vate alleles than a region sampled less intensively.

These problems have a straightforward statis-
tical solution: rarefaction can be used to compen-
sate for differences in sample size and number.
Rarefaction has a long history of use in the eco-
logical literature for estimating species diversity1

(see Hurlbert 1971 for its first use; see Simberloff
1979; Gotelli and Colwell 2001 for reviews) but is
used sporadically by conservation geneticists (Le-
berg 2002). Here, I extend the rarefaction tech-
nique to accommodate hierarchical sampling
designs and to count private alleles.

Allelic richness

In this paper I use ‘allelic richness’ to indicate a
measure of genetic diversity in either a sample or a
population. The allelic richness of a sample, ag, is
the expected number of alleles that a sample would
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have had if the sample size had been g genes instead
of Nðg � NÞ. The allelic richness of a population,
ag, is the expected number of alleles in a sample of g
genes taken from a population. In most conserva-
tion genetic applications, ag is of much less interest
than ag.It turns out that ag is useful to estimate ag,
but the distinction between the statistics is impor-
tant – in realistic applications, the variance of ag
will be greater than ag (see below).

The parameter g can be considered a stan-
dardized sample size. For example, if a study aims
to compare allelic richness between several popu-
lations, then gmust be less than the smallest sample
size. However, g, is more than a standardized
sample size; it indicates how sensitive ag is to the
presence or absence of rare alleles. When g is large,
rare alleles will have a big effect upon ag. When g is
small, rare alleles have little effect upon ag. When g
takes its smallest useful value, g ¼ 2, the allelic
richness of a population is equal to the expected
heterozygosity (H ) of the population plus one, i.e.
H þ 1 ¼ a2 (Smith and Grassle 1977). This last
point is important, for it shows that expected het-
erozygosity is a special case of allelic richness.

I now present formulae for several measures of
allelic richness, starting with the number of alleles
expected in a single sample. Consider a survey of
genetic variation in which the sample size varies
across populations. Let Nij represent the number
of copies of the ith allele in the sample from the jth
population; let Nj represent the total number of
genes sampled from the jth population; and let m
represent the total number of distinct alleles ob-
served at the locus (Nj ¼

Pm
i¼1 Nij).

Rarefaction was invented to calculate ag, in
order to compare the allelic richness of samples
having different sizes (Hurlbert 1971). Hurlbert
showed that the expected number of alleles in a
sample of g genes selected at random (without
replacement) from a sample of Nj genes is equal to

aðjÞg ¼
Xm
i¼1

Pijg; ð1Þ

where

Qijg ¼

Nj � Nij

g

� �
Nj

g

� � ¼
Yg�1

u¼0

Nj � Nij � u
Nj � u

ð2aÞ

and

Pijg ¼ 1� Qijg: ð2bÞ

Smith and Grassle (1977) showed that aðjÞg is a
minimum variance, unbiased estimate of the allelic
richness of the jth population, aðjÞg ,

âðjÞg ¼ aðjÞg ¼
Xm
i¼1

Pijg; ð3Þ

where^ indicates that âðjÞg is an estimate of aðjÞg .
Equations (2a) and (2b) form the foundation

for future formulae, so deserve explanation. The
denominator of the middle term in Equation (2a),
Nj

g

� �
, is the total number of combination of g

genes can be made from Nj genes (if sampling is
without replacement. The numerator of the middle

term in Equation (2a),
Nj � Nij

g

� �
, is the number

of combinations of g genes that do not include
allele i (if sampling is without replacement). Qijg,
therefore, is the probability that a sample of g
genes taken from a sample of Nj genes will not
contain allele i. The right-hand term in Equation
(2a) is a convenient expression for calculating Qijg

(Comps et al. 2001). Pijg (Equation (2b)) is the
probability that such a sample will contain allele i.

Private allelic richness, p, is a convenient
measure of how distinct a population is from other
populations. (In the ecological literature, private
alleles correspond to endemic species). Let pðjÞg

represent the number of private alleles expected in
a sample from the jth population if g genes are
sampled from each of J populations. A minimum
variance, unbiased estimator of pðjÞg is obtained
using the approach of Smith and Grassle (1977)

p̂ðiÞg ¼
Xm
i¼1

Pijg
Y
j0¼1

J

j0 6¼j

Qij0g

0BB@
1CCA

2664
3775: ð4Þ

Equation (4) is easily deconstructed. Pijg is the
probability that a sample of g genes taken from the
jth sample contains at least one copy of allele i;Q

j0¼1
J

j0 6¼j
Qij0g is the probability that samples of g genes

taken from all of the other samples do not contain
allele i.

Now, I extend the rarefaction technique to
accommodate hierarchical sampling. When
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sampling is hierarchical, the number of popula-
tions sampled per region must be standardized, as
well as the number of genes per population. I re-
tain the notation above, and add the following.
Let Sk represent the number of populations that
have been sampled in the kth region; let R repre-
sent the number of regions in the study,
J ¼

PR
k¼1 Sk; and let r represent the standardized

number of populations per region. Let Cr repre-
sent the total number of ways that r samples can

be sampled from the R regions, Cr ¼
QR

k¼1

Sk
r

� �
.

Let Xk represent the set of populations from region

k. Let Ykcr represent the cth set among the
Sk
r

� �
cardinality-r subsets of Xk.

If r populations are sampled per region, and g
genes are sampled per population, the expected
number of alleles in region k is estimated by

âðkÞr;g ¼
Xm
i¼1

1

Sk
r

� � XSkr
� �

c¼1

1�
YSk
j2Ykcr

Qijg

 !2666664

3777775:
ð5Þ

This is also a minimum variance, unbiased esti-
mator (Smith and Grassle 1977). El Mousadik and
Petit (1996) presented an alternative to Equation
(5), but round off errors in their method produce a
modest amount of bias (S. Kalinowski unpub-
lished), so Equation (5) is recommended.

Counting private alleles in hierarchical sam-
pling designs requires defining private. I use ‘pri-
vate alleles’ to describe alleles that are observed in
only one population, and ‘regionally private al-
leles’ to describe alleles that are observed in only
one region. The expected number of private alleles
in region k, when g genes are sampled from r
populations per region, is estimated by

The expected number of regionally private alleles
in region k, when g genes are sampled from r
populations per region, is estimated by

Again, these are minimum variance, unbiased
estimates (Smith and Grassle 1977).

Monte Carlo simulation can be also be used to
estimate the five measures of allelic richness de-
scribed above (e.g., King et al. 2001). For example,
aðjÞg can be estimated by randomly drawing g genes
(without replacement) from a sample taken from
the jth population. If this is done many times, the
average number of alleles in the simulated samples
is an estimate of aðjÞg and thus of aðjÞg . Monte Carlo
estimates of allelic richness for hierarchical sam-
pling designs are obtained by randomly sampling r
populations per region as well as g genes per

sample. This approach will be useful when
Sk
r

� �
or Cr is large. Monte Carlo estimation could also
be used to accommodate sampling hierarchies that
include more than two levels. Equations (3)–(5)
could be extended to accommodate hierar-
chies with more than two levels, but the Monte
Carlo approach would probably be easier to
implement.

An example: A reanalysis of human

microsatellite data

An example shows that rarefaction can substan-
tially change estimates of allelic richness and pri-
vate allelic richness. I present themicrosatellite data
of Jin et al. (2000) as an example. I selected this data
as an example because: (1) the data set is especially
large (64 loci), (2) the species is well-studied (hu-
mans), and (3) the methods used by the authors are
typical. Jin et al. (2000) genotyped 64 microsatellite
loci in 11 populations among five regions: Africa,
Asia, Europe, North and South America, and
Oceania. Both the number of populations sampled

q̂ðkÞg;r ¼
Xm
i¼1

1

Cr

XS1
c1¼1

XS2
c2¼1

� � �
XSR
cR¼1

8><>:
1�

Y
j2Ykck r

Qijg

0@ 1AY
k0¼1

R

k0 6¼k

Y
j02Xk0ck0 r

Qij0g

2664
3775
9>>=>>;: ð7Þ

cYðkÞ
r;g

¼
Xm
i¼1

1

Cr

XS1
c1¼1

XS2
c2¼1

� � �
XSR
cR¼1

8>><>>:
X

j2Ykck r
Pijg

Y
j02Ykck r
J 0 6¼j

Qij0g

0BB@
1CCA

0BB@
1CCAYR

k0¼1
k0 6¼k

Y
j2Ykck0 r

Qijg

2664
3775
9>>=>>;
ð6Þ
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per region varied (1–3) as well as the number of
genes sampled per population (10–26). Two of the
goals of the study were to identify which continent
had the most genetic variation and the most unique
alleles. Jin et al. did not use rarefaction to com-
pensate for variation in sampling effort.

In the raw data of Jin et al., the samples from
Oceania (New Guinea and Australia) had the sec-
ond highest total number of alleles (Figure 1a) and
the highest number of private alleles (Figure 2a).
However, these samples were also the two largest in
the study. When rarefaction was used to stan-
dardize samples to 10 genes per population and one
population per region, the samples from Oceania
had relatively fewer alleles (Figures 1b and 2b).
These results agree very well with a human study
with larger sample sizes (Rosenberg et al. 2002).

Tests of statistical significance

A few options are available to test the statistical
significance of differences in the measures of allelic
richness described above. A conservative approach
for pairwise tests is to use a sign test across loci.
For example, in the data of Jin et al. (2000), the
African samples had more unique alleles (after

rarefaction) than the European samples at 41 of 64
loci. Using the sign test, the one-tailed probability
for a result this extreme under the null hypothesis
that each region had the same number of unique
alleles is 0.016.

Randomization of samples among regions can
also be used to test the statistical significance of the
observed difference between regions. This ap-
proach would not be useful for the data of Jin
et al., because too few populations were sampled
for each region. Parametric tests of statistical sig-
nificance are available for simple (i.e. non-hierar-
chal study designs) comparisons of allelic richness
and private allelic richness (Tipper 1979). These
tests require estimating the sampling variance of
âg. This can be done only if the sample size is
greater than 2g or if multiple samples have been
taken from the same population (Smith and
Grassle 1977; Tipper 1979).

The sampling variance of âg, VarðâgÞ, is easily
confused with a related variance – the variance in
the number of alleles present in samples of g genes
subsampled from a larger sample. A heuristic
example illustrates the difference. Assume that 22
genes (11 individuals) were sampled from a large
population that has many alleles, and an estimate
of a20 is desired. Equation (3) gives an unbiased
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Figure 1. The allelic richness in each region in the microsatellite
data of Jin et al. (2000): with (b) and without (a) rarefaction
(Equation (5)). Rarefaction included 10 genes per sample, and
one sample per region.
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Figure 2. The total number of private alleles in each region in
the microsatellite data of Jin et al. (2000): with (b) and without
(a) rarefaction. Rarefaction included 10 genes per sample, and
one sample per region (Equation (7)).
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estimate of a20. As noted above, Smith and Grassle
(1977) provide formulae for estimating Varðâ20Þ.
Formulae have also been developed for calculating
the sampling variance of the number of alleles in
samples of g genes taken from the complete sample
(Heck et al. 1975), a quantity that Leberg (2002)
estimated by simulation. This variance will be
much smaller than Varðâ20Þ – but only because
samples of 20 genes will contain most (if not all)
the alleles present in the complete sample of 22
genes. However, this sampling variance is seldom
relevant. What is relevant is how different â20 is
likely to be if an independent sample was collected
from the population (Simberloff 1979). Leberg’s
(2002) discussion of the effect of rarefaction upon
the precision of estimates of allelic richness,
therefore, is misleading.

Discussion

The number of alleles or private alleles present in
populations is useful for many conservation ge-
netic applications. For example, allelic richness is
useful for identifying populations that deserve
special management. Petit et al. (1998) compared
the allelic richness of populations of an endan-
gered tree species to identify genetically diverse
populations so that these populations could be
protected. Alternatively, populations with low
allelic richness might receive special management.
Measures of allelic richness are also useful for
inferring the evolutionary histories of populations
(e.g., Castric and Bernatchez 2003). Expected
heterozygosity can also be used as a measure of
genetic diversity for these applications, but it is less
sensitive to the presence of rare alleles. This is a
disadvantage is many circumstances. For example,
population bottlenecks reduce allelic richness fas-
ter than heterozygosity. This principle has been
used to test for reductions in population size (e.g.,
Cornuet and Luikart 1996). The new measures of
allelic richness presented here will allow conser-
vation geneticists to use measures of allelic rich-
ness that fit their specific needs.
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Notes

1. Rarefaction was invented by ecologists counting the number
of species (species richness) in samples collected from
different communities. In the equations and discussion
below, I have translated this literature into generic terms
for clarity.
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