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The coefficient of variation of estimates of three genetic
distances (standard genetic distance of Nei, chord distance,
FST) was examined with computer simulation to determine if
large samples (per population) are necessary to precisely
estimate genetic distances at loci with high levels of
polymorphism. These simulations showed that loci with
high mutation rates produce estimates of genetic distance
with lower coefficients of variation than loci with lower
mutation rates – without requiring larger sample sizes from
each population. In addition, the rate at which increasing

sample sizes decreases the coefficient of variation of
estimates of genetic distances was shown to be approxi-
mately determined by the value of FST between the
populations being sampled. When FST was greater than
0.05, sampling fewer than 20 individuals (per population)
should be sufficient. When FST was less than 0.01,
sampling 100 individuals (per population) or more will be
useful.
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Introduction

Evolutionary and conservation geneticists frequently rely
on neutral molecular data to describe population struc-
ture. In the past 30 years, a parade of molecular markers
have been used, from blood proteins to microsatellites.
This progression has been motivated, at least in part, by a
search for loci with more variation. Loci with many
alleles, such as microsatellite loci, have unprecedented
ability to detect and describe genetic differences between
populations (eg Hedrick, 1999; Kalinowski, 2002a).

However, loci with scores of alleles have forced
population geneticists to re-evaluate how genotypic data
are analyzed and interpreted. The most fundamental
result of this re-evaluation has been increased awareness
that statistically significant genetic differences are not
always biologically or evolutionarily significant (eg
Waples, 1998; Hedrick, 1999). One question that has
received little attention in the literature is how high levels
of polymorphism affect study design. This may be
because most geneticists using highly polymorphic
microsatellite loci have already concluded that large
sample are needed to estimate genetic distances at loci
with many alleles. All the literature that I am aware of
supports this belief. For example, Nei (1978) analyzed the
sampling variances of his genetic distances, and con-
cluded that ‘more individuals should be examined when
heterozygosity is high than when it is low.’ Baverstock
and Moritz (1996) concluded that ‘it is clear that large
sample sizes are needed’ to describe population structure
at hypervariable loci. Most recently, Ruzzante (1998) used

computer simulations to show that polymorphic loci have
high sampling variances when sample size is small. Each
of these authors, however, examined the relationship
between samples sizes and sampling variance.

This focus on sampling variance has been misleading
for two reasons. First, genetic distances are derived
measures of genetic differentiation. They do not neces-
sarily have high sampling variances when estimates of
allele frequencies are imprecise. For example, high
mutation rates usually decrease the sampling variance
of FST. Second, sampling variances are not always an
appropriate measure of precision to compare study
design strategies. Consider the standard genetic distance,
DS, between two populations that have been isolated for
t generations. The sampling variance of DS will be higher
at loci with high mutation rates than at loci with low
mutation rates. However, the parametric genetic distance
will also be higher

DS ¼ 2mt ð1Þ
(where m is the infinite alleles mutation rate) (Nei, 1972).
This must be taken into consideration when comparing
variances, and the coefficient of variation is a useful statistic
to do this (see the Appendix for a mathematical discussion
of why the coefficient of variation is a useful statistic for
examining study design). The purpose of this paper is to
explore the relationship between sample size, polymorph-
ism, and the coefficient of variation of genetic distances.

Methods

I examined the relationship between sample size,
mutation rate, and the coefficient of variation of three
popular genetic distances: the standard genetic distance
of Nei, DS, the chord distance of Nei (1983), DA, and the
Weir and Cockerham estimator of FST(y), (1984) (see
Excoffier (2001) for a discussion of the relationship
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between y and FST). I chose these three genetic distances
because they are commonly used and because they have
substantially different evolutionary properties (see Kali-
nowski (2002b) for a review). I used computer simulation
(see below) to see how increasing the sample size per
population decreases the coefficients of variation of
estimates of these genetic distances for loci with different
levels of polymorphism. Because the expected amount of
polymorphism at a locus is proportional to mutation rate
(m) and effective population size (Ne), I explored how
both m and Ne affect estimation of genetic distances.

I examined the sampling properties of DS, DA, and FST

in two simple evolutionary models: an isolation model of
population divergence and an equilibrium model of
migration. In the ‘isolation’ model, a randomly mating
population of Ne individuals is instantly divided into
two populations that each has the same effective size as
the ancestral population. The two populations formed by
this fragmentation event remain completely isolated for t
generations (at which point sampling occurs). I included
three population sizes (Ne¼ 500, 5000, and 50 000) and
three divergence times (t¼ 50, 500, and 5000) in my
simulations. In the equilibrium ‘migration’ model, two
populations of equal and constant effective size (Ne)

exchange migrants at a rate of m. I included three
population sizes (Ne¼ 500, 5000, and 50 000) and
three migration rates (m¼ 0.01, 0.001, 0.0001) in my
simulations.

In both evolutionary models, I simulated data for loci
with four different mutation rates (10�6, 10�5, 10�4, 10�3).
All mutations were unique (infinite alleles mutation).
These mutation rates (and the effective population sizes
listed above) produced gene diversities within popula-
tions that ranged from approximately 0.002 to greater
than 0.995. Sample size was varied from two individuals
per population to 256 individuals per population. The
number of loci in simulated data sets was varied from
2 to 256.

The amount of population differentiation in these
models can be measured by FST. Most formulations of FST

are a function of mutation rates. However, formulae
based solely on demographic variables can be obtained
by taking the limit of the mutation rate as it goes to zero
(Slatkin, 1991). Weir and Cockerham’s estimator of FST is
then equal to

FST ¼ t

t þ 2N

Figure 1 The influence of mutation rate (m) and sample size (per population) on the coefficient of variation (CV) of estimates of DS (Nei, 1978)
in an isolation model of population divergence. In this model, a population of Ne individuals is instantly and permanently split into two
completely isolated populations. Sampling occurs t generations after population fragmentation. All samples have 16 loci. The parametric
value of FST for the populations is shown in each graph. Results for DA and FST are qualitatively indistinguishable (not shown).
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for the isolation model, and

FST ¼ 1

1 þ 8Nm

for the migration model (Slatkin, 1991; Weir and
Cockerham, 1984; Excoffier, 2001).

Genotypic data were simulated using the coalescent
approach (eg, Hudson, 1990; Felsenstein, 2003) with
a computer program that I wrote for this purpose.
The method of Ford (1998) was used for the isolation
model.

The coefficient of variation of DS, DA, and FST

was estimated by calculating the standard deviation
and average value of 1000 simulated estimates of DS, DA,
and FST. Calculations were performed in Microsoft
Access.

Estimates of DS are not defined when two samples
have no alleles in common, and estimates of FST are
not defined when all loci are fixed for the same allele.
Therefore, such samples were removed from the
analysis. The frequency of these excluded samples
was recorded. If over 10% of the samples were
excluded, then no results are reported for the
combination of effective population size, mutation
rate, sample size, that produced the undefined
estimates.

Results and discussion

All three genetic distances (DS, DA, and FST) displayed
remarkably similar statistical properties, so I present
representative results (Figures 1 and 2). Four trends were
observed: three well known, one novel. First, large
samples had a lower coefficient of variation than small
samples. Second, increasing the sample size (per popula-
tion) produced diminishing returns: at some point,
sampling more individuals had little effect upon the
coefficient of variation of the genetic distance. Third, loci
with high mutation rates produced lower coefficients of
variation than loci with low mutation rates.

What was interesting, was that the rate at which
increasing sample size decreased the coefficient of
variation was determined solely by the amount of
differentiation between the populations – and not the
mutation rate or the amount of variation at the loci. This
was true for both the isolation and the migration models.
More individuals should be sampled when the amount
of differentiation is small than when it is large.

FST proved to be a convenient measure of population
differentiation for study design. Figures 1 and 2 suggest
that 20 individuals is a reasonable maximum sample size
when the parametric value of FST is 0.05 and 100
individuals is a reasonable maximum sample size when

Figure 2 Influence of mutation rate (m) and sample size (per population) on the coefficient of variation (CV) of estimates of FST in an
equilibrium migration model. In this model, two populations of Ne individuals exchange migrants at a rate of m. All samples have 16 loci. The
parametric value of FST for the populations is shown in each graph. Results for DS and DA are qualitatively indistinguishable.
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the parametric value of FST is equal to 0.01. One
implication of these results is that there is more benefit
to collecting large samples from large populations than
from small populations. This is because, all else being
equal, FST between large populations is smaller than FST

between small populations.
These results extend the seminal work of Nei and

collaborators (see Nei, 1987 for a review). Nei and
collaborators showed that sample sizes can be small
when divergence times are large, but did not examine
how effective population size or mutation rate affects the
sampling properties of genetic distances. Foulley and
Hill (1999) recently showed that only a few individuals
need to be sampled to estimate the Sanghvi genetic
distance when divergence times are large, but did not
relate this genetic distance to effective population size or
mutation rate.

Increasing the number of individuals in a study is not
the only way to decrease the coefficient of variation of
estimates of genetic distance. Increasing the number of
loci will also improve the precision of estimates of
genetic distance (see Nei, 1987 for a review). In fact,
when population differentiation is substantial (eg FST 4
0.2), increasing the number of loci is the only method for
improving estimates of genetic distances. However, if
enough loci are available, reliable estimates of genetic
distances can be obtained from very few individuals.
Figures 1 and 2 depict results for 16 loci. The shape of the
curves in these figures, however, was independent of the
number of loci examined. If fewer than 16 loci are
sampled, the lines in the figures are shifted upwards
(higher coefficient of variation). If more than 16 loci are
sampled, the lines in the figures are shifted downwards
(lower coefficient of variation).
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Appendix

Consider three populations, A, B, and C, and the genetic
distances between them, dAB and dBC. In many applica-
tions, the magnitude of dAB and dBC is less informative
than the ratio

r ¼ dAB

dBC
ðA1Þ

For example, consider a phenogram constructed from
Nei’s standard genetic distance. The length of the
branches is not particularly informative, because that
length is determined by the mutation rate, and this is
usually unknown. What is informative, is the relative
lengths of each branch. Here, I examine how sampling
error affects estimates of r.

Let d̂AB and d̂BC represent estimates of dAB and dBC,
respectively. These estimates can be modeled

d̂dAB ¼ dAB þ eAB

d̂dBC ¼ dBC þ eBC

ðA2Þ

where eAB and eBC are random variables that model
sampling error. For simplicity, assume the expected value
of eAB and eBC is zero (ie d̂AB and d̂BC are unbiased
estimators). In this model, the standard errors (SD)
of d̂AB and d̂BC are equal to the standard deviations of
eAB and eBC

SD d̂dAB

� �
¼ SD eABð Þ

SD d̂dBC

� �
¼ SD eBCð Þ

ðA3Þ

The estimate of r, r̂, is modeled

r̂r ¼ dAB þ eAB

dBC þ eBC
ðA4Þ

The goal of study design is to determine how many loci
and/or individuals must be sampled so that r̂ is likely to
approximate r. The approximation will be good when

eABj j � dAB

eBCj j � dBC
ðA5Þ

This, in turn, is most likely to occur when

SD e183ABð Þ � 183dAB

183SD eBCð Þ � 183dBC

ðA6Þ

Substitution and rearrangement show that r̂ is likely to
approximate r when

SD d̂dAB

� �

dAB
� 1

SD d̂dBC

� �

dBC
� 1

ðA7Þ

Note that the left-hand terms in equations (A7) are
the coefficients of variation of d̂AB and d̂BC.
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