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Abstract: Statistical inferences concerning the relative fitness of different types of individuals in a population have not
been well developed. We present a method for calculating confidence intervals for maximum likelihood estimates of
relative fitness obtained from an experimental design that is common in the fisheries literature. Analysis and simulation
show that these confidence limits are reliable. We also show that the bias of the estimates is low for realistic sample
sizes.

Résumé : Les inférences statistiques sur la fitness relative des différents types d’individus dans une population sont
encore peu élaborées. Nous présentons une méthode pour calculer les intervalles de confiance des estimations de
vraisemblance maximale de la fitness relative obtenues d’un plan d’expériences couramment utilisé dans la littérature
halieutique. L’analyse et la simulation montrent que ces intervalles de confiance sont fiables. Nous établissons aussi
que l’erreur des estimations est faible pour des tailles d’échantillons réalistes.
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Introduction

Measuring fitness in the wild is essential for understand-
ing evolution and often important for managing populations.
It is also notoriously difficult to do in natural populations.
Molecular markers, such as microsatellites, however, offer a
relatively new tool for estimating reproductive success. The
method is general but has been used most often in the fisher-
ies literature to estimate the relative fitness of different strains
of anadromous fishes (e.g., Garant et al. 2003; Hendry et al.
2003; McLean et al. 2004). In this literature, studies are of-
ten conducted as follows. Adult salmon are intercepted dur-
ing their upstream migration and genotyped at multiple
microsatellite loci. Once sampled, the fish are released to
continue their upstream migration, after which they spawn in
the wild. The offspring from these fish are then captured in
subsequent years and genotyped. These genotypes identify
the parents of each fish, and the fitness of the parents can be
estimated. This allows the fitness of different types of fish
(e.g., hatchery vs. wild) to be compared (McLean et al.
2004).

These studies have brought to light limitations in the sta-
tistical methods used for inference concerning fitness. In
particular, there is no report of a reliable method to produce
confidence limits for estimates of relative fitnesses (e.g.,
Haldane 1956; Manly 1985). Wald confidence intervals
based on the t distribution have been constructed by estimat-
ing the sampling variance of relative fitnesses (e.g., Manly
1972, 1985). However, the sampling distribution of estimates
of relative fitness is not normal and is even asymmetric, so
confidence limits estimated this way are unlikely to perform
well. Hinrichsen (2003), for example, derived an expression

for the approximate sampling variance for estimates of rela-
tive fitness, but did not use this variance in his power analy-
sis. Authors reporting the relative fitness of different stocks
of fish have usually not included measures of uncertainty in
their work (for examples see Hinrichsen 2003).

The purpose of this article is twofold: (1) to present a
profile-likelihood method for constructing confidence limits
around estimates of relative fitness, and (2) to evaluate the
bias and sampling error of the maximum likelihood esti-
mates themselves.

Estimating relative fitness
We begin by summarizing the conventional population

genetic model for how natural selection affects the frequen-
cies of different types of individuals in a population (for a
more detailed presentation and examples of studies that esti-
mate the fitness of specific genotypes see Hedrick 2000).
Let k represent the number of different types of individuals
in a population and pi represent the frequency of the ith type
of individual, i.e., pii

k =
=∑ 1.0

1
. By type of individual, we

mean genotype, phenotype, stock, life history, morph, or any
other feature that natural selection might act upon. For ex-
ample, p1 and p2 might represent the frequency of hatchery-
and wild-born salmon migrating up a river. To simplify our
presentation, we use “stock” as shorthand for “type of indi-
vidual”.

Let p i′ represent the frequency of the ith stock after selec-
tion. This will be equal to

(1) p
p

i
i i′ = ω
ω
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where ωi denotes the fitness of the ith stock and ω is the av-
erage fitness in the population, ω = ωpi ii∑ . Equation 1 has
two notable characteristics: it can model the effects of both
differential viability and fecundity and it applies to both ab-
solute measures of fitness as well as relative fitness mea-
sures.

In many study designs, estimating the actual fitness of
each stock is not possible. This is because eq. 1 depends on
ratios of fitnesses and not their magnitudes. Therefore, fit-
ness is often measured relative to a standard stock. Let wi
represent the relative fitness of the ith stock:

(2) wi
i= ω

ω0

where ω0 is the fitness of the stock that is being used as a
standard of comparison. Substituting eq. 1 into eq. 2 gives
the relationship between relative fitness and the frequencies
of the stocks before and after selection:

(3) w p p p pi i i= ′ ′( / )/( / )0 0

where p0 and p 0′ are the frequencies of the standard stock
before and after selection.

Obtaining maximum likelihood estimates of relative fit-
ness is straightforward. Let w represent a vector of the rela-
tive fitnesses for the stocks in a population, i.e., {w1, w2, …,
wk}. If we assume that the frequencies of each stock before
selection are known without error, the likelihood is multi-
nomial with the probabilities for each stock given by eq. 1:

(4a) L
!
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where ni is the number of individuals from the ith stock
found in the sample after selection and N is the total sample
size, N nii

= ∑ . By definition, the values of w that maxi-

mize the right-hand half of eq. 4a are the maximum likeli-
hood estimates of the relative fitnesses of the stocks.
Expression 4a can be modified in two ways that do not alter
the location of the maximum, but facilitate computation.
First, the multinomial coefficient may be dropped, and sec-
ond, the logarithm of each side of the equation can be taken.
Therefore, maximizing the right-hand side of the following
expression is sufficient to find maximum likelihood esti-
mates of w:

(4b) Ln L( ) lnw ∝ ⎛
⎝⎜

⎞
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p w
w
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This expression (eq. 4b) is maximized by
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where �p i′ is the proportion of stock i in the samples taken af-
ter selection, � /p n Ni i′ = (e.g., Manly 1985).

In some studies, combining results from different experi-
ments may be desired. This can be done by assuming that

the relative fitness of each stock is constant. With this as-
sumption, the log-likelihood is proportional to

(6) LnL( ) ln,
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where j indexes experiments. This equation is equivalent to
eq. 1 of Hinrichsen (2003). Our paper will concentrate on
studies with data from one experiment because this study de-
sign has the lowest power and highest bias (Hinrichsen
2003).

Confidence limits for the estimates of relative fitness can
be obtained by the hypothesis test inversion method (Casella
and Berger 2001). This technique produces confidence limits
by finding the set of all points in a univariate or multivariate
parameter space where the likelihood ratio comparing the
maximum likelihood estimates with a point in the set just
equals the critical value for a test of the desired size. Let wA
be a point in the confidence set. The set is defined as all
points satisfying the equality:

(7) 2 1
2[ ( ) ( )] ,LnL LnLMLw w− =A χ α

where χ α1
2
, is the χ2 value with 1 degree of freedom, and

LnL(wML) is the log-likelihood (eq. 4b) evaluated at the
maximum likelihood values of w. A 1 – α confidence inter-
val for each of the stocks is given by the largest and smallest
values of wi in the confidence set (Pawitan 2000). Such in-
tervals are known as profile-likelihood intervals and are gen-
erally considered superior to Wald confidence intervals
constructed with parameter variance estimated on the basis
of the inverse of the Fisher information matrix. The simplest
approach to making joint confidence intervals that have a 1 –
α′ probability of capturing all parameters (as opposed to
each interval having a 1 – α probability of capturing one pa-
rameter) is to use the Dunn–Šidák probability, α′ = 1 – (1 –
α)1/k, in eq. 7 (Sokal and Rohlf 1995). Alternatively, a joint
confidence region can be constructed using eq. 7 with k – 1
degrees of freedom (McCullagh and Nelder 1989; Meeker
and Escobar 1995).

We illustrate the profile-likelihood method with a pair of
examples, one with two stocks and one with three. In the
first case, assume that there are two stocks in a river and that
they both had a frequency of 0.5 before selection. A sample
of 25 fish is taken after selection, and this sample contains
15 fish from stock 1 and 10 fish from stock 2 (Fig. 1 shows
the likelihood profile of these data). The likelihood profile
has a maximum at �w1 = 1.5, which means that 1.5 is the
maximum likelihood estimate of w1. At this point, the log-
likelihood is approximately –16.83. We search downwards
from 1.5 for a value of w1 satisfying eq. 7 that is our lower
confidence limit. Searching upwards from 1.5 yields the up-
per confidence limit. The 95% confidence interval for �w1 is
approximately [0.68. 3.45]. Note the asymmetry in this in-
terval.

The case of three stocks is a little more complicated, be-
cause two relative fitnesses must be estimated: w1 and w2.
Consider an example in which each of three stocks had a
frequency of 0.3333 before selection, and that a sample of
100 fish is collected from a river after selection that contains
51 fish from stock 1, 17 fish from stock 2, and 32 fish from
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stock 3 (the stock with which relative fitnesses are com-
pared). The confidence set is constructed as before, but is
now a closed curve in a two-dimensional parameter space.
Profile confidence intervals for w1 and w2 are obtained by
finding the smallest and largest values of w1 and w2 within
this region.

Methods

Now that we have shown how to estimate relative fitness
and how to obtain confidence intervals for these estimates,
we will evaluate (i) the bias of these estimates, (ii) the vari-
ability of the estimates, and (iii) the accuracy of the confi-
dence intervals.

Statistical properties of estimates of relative fitness
To evaluate how effectively samples estimate relative fit-

ness, we used several metrics: bias, geometric mean bias,
confidence-interval coverage, and geometric mean error. We
examined two types of studies, those with two stocks (the
most common application in the fisheries literature) and
those with four stocks (less common). For studies with two
stocks, we calculated each of the four metrics analytically.
An example illustrates how we did this and why we chose
the statistics listed.

Consider two stocks that have equal frequency before se-
lection. If the relative fitness of the first stock is twice that
of the second, the frequencies of the stock after selection
will be 0.6667 and 0.3333 (from eq. 1). Now assume that the
relative fitness of stocks is estimated by sampling 25 fish
from the system after selection. If, for example, this sample
consists of 15 fish from the first stock and 10 fish from the
second stock, the maximum likelihood estimate of relative
fitness will be 1.5 (eq. 5). If, however, the sample consists of
16 fish from stock 1 and 9 fish from stock 2, then the maxi-
mum likelihood estimate of relative fitness for stock 1 is
1.78 (which is a little closer to the parametric value of 2.0).
The probability for each of these samples (and every other
possible sample) can be calculated from the binomial for-
mula. The probability of observing k fish from stock 1 is

(8) P n k
N

k N k
k N k( )

( )
( ) ( )1 = =

−
⎛

⎝
⎜

⎞

⎠
⎟ −!

! !
0.6667 0.3333

where N is the total sample size (25 in our case). For exam-
ple, there is approximately a 12.6% chance that 15 fish from
stock 1 will be in observed in the sample (Table 1).

Table 1 provides all the information required to calculate
the sampling statistics we used to evaluate the statistical
properties of maximum likelihood estimates of relative fit-
ness (Table 1). For example, statistical bias is the difference
between the expected value of an estimate and the actual
value of the parameter being estimated:

(9) bias = −E w wi i( � )

The expected value of �wi (directly from Table 1) is

(10) E w P w wi i i( � ) ( � ) �= ∑
where summation is taken over all possible samples. For the
example shown (Table 1), the expected value of �w1 is ap-
proximately 2.3, which is about 15% too high. The calcula-
tion is approximate because there is a small chance that �w1
will equal infinity (this occurs if no individuals from stock 2
are observed in the sample). Strictly speaking, this means
that estimates of relative fitness are infinitely biased. How-
ever, the expected value of �w1 is relatively insensitive to this
problem. For example, the expected value of �w1 is approxi-
mately 2.31 if the problem sample is not included in the cal-
culation and 2.32 if 99 is used as an estimate when no
individuals from stock 2 are included in the sample.

The bias is caused by an asymmetric sampling distribution
for �w1 (Fig. 2). The sampling distribution has a mode of ap-
proximately 2.0 (the parametric value being estimated), but
has a long tail to the right (large values). The expectation of
�w1 is the arithmetic average value of �w1, so the tail on the
right raises the expected value above 2.0. However, further
examination of the example shows that the observed bias is
not a problem — and is actually a by-product of a desirable
property of maximum likelihood estimates of relative fitness.
Consider two potential estimates of �w1: 1 and 4. They are
equally poor. The former is half of the actual value of 2.0,
while the latter is twice as large. If these estimates were
equally likely, the sampling distribution for �w1 would look
something like Fig. 2a, and the arithmetic mean estimate
would be greater than 2. The geometric mean, however,
would be equal to 2. The geometric mean is a more appro-
priate measure of central tendency because relative fitnesses
are used multiplicatively (and not additively) in eq. 1. In the
example shown (Table 1), the geometric mean of the esti-
mates is 2.07 (see Fig. 2b), which is substantially closer to
the parametric value than the arithmetic mean of 2.3.

Table 1 provides useful information regarding other statis-
tical properties of estimates of relative fitness (Table 1). For
example, there is a 96.8% chance that the nominal 95% con-
fidence intervals for �w1 contain the parametric value, which
is quite close to the coverage they promise.

The variability of estimates of relative fitness is also of in-
terest. The sampling variance or standard error is usually
used for this purpose, but either statistic would be mislead-
ing for the same reasons that the arithmetic mean is not an
appropriate measure of central tendency. Therefore, we cal-
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Fig. 1. The log-likelihood of w1 for a sample of 25 individuals
containing 15 individuals from stock 1 and 10 individuals from
stock 2 (assuming that both stocks had a frequency of 0.5 before
selection).
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culated the geometric mean multiplicative error (GMME)
for each study design that we evaluated (see below). GMME
is the average (geometric mean) factor by which estimates
of relative fitness are in error. For example, a GMME of
1.25 indicates that the average estimate is in error by a fac-
tor of 1.25 (i.e., needs to be multiplied or divided by 1.25 to
get the parametric fitness). GMME is defined as

(11) GMME = exp( | ln( � / )| )E w wi i

where exp(·) denotes the exponential function and E(·) de-
notes expectation.

The enumeration method for calculating bias and confidence-
interval coverage described above can be extended to study
designs with multiple stocks. However, the number of possi-
ble samples quickly becomes prohibitively large and the
method becomes computationally impracticable. In such
cases, computer simulation can be used to estimate bias,
confidence-interval coverage, etc.

Evaluation of study designs
We examined two sets of study designs, those with two

stocks, and those with five stocks. The set of study designs

we examined that had two stocks are listed in Table 2. In
brief, we varied sample size from 50 to 400, varied relative
fitness from 0.1 to 10, and varied initial frequencies from
0.10 to 0.90. We used the analytic method described above
to analyze study designs with two stocks. Computer simula-
tion was used to evaluate a study design with five stocks
that had relative fitnesses of {1.0, 0.8, 0.9, 1.1, 1.2} for sam-
ples sizes of 50, 100, 200, and 400.

For each study design we calculated the expected value of
estimates of relative fitness, geometric means of estimates,
the error rate for 95% confidence intervals, and GMME.

Software
A computer program, relative fitness analysis, is available

to apply the statistical methods described above. The pro-
gram estimates relative fitnesses (and their confidence lim-
its) for empirical data sets and simulates data. Relative fitness
analysis is available for download from www.montana.edu/
kalinowski (Kalinowski 2004).

Results

Maximum likelihood estimates of relative fitness had low

n1
a n2

b Probabilityc
�w d

�minw e
�maxw f CI successful?g

�minw ?h

0 25 1.18 × 10–12 0.00 0.00 0.08
1 24 5.90 × 10–11 0.04 0.00 0.20
2 23 1.42 × 10–9 0.09 0.01 0.29
3 22 2.17 × 10–8 0.14 0.03 0.39
4 21 2.39 × 10–7 0.19 0.06 0.50
5 20 2.01 × 10–6 0.25 0.08 0.62
6 19 1.34 × 10–5 0.32 0.12 0.75
7 18 7.26 × 10–-5 0.39 0.15 0.89
8 17 3.27 × 10–4 0.47 0.19 1.06
9 16 0.0012 0.56 0.24 1.25

10 15 0.0040 0.67 0.29 1.47
11 14 0.0108 0.79 0.35 1.73
12 13 0.0251 0.92 0.42 2.04 Yes
13 12 0.0503 1.08 0.49 2.41 Yes Yes
14 11 0.0862 1.27 0.58 2.87 Yes Yes
15 10 0.1264 1.50 0.68 3.45 Yes Yes
16 9 0.1580 1.78 0.80 4.20 Yes Yes
17 8 0.1673 2.13 0.95 5.21 Yes Yes
18 7 0.1487 2.57 1.12 6.61 Yes Yes
19 6 0.1096 3.17 1.34 8.69 Yes Yes
20 5 0.0658 4.00 1.62 12.0 Yes Yes
21 4 0.0313 5.25 2.00 18.0 Yes Yes
22 3 0.0114 7.33 2.54 30.9 Yes
23 2 0.0030 11.5 3.40 71.6 Yes
24 1 4.95 × 10–4 24.0 5.08 99 Yes
25 0 3.96 × 10–5 ∞ — — Yes

Note: Both stocks had a frequency of 0.5 before selection. Stock 1 had a parametric relative fitness of 2.0.
aNumber of individuals from stock 1 in the sample.
bNumber of individuals from stock 2 in the sample.
cProbability for the sample.
dEstimate of relative fitness for the sample.
eLower end of the 95% confidence interval for �w.
fUpper end of the 95% confidence interval for �w.
gDoes the confidence interval (CI) for �w contain the parametric value of 2.0?
hIs �w significantly greater than 1.0?

Table 1. Sampling distribution of estimates of relative fitness for a sample of 25 individuals taken after
two stocks underwent selection.



bias, accurate confidence intervals, and reasonable variabil-
ity. The results for the study designs with two stocks are
provided in Tables 3–6. Small sample sizes showed a mod-
est amount of bias, which usually declined to a negligible
amount when samples were expected to include at least 10
individuals in each of the stocks. Furthermore, the geometric
mean estimate was almost always quite close to the paramet-
ric value being estimated. The 95% confidence intervals
were very reliable across the entire range of sample sizes
and relative fitnesses. GMME also appears acceptable. For a
wide range of relative fitnesses, GMME was approximately
1.3 for a sample size of 50 — and lower for larger samples.

Estimates of relative fitness for the study designs with five
stocks also had low bias, accurate confidence intervals, etc.
(results not shown).

Discussion

This work shows that maximum likelihood estimates of
relative fitness are relatively unbiased, have reasonable sam-
pling error, and have nearly true sized confidence limits —
even for sample sizes as low as 10 individuals for the least
abundant stock. This is reassuring, for it indicates that small
samples can be informative. However, this does not mean
that small samples will be sufficient to precisely estimate

relative fitnesses. Larger sample sizes give increased power
and tighter confidence intervals.

The profile confidence intervals that we describe above
are expected to perform better than the more traditional
Wald intervals. Wald intervals are constructed by assuming
that the likelihood is distributed normally with a variance/
covariance matrix approximated by the inverse of the Fisher
information matrix. Confidence intervals can then be con-
structed using t, z, or χ2 distributions. At large sample sizes
such intervals will be equivalent to profile-likelihood inter-
vals, but at smaller sample sizes the estimated likelihood
will generally not be normally distributed, and profile-
likelihood intervals will be superior (Kalbfleisch and Sprott
1970; Venzon and Moolgavkar 1988; for reviews see Meeker
and Escobar 1995; Pawitan 2000). Our investigations (result
not reported) have shown this trend — the coverage proper-
ties of the Wald interval for relative fitness generally were
poorer than the profile interval. Undesirable properties of
Wald intervals included high error rates, bias, and intervals
that extended below zero. In the past, Wald intervals have
been reasonably justified on the basis of their greater ease of
computation. With current computation power, this issue is
much less relevant than before.

The model (eq. 1) for selection that we have examined is
the most basic available for studying evolution (e.g., Hedrick
2000). Its advantage is simplicity and insight into how two
groups compare. One disadvantage is that it usually will not
indicate which genetic or physical traits contribute to fitness.
If selection gradients are of interest they can be estimated by
fitting a curve to a plot of fitness versus phenotype for the
individuals sampled (e.g., Smouse et al. 1999; Morgan and
Conner 2001; Hendry et al. 2003).
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N

p1 : p2 w1 50 100 200 400

0.5 : 0.5 0.10 5* 9* 18 36
0.50 17 33 67 133
0.80
1 25 50 100 200
1.2 27 54 109 218
2 33 67 133 267
10 45 91 181 363

0.25 : 0.75 0.80 11 21 42 84
1 13 25 50 100
1.2 14 28 57 114

0.75 : 0.25 0.80 35 70 141 282
1 38 75 150 300
1.2 39 79 156 313

0.10 : 0.90 0.80 4* 8* 16 32
1 5* 10* 20 40
1.2 6* 12 23 47

0.90 : 0.10 0.80 44* 87 175 351
1 45* 90 180 360
1.2 46* 92* 183 366

*The expected number of individuals in the sample for one of the
stocks is 10.0 or fewer.

Table 2. Expected numbers of stock 1 in the two-stock study de-
signs examined in this study as a function of the initial frequen-
cies of two stocks (p), the relative fitness of stock 1 (w1), and
the number of fish sampled after selection (N).

Fig. 2. The sampling distribution of estimates of relative fitness
for two stocks having parametric relative fitnesses of 2.0 and 1.0
when both stocks were equally abundant before selection and a
sample size of 25 individuals is collected after selection. The
scale is linear in a and logarithmic in b.
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N

p1 : p2 w1 : w2 50 100 200 400

0.5 : 0.5 0.10 0.09* 0.09* 0.10 0.10
0.50 0.49 0.50 0.50 0.50
0.80 0.80 0.80 0.80 0.80
1 1.00 1.00 1.00 1.00
1.2 1.20 1.20 1.20 1.20
2 2.03 2.02 2.01 2.00
10 10.8 10.6 10.3 10.1

0.25 : 0.75 0.80 0.77 0.79 0.79 0.80
1 0.97 0.99 0.99 1.00
1.2 1.17 1.19 1.19 1.19

0.75 : 0.25 0.80 0.82 0.81 0.80 0.80
1 1.03 1.01 1.01 1.00
1.2 1.24 1.22 1.21 1.21

0.10 : 0.90 0.80 0.72* 0.75* 0.78 0.79
1 0.91* 0.95* 0.98 0.99
1.2 1.10* 1.15 1.18 1.19

0.90 : 0.10 0.80 0.87* 0.83 0.81 0.80
1 1.10* 1.05 1.02 1.01
1.2 1.32* 1.27* 1.23 1.21

*The expected number of individuals in the sample for one of the
stocks is 10.0 or fewer.

Table 4. Geometric mean values of �wi as a function of the initial
frequencies of two stocks (p), the relative fitness of stock 1 (w1),
and the number of fish sampled after selection (N).

N

p1 : p2 w1 : w2 50 100 200 400

0.5 : 0.5 0.10 1.52 1.34 1.22 1.15
0.50 1.27 1.19 1.13 1.08
0.80 1.26 1.17 1.12 1.08
1 1.26 1.17 1.12 1.08
1.2 1.26 1.18 1.12 1.08
2 1.27 1.18 1.13 1.09
10 1.52 1.34 1.22 1.15

0.25 : 0.75 0.80 1.33 1.22 1.15 1.10
1 1.31 1.20 1.14 1.10
1.2 1.29 1.20 1.13 1.09

0.75 : 0.25 0.80 1.29 1.19 1.13 1.09
1 1.31 1.20 1.13 1.10
1.2 1.33 1.22 1.15 1.10

0.10 : 0.90 0.80 1.53* 1.36* 1.24 1.16
1 1.49* 1.32* 1.21 1.14
1.2 1.46* 1.29 1.19 1.13

0.90 : 0.10 0.80 1.44* 1.28 1.19 1.13
1 1.49* 1.32 1.21 1.14
1.2 1.54* 1.36* 1.23 1.16

*The expected number of individuals in the sample for one of the
stocks is 10.0 or fewer.

Table 6. Geometric mean multiplicative error (GMME) of esti-
mates of �wi as a function of the initial frequencies of two stocks
(p), the relative fitness of stock 1 (w1), and the number of fish
sampled after selection (N).

N

p1 : p2 w1 : w2 50 100 200 400

0.5 : 0.5 0.10 0.06 0.06 0.05 0.05
0.50 0.05 0.06 0.05 0.05
0.80 0.05 0.04 0.05 0.05
1 0.06 0.06 0.06 0.05
1.2 0.05 0.04 0.05 0.05
2 0.05 0.06 0.05 0.05
10 0.05 0.06 0.05 0.05

0.25 : 0.75 0.80 0.06 0.05 0.05 0.05
1 0.05 0.05 0.05 0.05
1.2 0.06 0.06 0.05 0.05

0.75 : 0.25 0.80 0.04 0.05 0.05 0.05
1 0.05 0.05 0.05 0.05
1.2 0.05 0.05 0.05 0.05

0.10 : 0.90 0.80 0.02* 0.05* 0.05 0.05
1 0.05* 0.04* 0.05 0.05
1.2 0.05* 0.04 0.06 0.04

0.90 : 0.10 0.80 0.06* 0.05 0.05 0.05
1 0.05* 0.04 0.05 0.05
1.2 0.02* 0.05* 0.04 0.05

*The expected number of individuals in the sample for one of the
stocks is 10.0 or fewer.

Table 5. Error rates of 95% confidence intervals for �wi as a
function of the initial frequencies of two stocks (p), the relative
fitness of stock 1 (w1), and the number of fish sampled after se-
lection (N).

N

p1 : p2 w1 50 100 200 400

0.5 : 0.5 0.10 0.10* 0.10* 0.10 0.10
0.50 0.52 0.51 0.50 0.50
0.80 0.83 0.81 0.81 0.81
1 1.04 1.02 1.01 1.00
1.2 1.26 1.23 1.21 1.21
2 2.13 2.06 2.03 2.02
10 13.0 11.4 10.6 10.3

0.25 : 0.75 0.80 0.82 0.81 0.81 0.80
1 1.02 1.01 1.01 1.00
1.2 1.23 1.22 1.21 1.20

0.75 : 0.25 0.80 0.86 0.83 0.81 0.81
1 1.09 1.04 1.02 1.01
1.2 1.33 1.26 1.23 1.21

0.10 : 0.90 0.80 0.82* 0.81* 0.80 0.80
1 1.02* 1.01* 1.00 1.00
1.2 1.22* 1.21 1.21 1.20

0.90 : 0.10 0.80 0.99* 0.88 0.84 0.82
1 1.28* 1.13 1.06 1.03
1.2 1.57* 1.39* 1.28 1.24

*The expected number of individuals in the sample for one of the
stocks is 10.0 or fewer.

Table 3. Expected values of �wi as a function of the initial fre-
quencies of two stocks (p), the relative fitness of stock 1 (w1),
and the number of fish sampled after selection (N).



The favorable results presented here support the develop-
ment of maximum likelihood estimates of relative fitness
(and confidence intervals for those estimates) for more com-
plex or realistic study designs. For example, the study de-
signs reviewed here assumed that the initial proportions of
each stock were known at the beginning of the experiment.
This may not always be the case. Manly (1972) has provided
formulae for maximum likelihood estimates of relative fit-
ness, along with estimates of the standard error of the esti-
mates, but the confidence intervals are likely to be
inaccurate. Alternatively, the method could be extended to
account for uncertainty in stock identification.
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