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Abstract

DNA extracted from hair or faeces shows increasing promise for censusing populations whose individuals
are difficult to locate. To date, the main problem with this approach has been that genotyping errors are
common. If these errors are not identified, counting genotypes is likely to overestimate the number of
individuals in a population. Here, we describe an algorithm that uses maximum likelihood estimates of
genotyping error rates to calculate the evidence that samples came from the same individual. We test this
algorithm with a hypothetical model of genotyping error and show that this algorithm works well with
substantial rates of genotyping error and reasonable amounts of data. Additional work is necessary to
develop statistical models of error in empirical data.

Introduction

‘‘...there is a critical need for population genetics
software... incorporating [genotyping] error’’ –
Bonin et al. (2004)

A census is invaluable for the management of
small populations. Capture-mark-recapture meth-
ods are currently the standard method for esti-
mating the size of populations, but genetic data
offers increasing promise – especially for species
whose individuals are difficult to locate. The
method is simple in concept (1) Collect a large
number of hair or faeces specimens from the field.
(2) Genotype DNA extracted from these speci-
mens. (3) Count the number of unique multilocus
genotypes observed. This number serves as a
minimum number of individuals visiting a water-
ing hole, crossing a road, or living in a population
(e.g., Taberlet et al. 1997). More refined estimates
of census size can be obtained using genotype
accumulation methods (e.g., Kohn et al. 1999) or

using capture-mark-recapture analysis of the
genotype counts (e.g., Woods et al. 1999).

DNA censuses are vulnerable to genotyping
error (e.g., Taberlet et al. 1999; Taberlet and
Luikart 1999; Waits and Leberg 2000). This is
because, genotyping errors can cause two speci-
mens from the same individual to appear to have
different genotypes, and therefore appear to come
from two different individuals. Even low error
rates can dramatically inflate estimates of census
size (Waits and Leberg 2000).

The conventional method for dealing with
genotyping errors is to try to reduce their occur-
rence to a negligible rate. There are several ways to
do this (e.g., Taberlet et al. 1999; Morin et al.
2001; Miller et al. 2002; Paetkau 2003). For
example, Taberlet et al. (1999) recommended
re-genotyping specimens until the correct genotype
could be inferred reliably. In contrast, Paetkau
(2003) recommended using professional judgment
to remove poor quality specimens from analysis.
No matter how genotyping errors are prevented or
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identified, the protocol must be almost perfect to
accurately count individuals.

An alternative to eliminating errors is to
accommodate them during data analysis. Many
authors have estimated genotyping error rates
(e.g., Broquet and Petit 2004), but there has been
few suggestions for how to deal with the errors
that occur (but see Creel et al. 2003; McKelvey
and Schwartz 2004). Incorporating genotyping
error into data analysis would represent a para-
digm shift for the non-invasive literature. Here, we
investigate whether likelihood based methods can
be used to sort non-invasive specimens by their
identity. The task is not easy; three substantial
problems must be solved. First, statistical models
of genotyping error must be identified. This is
challenging because, to be done well, the correct
genotypes of non-invasive specimens must be
known. Second, the parameters in such models
must be estimated. This is challenging because
each specimen is likely to have at least one
parameter describing how likely errors will be in
that specimen. If there are 100 specimens in a
collection, there will be over 100 parameters to
estimate – and this is computationally difficult.
Third, an algorithm is needed to sort specimens
according to their identity. This is challenging
because, even small numbers of specimens can be
sorted in too many ways to enumerate.

Solving these three problems will require a
concerted effort by the non-invasive DNA com-
munity. Here, we address the main statistical
challenges (the second and third points listed
above), and show that even data sets having high
genotyping error rates have enough information to
identify individuals accurately.

An algorithm for individual identification

A DNA census seeks to estimate the number of
individuals in a population. In this paper, we
address a more limited question: which specimens
in a collection came from the same individuals?
Our approach is divided into three steps. First, a
model of genotyping error is selected. This may be
done on the basis of background knowledge or by
model identification from a suite of alternative
models (Burnham and Anderson 2002; Johnson
and Omland 2004). Second, the parameters of the
model are estimated. These will be genotyping

error rates and parameters that affect these rates.
For example, in the model we present as an
example, dropout and misprint rates are estimated
for every specimen. Third, and last, specimens are
clustered into sets using the estimates of genotyp-
ing error rates to evaluate the evidence of identity.
We begin by discussing this clustering algorithm,
and then discuss the specific genotyping error
model that we used to test its effectiveness.

Calculating the evidence that two specimens came
from the same individual

When genotyping errors are possible, the term
‘‘genotype’’ can be ambiguous. Where there is the
possibility of confusion, we will refer to a true
underlying genotype of a specimen as the latent
genotype, and a scored or measured genotype as
an observed genotype.

The goal of our algorithm is to sort specimens
into sets that are each derived from unique indi-
viduals. The algorithm begins with each specimen
in a set by itself (i.e., a singleton set), and proceeds
by calculating the evidence that pairs of sets con-
tain specimens from the same individual (as op-
posed to different individuals). If this evidence is
high, two sets of specimens will then be combined.
Essentially, this is an exercise in estimating the
relationship between specimens. Let Xh represent
the hth set of specimens. Let the variable Rh1;h2

represent the relationship between the specimens
in sets Xh1 and Xh2

Rh1;h2 2 SI, U, PO, FSf g ð1Þ

where SI is an abbreviation for ‘‘same individual,’’
U for ‘‘unrelated individuals,’’ PO for ‘‘parent/
offspring,’’ and FS for ‘‘full sibs’’. Other relation-
ships between specimens are possible (e.g., half
sibs or cousins), but these relationships are inter-
mediate between U and PO or U and FS so we will
not consider them.

In order to calculate the likelihood of Rh1;h2 , we
need to calculate the probability of the observed
genotypes in sets Xh1 and Xh2 . Let the vector gij
represent the genotypes observed at the jth locus of
the ith specimen. Let kj represent a potential latent
genotype for the jth locus, and let Pgijkj represent
the probability of observing gij from kj. Pgijjkj will
be estimated from a model of genotyping error
that is either assumed from previous experience or
identified and fitted with the data of the study of
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interest (see below for an example of the latter
approach). Let the vector Gjh represent all of the
genotypes observed, at the jth locus, for all the
specimens in Xh. Let PGjhjkj represent the proba-
bility of observing these genotypes from the latent
genotype kj

PGhjjkj
¼
Y
samples
in Xh

i2Xh

Pgijjkj : ð2Þ

The likelihood of Rh1;h2 is calculated by summing
over all possible latent genotypes for both Xh1 and
Xh2 and multiplying across independent loci

L Rh1;h2

� �

¼
Yloci

j

X
latents
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kj1
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(3a)

wherePkj1kj2
jRh1;h2 is theprobability of observing the

latent genotypes kj1 and kj2 in two specimens whose
relationship is Rh1;h2 . We can estimate Pkj1kj2 jRh1h2

from the allele frequencies in the population if, we
assume random mating (e.g., Thompson 1991).
When Rh1;h2 = SI, equation (3a) reduces to

L Rh1;h2¼SI
� �

¼
Yloci

j

Xlatents

kj

PkjPGh1j
jkjPGh2j

jkj

� �
2
4

3
5:

ð3bÞ

Now we can compare the likelihoods of different
relationships between sets of specimens, and use
these likelihoods to calculate the evidence that two
sets of specimens came from the same individual.
Following Royall (1997, 2004), we define the evi-
dence that specimens in Xh1 and Xh2 came from the
same individual, EI h1; h2ð Þ, as the ratio of the
likelihood that they came from one individual with
the likelihood that they came from two individu-
als. In our framework, if the sets of specimens
came from two individuals, the individuals must be
either: unrelated (U), parent/offspring (PO), or
full-sibs (FS). The evidence of identity is then

EI h1;h2ð Þ�
L Rh1;h2¼SI
� �

MAX L Rh1;h2¼U
� �

;L Rh1;h2¼PO
� �

;L Rh1;h2¼FS
� �� �:

ð4Þ

where, the likelihoods are given by equation (3). If
EI h1; h2ð Þ is greater than 1, there is evidence that
the two sets of specimens came from the same
individual (See Mellen and Royall 1997, for a dis-
cussion of this definition in forensic identification).

Clustering algorithm

Specimens can be clustered by their individual
identity with the following algorithm. (1) Estimate
the allele frequencies of the population. (2) Esti-
mate the latent genotype frequencies in the popu-
lation. (3) Estimate the probability of observed
genotypes from latent genotypes Pgij|kj using an
appropriate model of genotyping error. (4) Place
each specimen into a singleton set. (5) Calculate
EI(h1,h2) for all pairs of sets. (6) Identify the pair
of sets for which EI(h1,h2) is highest and call the
evidence that these two sets of specimens came
from the same individual EImax. (7) If EImax is
greater than 1.0, combine these two sets and return
to step 5. If EImax is less than 1.0, stop. We call this
algorithm the Evidence-of-Identity-Clustering
Algorithm or EIC algorithm.

A model for genotyping error

The EIC algorithm requires a probabilistic model
of genotyping error. More specifically, it requires
the probability that a latent genotype kj is scored
as gij. Recent work on genotyping error in non-
invasive samples has emphasized estimating
genotyping error rates (e.g., Bonin et al. 2004;
Broquet and Petit 2004), but has not developed
statistical models of genotyping error. Therefore,
we used a reasonably complex heuristic model to
test the EIC algorithm. The model we use has
two types of genotyping error and assumes that
the rates of these errors vary across samples and
loci.

Two types of genotyping error are common
with non-invasive specimens: dropout and mis-
printing (e.g., Taberlet et al. 1996; Gagneux et al.
1997). Allele dropout is the failure of one or more
alleles in a specimen to amplify because of low
concentrations of DNA in the specimen or because
of differential amplification of one allele (e.g., the
genotype ab is scored as either aa or bb) (Wattier
et al. 1998). Misprinting (in the context of this
paper) is a PCR artifact that causes a microsatellite
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allele to be scored as one repeat motif shorter or
longer than the actual allele (e.g., the microsatellite
allele 100 is scored as 98 or 102, assuming a
dinucleotide repeat motif).

Miller et al. (2002) have presented a statistical
model for dropout errors in multilocus genotypes,
and have shown how to obtain maximum likeli-
hood estimates of the dropout rate. We extend
their model to include single step misprinting. We
define the dropout rate, d, as the probability that a
latent heterozygote is scored as a homozygote for
one of the two alleles in the heterozygote (Note
that this assumes that both alleles do not drop
out). We assume that error rates vary across
specimens and loci. Let dij represent the dropout
rate at the jth locus in the ith specimen. Following
Miller et al. (2002), we assume that the dropout
rates at different loci are related by dij ¼ dicj
where, di is a specimen specific number between
zero and one, and cj is a locus specific number
between zero and one. For simplicity, we assume
that both alleles in a heterozygote have the same
probability, dij/2, of dropping out.

Our model of misprinting is analogous to the
single step model of mutation for microsatellite

loci (See Jarne and Lagoda 1996 for review). We
assume that each allele has a probability of m of
being misread by one repeat motif, and that mis-
printing is equally likely to lead to a smaller allele
as to a larger allele. As with dropout rates above,
we assume that the misprint rate for each locus is
equal to mij ¼ micj (where, i indexes specimens and
j loci).

Last, we assume that a genotype at one locus
may have two errors: for example, a dropout and a
misprint or two misprints. With these assump-
tions, we can formulate the probability of
observing any genotype from a latent genotype
(Table 1). For example, the probability that the
latent genotype 100/106 is scored as a 100/104
(assuming a dinucleotide repeat motif) is equal to
the probability that dropout does not occur
(1 ) dij) times the probability that a misprint does
not occur for allele 100 (1 ) mij), times the prob-
ability that allele 106 is scored as 104 (

mij

2 ).

Maximum likelihood estimation of d, m and c

Next we present a maximum likelihood method for
estimating dij and mij. We start by calculating the

Table 1. Probabilities of observing all possible genotypes from the latent genotype ax ay as a function of the locus specific dropout rate
(d) and locus specific misprint rate (m)

Observation Latent genotype:ax ay

x=y y ) x=1 y)x=2 y ) x > 2
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likelihood of the genotypes observed at the jth
locus in the ith specimen. Let us assume, with no
loss of generality, that this locus has been geno-
typed tij times. Recall that the genotypes observed
at the jth locus in the ith specimen are represented
by the vector gij. If the tij genotypes observed at
this locus are statistically independent from each
other, the probability of observing gij from the
latent genotype kj, Pgij|kj, is multinomial with
probabilities given by Table 1. Following Miller
et al. (2002), we calculate the unconditional
probability of observing gij by summing over all
possible latent genotypes for the locus, and
weighting by the probability of each latent occur-
ring in the population:

P gijjdij;mij

� �
¼
Xlatents

kj

PkjPgijjkj ð5Þ

where, Pkj is the probability of observing latent
genotype kj in the population. In practice, Pkj is
unknown, but can be estimated from the allele
frequencies if we assume Hardy–Weinberg pro-
portions.

Equation (5) shows the marginal probability
for one locus in one specimen. The joint proba-
bility for all the genotypes observed from a speci-
men, and for all the specimens observed in a study,
is calculated by multiplying across loci and speci-
mens (See Mellen and Royall 1997). Let the vector
G represent all the data observed in a study. The
likelihood of the parameters given G is then

L d;m;cjGð Þ¼
Ysamples

i

Yloci

j

Xlatents

kj

PkjPgijjkj

0
@

1
A

2
4

3
5:

ð6Þ

where the vectors d, m, and c specify the dropout
and misprint rates for specimens and loci.

Maximum likelihood estimates of d,m, and c are
obtained by finding the values of d, m, and c that
maximize equation (6). Our experience suggests
estimating di and for every specimen, and cj for every
locus is difficult. This is because, there are a large
number of parameters to estimate, and because the
likelihood surface has many peaks. We have found
it useful to reduce the dimension of the problem by
binning specimens and loci into groups with similar
error rates, and assigning all the specimens in a bin a
single rate. Specimens and loci are each binned

separately. Appendix A describes a simple method
to do this, and Appendix B describes how to esti-
mate d, m, and c once the data is binned.

Testing the algorithm

We used computer simulation to examine how the
following variables affected the performance of the
EIC algorithm: genotyping error rate, number of
PCR replicates per specimen, number of loci geno-
typed, number of alleles at each locus, number of
specimens genotyped, and number of individuals
sampled (note: number of individuals refers to the
number of individuals sampled not the number of
individuals in the population). For each of these six
variables, we tested low, intermediate, and high
values (Table 2 lists the specific values used).

The simulation procedure is illustrated with an
example. Consider the case that we used as a
standard for comparison: 100 specimens from 50
individuals, 4 PCR replicates per specimen, 6 loci
genotyped, 6 alleles per locus, ‘‘average’’ data
quality. To begin, we simulated multilocus geno-
types for the 50 sampled individuals. While doing
this, we assumed the 50 individuals represented 10
families of five individuals (dam, sire, and three
offspring). We simulated the allele frequencies in
the population with broken stick random numbers
(Devroye 1986), and then drew alleles from this
distribution to create the genotypes of the dam and
sire of each family. Then we simulated Mendelian

Table 2. Parameters used to simulate dropout and misprint
rates. The dropout rate for each locus was equal to di cj where di
is a specimen specific parameter drawn from a beta distribution,
Beta(asample, bsample), and cj is a locus specific parameter drawn
from a beta distribution, Beta(aloci, bloci). See Figure 1 for
graphs of these distributions. The misprint rate, mi, for each
specimen was equal to one half of di

Specimen quality

Good Average Poor

asample 1.25 2.5 5

bsample 8.75 7.5 5

aloci 20 5 2

bloci 20 5 2

E(di) 0.125 0.25 0.5

E(mi) 0.063 0.12 0.25

E(di cj) 0.032 0.125 0.25

E(mi cj) 0.015 0.063 0.125
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segregation to create the genotypes of the three
offspring per family. Next, we simulated the origin
of each of the 100 specimens. While doing this we
assumed that each of the 50 individuals was sam-
pled at least once, and then randomly drew indi-
viduals for the remaining 50 specimens (this
allowed us to control the number of individuals
contributing to a set of specimens).

In the model of genotyping error described
above, the dropout rate for the jth locus in the ith
individual is equal to di cj. We obtained values for
di and cj by drawing numbers from beta distri-
butions for each specimen and for each locus
(Table 2; Figure 1). This product is approxi-
mately beta distributed (Fan 1991). We obtained
values for mij by assuming mi was equal to half of
di (we assumed that the misprint rate for a
specimen was one half of the dropout rates
because, dropout rates are usually higher than
misprint rates and because the error rates should
be correlated). Table 2 lists the parameters of the
beta distributions that we used and their expected
values. Figure 1 shows their distributions. For
example, data of ‘‘average’’ quality had an
expected dropout rate of 0.125 and an expected
misprint rate of 0.0625. Once genotyping error
rates for each specimen and each locus were ob-
tained, the model described above was used to
simulate genotyping errors.

Simulated data was analyzed with the EIC
algorithm described above. In order to estimate d,
m, and c, we sorted specimens into seven bins and
loci into 3 bins using the method described in
Appendix A. Maximum likelihood estimates were
obtained using the maximization technique de-
scribed in Appendix B.

One hundred simulations were performed for
each of the combinations of parameters listed in
Table 2 (100 simulations are less than ideal, but
the algorithm is computationally intensive). Three
statistics were calculated to evaluate the accuracy
of the algorithm: average estimate, average pro-
portional error, and percentage of genotypes sor-
ted correctly. The first, average estimate, is the
average of the estimated number of individuals
contributing to a collection of specimens. The
second, average proportional error, was calculated
as the average value of

Ngenotypes � N̂genotypes

�� ��
Ngenotypes

ð7Þ

observed in the simulated data, where Ngenotypes is
the number of unique multilocus genotypes among
the individuals sampled and N̂genotypes is the esti-
mate of Ngenotypes produced by the EIC algorithm.
The third statistic, percentage of genotypes sorted
correctly, is equal to the number of genotypes
sorted correctly divided by the total number of
multilocus genotypes among the individuals. A
genotype was considered to be sorted correctly if

di
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Figure 1. Beta distributions of dropout rates used in simula-
tions. Solid, dashed, and dotted lines show distributions for
data having high, average, and poor quality (respectively). The
dropout rate for each locus was equal to di cj where di is a
specimen specific parameter drawn from (a) and cj is a locus
specific parameter drawn from (b). Figure 1c shows the
approximate distribution of the product di cj.
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all specimens with the same multilocus genotype
(and no others) were placed in the same set.

Results

The EIC algorithm did an excellent job sorting
specimens: error rates were less than 2% for real-
istic amounts of data (Table 3). Its performance
was positively correlated with the quality of the
data, the number of replicates per specimen, the
number of loci, the number of alleles per locus,
and the number of specimens collected. Note that
EIC algorithm has the desirable property of doing
better when more data is collected (i.e., more loci,

more alleles per locus, or more specimens). This
consistency is not shared by genotype counting
methods that assume that genotypes are error free
– increasing the number of specimens (or loci) is
expected to increase the chance of making mis-
takes (e.g., Waits and Leberg 2000). Note also that
the EIC algorithm did extremely well with error
free data (the average error was less than 0.1%).
Using this method, therefore, with data that has
no errors does not appear to sacrifice the quality of
the clustering. Last, note that large populations
(200 individuals) were just as effectively sorted as
were small populations (50 individuals).

The least desirable property of the EIC algo-
rithm is that it requires that each specimen be

Table 3. Performance of the EIC algorithm with simulated data

Na Number

of

specimens

Number

of

PCRsb

Number

of

loci

Number

of

alleles

Data qualityc Average

estimate

Average

|error|

Percent

genotypes

correct

Experiment i: Data quality varied

50 100 4 6 6 Poor 48.6 2.4% 95.1%

‘‘ ‘‘ ‘‘ ‘‘ ‘‘ Avg. 49.1 1.4% 97.1%

‘‘ ‘‘ ‘‘ ‘‘ ‘‘ Good 49.5 0.6% 98.8%

‘‘ ‘‘ ‘‘ ‘‘ ‘‘ Perfect 49.8 <0.1% >99.9%

Experiment ii: Number of PCRs varied

50 100 2 6 6 Avg. 47.6 4.4% 90.0%

‘‘ ‘‘ 3 ‘‘ ‘‘ ‘‘ 48.6 2.5% 95.0%

‘‘ ‘‘ 4 ‘‘ ‘‘ ‘‘ 49.1 1.4% 97.1%

‘‘ ‘‘ 8 ‘‘ ‘‘ ‘‘ 49.7 0.2% 99.6%

Experiment iii: Number of loci varied

50 100 6 3 6 Avg. 44.9 2.7% 93.4%

‘‘ ‘‘ ‘‘ 6 ‘‘ ‘‘ 49.1 1.4% 97.1%

‘‘ ‘‘ ‘‘ 12 ‘‘ ‘‘ >49.9 <0.1% 99.9%

Experiment iv: Number of alleles varied

50 100 6 6 3 Avg. 45.4 5.0% 88.4%

‘‘ ‘‘ ‘‘ ‘‘ 6 ‘‘ 49.1 1.4% 97.1%

‘‘ ‘‘ ‘‘ ‘‘ 9 ‘‘ 49.7 0.5% 98.9%

Experiment v: Number of specimens varied

50 50 6 4 6 Avg. 48.4 2.8% 94.4%

‘‘ 100 ‘‘ ‘‘ ‘‘ ‘‘ 49.1 1.4% 97.1%

‘‘ 200 ‘‘ ‘‘ ‘‘ ‘‘ 49.7 0.2% 99.2%

‘‘ 400 ‘‘ ‘‘ ‘‘ ‘‘ 49.8 <0.1% 99.3%

Experiment vi: Number of individuals varied

10 20 6 4 6 Avg. 9.9 0.4% 99.2%

50 100 ‘‘ ‘‘ ‘‘ ‘‘ 49.1 1.4% 97.1%

100 200 ‘‘ ‘‘ ‘‘ ‘‘ 98.1 1.5% 97.0%

200 400 ‘‘ ‘‘ ‘‘ ‘‘ 196.5 1.4% 97.2%

aThe number of individuals represented in the set of specimens.
bThe number of times each specimen was genotyped.
cSee Table 2 and Figure 1 for simulation parameters and expected values. ‘‘Perfect’’ indicates that simulated data had no genotyping
errors.
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genotyped at least three- and preferably four-
times. However, repeatedly genotyping all speci-
mens to detecting genotyping errors is currently
standard practice for non-invasive specimens (See
McKelvey and Schwartz 2004 for a brief review),
so this necessity is not especially burdensome (but
see Paetkau 2003, 2004). If specimen effects were
assumed negligible, genotypings per specimen
might be reducible. However, because specimen
effects are known to be important, we have not
pursued development in this direction.

The EIC algorithm requires estimates of d, m,
and c to cluster specimens. Therefore, we also
informally compared estimates of d, m, and c with
the parametric values used in the simulations.
Figure 2 shows estimates of the product di cj for
one set of simulated data. The estimates are
slightly biased, but are close enough to the para-
metric values that the EIC algorithm clustered all
specimens correctly for this simulated data set.

Discussion

We have used a hypothetical model of genotyping
error to test the EIC algorithm. This is the main
drawback of our study, and, as such, deserves
comment. There are three points to consider. First,
there are no statistical models of genotyping errors
available in the literature that we could use to test
our algorithm. Second, the EIC algorithm will
work with any model of genotyping error, so

should be useful once models have been identified.
Third, the heuristic model that we used is the most
realistic model in the literature to date. For
example, Wang (2004) has developed an error
tolerant algorithm for partitioning individuals into
sibships, but assumed that error rates were con-
stant across individuals and loci – and were known
a priori.

Most efforts to estimate genotyping error rates
have assumed that the latent genotype can be in-
ferred correctly if a specimen is genotyped enough
times (e.g., Taberlet et al. 1996; Paetkau 2003).
For example, Taberlet et al. (1996) used worst-
case scenarios to argue that if a specimen is
genotyped three times and {aa, ab, bb} is observed,
the correct genotype is almost certainly ab. Once
the correct genotype is inferred, the number of
dropouts and misprints can be counted to calcu-
late error rates (See Broquet and Petit 2004 for a
review of 19 studies using methods based on such
reasoning). Such estimation is straightforward, but
has two drawbacks: it relies on professional judg-
ment to ascertain the correct genotype and it de-
pends heavily on the assumption that the
consensus genotype is correct.

Maximum likelihood is logical alternative to
professional judgment. The statistical properties of
maximum likelihood estimation are extremely well
known, and its application can be consistent from
study to study. A question arises: which method
(professional judgment or maximum likelihood) is
best? This answer: we do not know. Maximum
likelihood estimation is buttressed by a volumi-
nous statistical literature. Professional judgment
takes advantage of subtle visual clues present in
the genotyping process that current maximum
likelihood models do not use, so might work better
than judgment. However, comparing two geno-
types and deciding whether they come from the
same individual often requires weighing alternative
probabilities of errors, and making such decisions
is notoriously difficult (e.g. Zeckhauser and Viscusi
1990). Of course, professional judgment and like-
lihood based approaches are not mutually exclu-
sive, and a combination of methods is likely to
work best (Lele 2004).

Once genetic errors are recognized, the next
challenge is what to do about them. The conven-
tional approach has been to reduce the frequency
of unrecognized errors to a level low enough that
the data can be considered error free (e.g., Paetkau
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Figure 2. Parametric and estimated dropout rates for each
locus in a data set containing 100 specimens, four PCRs per
specimen, six loci per specimen, and six alleles per locus. The
quality of the data was ‘‘Average’’ (defined in Table 2). Speci-
mens were sorted into seven bins, and loci into three bins,
before estimating di and cj.
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2003, 2004). The main drawback to this approach
is that even modest unrecognized error rates can
have devastating effects upon a DNA census
(Creel et al. 2003). And to make matters worse,
demonstrating that a data set is free from errors is
difficult (McKelvey and Schwartz 2004). Paetkau’s
1 MM checks (2003; 2004) and the tests of
McKelvey and Schwartz (2004) will detect some –
if not most – errors, but their effectiveness requires
further validation.

There are several reasons to believe an error
tolerant matching algorithm might produce better
results for less cost than conventional methods.
First, error tolerant approaches are, by definition,
less sensitive to genotyping errors. Second, they
may be able to use low quality specimens that
would be removed from analysis using stringent
genotyping protocols (e.g., Paetkau 2003). Third,
an error tolerant approach might save labor costs
by eliminating the need to establish consensus
genotypes for all samples. Fourth, error tolerant
approaches have proven useful in the paternity
testing literature (e.g., Marshall et al. 1998; Con-
stable et al. 2001). Fifth, and last, error tolerant
algorithms facilitate using large numbers of loci to
estimate relatedness accurately.

Conclusions

Our simulations show that error-ridden genotypes
can have enough information to accurately sort
specimens by individual identity. Our method,
therefore, has promise. However, our work here is
mostly a proof-of-concept. The dropout/single-
step-misprinting model of genotyping error that
we used in the simulations seems reasonable and
may be useful in practice – nevertheless, its use
here has been to demonstrate the utility of the EIC
approach. The specific model still requires empir-
ical validation. We recommend that this model
and a suite of other genotyping error models be
tested (such as the five parameter model of Sobel
et al. 2002), and the best model used in the EIC
algorithm.
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Appendix A. Binning specimens and loci according

to number of mismatches observed between

replicated genotypes

Specimens potentially could be binned according
to many different criteria (e.g., DNA concentra-
tion, percentage of missing genotypes, hair vs.
faeces). Here we show how genotype inconsistency
– measured by allelic mismatches during repeated
genotyping – can be used to sort specimens.

Let the function MM(•) indicate the number of
allelic mismatches between two genotypes:
MM(aa,aa) = 0, MM(aa,ab) = 1, MM(aa,bb) =
2, MM(aa,bc) = 2, MM(ab,ab) = 0, MM
(ab,ac) = 1, MM(ab,cd) = 2. Let TMM represent
the total number of allelic mismatches between one
genotype and a set of genotypes.

An example shows how TMM is useful to bin
specimens. Consider a locus in a specimen that has
been genotyped four times. The genotypes ob-
served are [aa, aa, ab, ab]. Let us assume there are
three alleles at this locus (a, b, and c). Because,
there are three alleles at this locus, there are six
possible latent genotypes [aa, ab, ac, bb, bc, cc].
Table A1 shows TMM for the observed genotypes
and each possible latent genotype. Let Min(TMM)
represent the minimum value of TMM. For exam-
ple, in Table A1, Min(TMM)=2.

Values of Min(TMM) can be summed across
loci to find the minimum number of allelic mis-
matches for each specimen in a study. Specimens
can then be ranked and divided into bins. The
same can be done for loci.

Table A1. Potential latent genotypes and the number of allelic
mismatches between them and the set of four observed geno-
types [aa, aa, ab, ab]

Potential latent

genotypes

TMM between latent

and [aa, aa, ab, ab]

aa 2

ab 2

ac 4

bb 6

bc 6

cc 8
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Appendix B. Estimating d, m, and c

The EIC algorithm requires estimates of di cj and
mi cj for every locus in each specimen. One
obstacle to the estimation of d, m, and c is that
these products confound specimen specific and
locus specific error rates. For example,
(0.5)(0.3)=(0.3)(0.5). Basically, there is only suffi-
cient information in the system to identify the
relative error rates of specimens, the relative error
rates of loci, and an overall error rate. For clarity
of communication, we have chosen to combine
overall rate and specimen relative rate into speci-
men rate and leave the loci effect as a relative rate,
but standardized so that the maximum locus effect
is 1. This gives us a specimen effect interpretable as
the specimen’s expected rate at the worst locus.

Algorithmically, we define c0 as a vector of lo-
cus specific error rates relative to locus #1.

c0j ¼
cj
c1

ðA1Þ

and find the values of c0 that maximize equation
(3a). Before being passed to the likelihood func-
tion, each c0 vector is standardized

c00j ¼
c0j

MAX c0ð Þ ðA2Þ

before calculating the likelihood.
Considering the d, m, and c vectors, there are a

large number of parameters to be estimated.
Maximizing all parameters simultaneously would
be cumbersome. We employ the Gauss-Sidell
(Kincaid and Cheney 1991) algorithm to break the
problem into a large number of maximizations of
low dimension. Maximum likelihood values of d,
m, and c are found as follows. First, c0 is set to 1.0
for each locus. Then values of di and mi are found
that maximize the likelihood of each specimen
given c0. We have used the downhill simplex
algorithm to do this (Press et al. 1992). Once val-
ues for d and m have been obtained, then the
downhill simplex routine is used to find the max-
imum likelihood values of c0 given d and m. During
this step, the downhill simplex routine explores
values of c0, but the likelihood is calculated on c00.
When optimum values of c0 have been found, d
and m are again optimized given c0. This continues
until estimates converge. Because the object func-
tion increases monotonically with each step, and
the maximum likelihood is a fixed point for the

algorithm, the Gauss-Sidell algorithm will con-
verge to local maxima of the likelihood.
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