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The DNA extracted from forensic evidence has revolutionized law
enforcement. The DNA extracted from hair, feces, and other
noninvasive samples is having the same effect on ecology and
conservation biology. The simplest, and most frequent, use of
noninvasive DNA is individual identification. Multilocus geno-
types, sometimes referred to as DNA fingerprints, can be used to
identify individuals and thus count or track animals (e.g., Woods
et al. 1999).

Two genetic problems can frustrate individual identification.
First, if not enough loci are examined, multilocus genotypes in a
population may not be unique (e.g., Taberlet and Luikart 1999). If
this happens, individuals with the same genotype will be
indistinguishable. Second, genotyping errors can cause samples
that came from the same individual to appear to have different
genotypes, and therefore appear to have come from different
individuals. Genotyping error is a substantial concern in wildlife
studies using noninvasive samples because hair and feces contain
small amounts of DNA, and this DNA degrades in the field (e.g.,
Taberlet et al. 1999). The most common problem is that
heterozygotes are scored as homozygotes, but other errors are
possible (Taberlet et al. 1996). If they are not detected, such errors
could dramatically inflate estimates of census size (Waits and
Leberg 2000).

The problem of multiple individuals having the same genotype
at all loci examined can be solved by increasing the number of loci
in a study, and thereby decreasing the probability that 2
individuals have the same multilocus genotype. The probability
that 2 individuals have the same multilocus genotype, often called
the probability of identity, PID, can be estimated from allele
frequencies in a population using established formulae (e.g., Waits
et al. 2001). This probability is the standard statistic in forensic
science to evaluate how well a set of molecular markers
discriminates between individuals (e.g., Vazquez et al. 2004).
The problem of genotyping error causing samples from the same
individual to look different can also (at least in part) be solved by
ensuring that a sufficient number of loci are examined. If
genotyping error is reasonably small, most errors will cause
samples from the same individual to differ (mismatch) at only one
locus. If enough loci are scored, distinct individuals will have

multilocus genotypes that mismatch at more than one locus.
Therefore, if both of these criteria are met, most pairs of samples
that mismatch by one locus will differ because of genotyping error,
which will make identifying errors much easier (e.g., Paetkau
2003, 2004). For this reason, many researchers will want to design
DNA censuses so almost all (if not all) individuals sampled will
have genotypes that differ at 2 or more loci. There is, however, no
formula available to calculate the probability that 2 individuals
have genotypes that differ at 2 or more loci. We provide formulae
for this purpose, and introduce a computer program to implement
them.

Methods

We begin with a few definitions. We define a genotyping error

mismatch as a mismatch caused by genotyping error between 2
samples from the same individual, and we define a genotype

difference mismatch as a mismatch caused by underlying genotype
differences between 2 individuals. Let MMr represent an indicator
variable that is equal to 1 if 2 individuals have a different genotype
at the rth locus and is equal to 0 if the genotypes are the same

MMr ¼ 0; if genotypes identical at the rth locus
1; if genotypes different at the rth locus:

�
ð1Þ

Let k-MM represent the number of mismatches (out of L loci)
between 2 individuals

k�MM ¼
XL
r¼1

MMr: ð2Þ

Our goal is to find the probability distribution for k-MM for
individuals randomly sampled from a population. Relatives will
have genotypes that are more similar than unrelated individuals, so
we created distributions for different degrees of relatedness. All
calculations are for unlinked loci with codominant alleles.

We represented genealogical relationships between individuals
by the delta coefficients of Jacquard (1974, Table 6.1; see Lynch
and Walsh 1998 for a readable introduction). For noninbred
individuals, D7, D8, and D9 represent the probabilities that single
locus genotypes for a pair of individuals have 2, 1, or 0
(respectively) alleles identical by descent (D7þ D8þ D9¼ 1; note
D1 through D6 have historically been used to represent patterns of
inbreeding and we are assuming individuals are not inbred). These1 E-mail: skalinowski@montana.edu

1148 The Journal of Wildlife Management � 70(4)



probabilities specify the genetic relationship between 2 individuals
more precisely than the more commonly used relatedness
coefficient. We illustrate how this works with a few examples.
Let the vector D represent these 3 delta coefficients, i.e., D¼fD7,
D8, D9g. If 2 individuals are unrelated, then they will not have
alleles identical by descent and D¼ f0, 0, 1g. If 2 individuals are
parent–offspring, they must have exactly one allele identical by
descent and D¼f0, 1, 0g, and if 2 individuals are full siblings, D¼
f¼, ½, ¼g. Other relationships are possible (e.g., half-siblings,
first cousins, and grandparent–grandchild) and can be calculated
from pedigrees (see Lynch and Walsh 1998 for a review).

Given D, the probability that 2 individuals have the same
genotype at the rth codominant locus, PID,r, is

PID;r ¼ PðMMr ¼ 0jD; f Þ

¼
Xm

i¼1

Xm

j¼i

D9f
4
i þ D8f

3
i þ D7f

2
i if i ¼ j

D94f
2
i f

2
j þ D8fi fjð fi þ fjÞ þ D72fi fj if i 6¼ j

�

ð3Þ

where the vector f represents the allele frequencies at the rth locus, fi

and fj represent the frequencies of the i th and j th alleles, m is the
total number of alleles at the locus, and loci are unlinked. Note that
we dropped the locus subscript, r, from the allele frequencies in
Equation 3. The vector D is the same for all loci, so it doesn’t need to
be subscripted. Equation 3 is deconstructed as follows. The double
summation lists all possible genotypes, ij, at the rth locus, and the
terms in the brackets calculate the probability of 2 individuals
having that genotype (given D; see Thompson 1991 for a discussion
of how to calculate these probabilities). Equation 3 may appear
different from previous formulae for calculating probability of
identity but only because it accommodates any relationship between
2 noninbred individuals. It is equivalent, for example, to formulae in
Waits et al. (2001) and Woods et al. (1999).

The probability that 2 individuals have the same genotype at L loci
(i.e., are 0-MM) given the relationship (D) between the individuals
and the vector of allele frequencies in the population (f ), is

Pð0�MM jD; fÞ ¼
YL

r¼1
PID;r ð4Þ

The probability that 2 individuals have the same genotype at all loci
except for one (i.e., are 1-MMs) given their relationship (D) and the
allele frequencies in the population (f ), is

Pð1�MM jD; fÞ ¼
XL

r¼1
ð1� PID;rÞ

YL

r 0 ¼ 1
r 0 6¼ r

PID;r 0

2
664

3
775: ð5Þ

Equation 5 is deconstructed as follows. The term inside the
summation is the probability that 2 individuals have the same
genotype for all of the L loci except the rth locus. Summation is over
L loci because 2 individuals could differ at each of these loci. In
general, the probability that 2 individuals differ at k loci is

Pðk�MM jD; fÞ ¼
XL

k

� �

c

½
Yk

r2c

ð1� PID;rÞ�ð
YL�k

r 02c

PID;r 0Þ
( )

ð6Þ

where c is a set of k loci and summation is taken over all sets of k loci
that can be drawn from L loci.

We illustrated these formulae with an example. Assume that a
DNA census was being planned for the desert bighorn sheep
populations of southern California. Ten microsatellite loci were
described for these populations (see Gutiérrez-Espeleta et al. 2000
for a description of the loci and their allele frequencies), with an
average heterozygosity of approximately 0.50. For simplicity, we
assumed that the allele frequencies in the sample from the Eagle
Mountains (Gutiérrez-Espeleta et al. 2000) were representative of
the region.

Results

The mismatch distribution for the data of Gutiérrez-Espeleta et al.
(2000; Fig. 1) shows that if all 10 loci were genotyped in a DNA
census, unrelated individuals are likely to have multilocus genotypes
that differ at several loci. For example, the probability of identity for
unrelated individuals is less than 10�7, and there is a high probability
(P ’ 0.9999) that individuals will differ by 2 or more loci. Siblings,
of course, are more genetically similar. The probability of identity
for siblings is larger (approx. 10�3), and the probability of observing
2 or more genotypic mismatches is smaller (P ’ 0.99).

Genotyping 10 microsatellite loci is expensive enough to prompt
a researcher to ask if fewer loci could provide sufficient
discriminatory power. Therefore, we calculated the probability of
individuals having 2 or more mismatches for different numbers of
loci, always selecting loci having the highest expected hetero-
zygosity (Table 1). This showed that if the 5 most heterozygous
loci were used, 99.85% of pairs of unrelated individuals would
have 2 or more genotypic mismatches. This percentage drops to
approximately 88% for siblings—which again shows how much
more genetically similar siblings are than nonrelatives.

Discussion

Deciding how low mismatch probabilities should be for a DNA
census is difficult. It depends on how accurate and cost-effective a

Figure 1. Mismatch probability distributions for desert bighorn sheep in the
Eagle Mountains of Southern California, USA. Results are shown for the 10
microsatellite data of Gutiérrez-Espeleta et al. (2000). Solid lines indicate
distributions expected for unrelated individuals; dashed lines for full siblings.
Note the log scale on the y-axis.

Kalinowski et al. � Genotype Differences in DNA Censuses 1149



DNA census must be. If it is important that no 2 individuals are
mistakenly classified as the same individual because they have the
same genotype, the probability of 0-MM comparisons must be
kept low by increasing the number of loci considered. However,
increasing the number of loci analyzed will cost more and may
result in 2 samples from the same individual being interpreted as
distinct individuals due to genotyping errors. These problems are
well recognized, and there is no consensus for how to best solve
them (see McKelvey and Schwartz 2004a,b, and Paetkau 2003,
2004 for divergent views). Paetkau (2003, 2004), for example,
recommends genotyping samples one time at 6 loci and using
stringent quality control protocols to avoid genotyping error.
Samples that differ by 1 or 2 loci are then re-genotyped. On the
other hand, McKelvey and Schwartz (2004a,b) recommend using

as many as 12–15 loci so that genotyping error mismatch

distributions are unlikely to overlap with genotyping difference

distributions (see McKelvey and Schwartz 2004a; Fig. 5).

No matter which approach is used, however, estimating the

mismatch distributions in a population will be useful for

geneticists to design a study with genotypic discrimination they

desire. A computer program, MM-DIST, is available to compute

mismatch distributions for empirical data sets. Program MM-

DIST runs on the Windows operating system and reads

GENEPOP input files (Raymond and Rousset 1995). Program

MM-DIST and documentation are available from www.montana.

edu/kalinowski.

Management Implications

DNA extracted from hair and feces has become an important

marker for counting individuals. The principle management

implication of our research is that it will assist geneticists in

selecting a sufficient number of loci for DNA census so that all

individuals sampled are likely to differ at more than one locus.

This will help prevent genotyping errors from causing 2 samples

from the same individual from being interpreted as 2 individuals.

This should improve estimates of population size derived from

genetic analysis of noninvasive samples.
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Table 1. Probability of 2 randomly chosen individuals having 2 or more
genotypic mismatches (data from Gutiérrez-Espeleta et al. 2000).

No. of locia Unrelated Siblings

2 0.3509 0.1293
3 0.7511 0.3675
4 0.9531 0.6390
5 0.9985 0.8838
6 0.9996 0.9352
7 0.9999 0.9632
8 .0.9999 0.9791
9 .0.9999 0.9881

10 .0.9999 0.9910

a We selected loci to maximize expected heterozygosity (e.g., ‘‘2’’
indicates that we used the 2 most heterozygous loci).
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