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Relatedness is often estimated from microsatellite genotypes
that include null alleles. When null alleles are present,
observed genotypes represent one of several possible true
genotypes. If null alleles are detected, but analyses do not
adjust for their presence (ie, observed genotypes are treated
as true genotypes), then estimates of relatedness and
relationship can be incorrect. The number of loci available in
many wildlife studies is limited, and loci with null alleles are
commonly a large proportion of data that cannot be discarded
without substantial loss of power. To resolve this problem,
we present a new approach for estimating relatedness and
relationships from data sets that include null alleles. Once it is
recognized that the probability of the observed genotypes is

dependent on the probabilities of a limited number of possible
true genotypes, the required adjustments are straightforward.
The concept can be applied to any existing estimators of
relatedness and relationships. We review established max-
imum likelihood estimators and apply the correction in that
setting. In an application of the corrected method to data
from striped hyenas, we demonstrate that correcting for the
presence of null alleles affect results substantially. Finally,
we use simulated data to confirm that this method works better
than two common approaches, namely ignoring the presence
of null alleles or discarding affected loci.
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Introduction

Microsatellite genotypes are useful for estimating the
relationship and relatedness between individuals of
unknown ancestry. Current relationship/relatedness
estimators either assume that genotypes are error-free
(Thompson, 1991) or that genotyping error is rare
(Boehnke and Cox, 1997; Marshall et al, 1998). Genotype
data, however, often do contain errors, resulting in
discrepancies between the observed individual geno-
types and the true underlying genotypes (Dakin and
Avise, 2004).

A significant source of such genotyping errors that is
not accounted for in current methods for estimating
relationship/relatedness is the occurrence of null
alleles – alleles that fail to amplify during PCR, often
due to mutation within a primer site. Null alleles cause
two types of genotyping problems. First, if an individual
is homozygous for a null allele (nn, where n is a
null allele), genotyping will fail. Second, if an individual
is a heterozygote with one null allele (in, where i is an
ordinary non-null allele), the observed genotype will be
indistinguishable from a true homozygote (ii).

Null alleles complicate the interpretation of all data
on coancestry, but the problem is most apparent in
parentage analysis (Blouin, 2003). Even when they
occur at very low frequencies, null alleles may eliminate
potential parents as possible candidates. Parents and
offspring must share one identical allele at every locus. If

the observed genotypes at one locus show no identical
alleles between a potential parent and offspring, the
probability of the parent–offspring relationship is zero
(Blouin, 2003), regardless of the number of loci consid-
ered. For example, a candidate parent with the observed
genotype ii is excluded as the parent of an offspring with
the observed genotype jj. If there is a null allele at this
locus, however, the parent and offspring may share
a null allele: true genotypes could be in for the parent,
and jn for the offspring (Paetkau and Strobeck, 1995).
These genotypes are consistent with a parent–offspring
relationship, so measuring the frequency of null alleles
and taking them into account is clearly necessary
to avoid false exclusion of a parent in cases such as
this. This problem also affects estimates of relatedness
where including genotypes with null alleles may cause
underestimation of the coefficient of relatedness between
individuals.

The occurrence of null alleles is widely acknowledged
and many papers report the results of diagnostic tests
for the presence of null alleles (Dakin and Avise, 2004),
but options for dealing with null alleles are limited.
When null alleles are detected, researchers may eliminate
them by redesigning the primer for the affected locus or
circumvent the problem by developing new primers for
alternate loci that do not contain null alleles. However,
these solutions involve additional time and expense, and
are not readily available to many investigators who seek
to apply microsatellite data to questions in behavioral
ecology and conservation biology. Dakin and Avise
(2004) summarized 233 studies that detected null alleles
in microsatellite data, often at frequencies up to 0.25 (and
occasionally as high as 0.70–0.75). Through simulations,
they demonstrated that dropping loci with null alleles isReceived 18 June 2005; accepted 4 June 2006
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better than including them in analyses and recom-
mended that strategy. However, they did not consider
the overall number of loci available. A large number of
loci may be required to differentiate between relation-
ship categories or to accurately estimate relatedness
(Queller et al, 1993; Blouin et al, 1996; Sancristobal and
Chevalet, 1997; Milligan, 2003), but wildlife biologists are
often restricted in the number of loci by the availability of
pre-existing primers (Blouin, 2003). Dropping data from
problem loci may then prove an impractical option as
any omission of loci would substantially reduce infer-
ential and discriminatory power (Marshall et al, 1998).
Consequently, many studies have simply included loci
with null alleles in their analyses (Dakin and Avise, 2004)
without explicitly considering the consequences.

A better option for correcting for errors caused by
null alleles would be to accommodate them in data
analysis (Sobel et al, 2002). In this paper, we account
for null alleles by modifying well-established maximum
likelihood approaches for estimating relationship and
relatedness (r) (Thompson, 1991; Marshall et al, 1998;
Blouin, 2003). We account for null alleles by distinguish-
ing between an observed genotype and the set of true
genotypes that may have produced that observation. We
determine the probability of observing the genotype
pair ii/ii, for example, as the sum of the probabilities
that the true genotypes are ii/ii, in/ii, ii/in, or in/in – the
four true genotypes that would be observed as ii/ii.
In addition to describing these calculations in detail,
we use microsatellite genotypes from striped hyenas
(Hyaena hyaena) to show that ignoring null alleles can
have a substantial impact on estimation of relatedness
and inferences concerning population biology. Finally,
we use a set of simulations to demonstrate that this tech-
nique provides more accurate results than the methods
most commonly used in recent papers, while utilizing all
available data.

Relationships

Before showing how maximum likelihood estimators of
relationship and relatedness are derived for loci with
null alleles, we review the maximum likelihood formulae
for estimating genealogical relationships and relatedness
from genotypic data not affected by null alleles. We begin
with estimating relationship.

In practice, estimating relationship usually means
identifying the most likely of a small set of potential
relationships that might exist between a pair of indivi-
duals, for example, parent–offspring, full-siblings,
half-siblings, or unrelated. If R represents a potential
relationship between individuals and G1/G2 represents
the pair of genotypes observed at a homologous locus in
two individuals, by definition, the likelihood of R, L(R),
is the probability of observing G1/G2 in two individuals
having the relationship R. These probabilities have
been described previously (Thompson, 1991), but they
are subtly complex and are essential to understand our
estimators – so we present their derivation in detail.

The probability of observing G1/G2 in two individuals
having relationship R is calculated by conditioning on
the number of alleles in the pair that are identical by
descent (IBD) (Cotterman, 1941; Thompson, 1975, 1991).
Every pair of individuals will have 0, 1, or 2 alleles IBD at
each locus. The probability of observing genotypes G1/

G2 in a pair of individuals is equal to the probability of
observing G1/G2 if there are zero alleles identical by
descent, plus the probability of observing G1/G2 if one
allele is IBD, plus the probability of observing G1/G2 if
two alleles are identical by descent. This approach
works because the probability that a pair of individuals
has either 0, 1, or 2 alleles IBD is determined by the
genealogical relationship between the individuals. Let m
represent the number of alleles IBD between individuals
and let km represent the probability that the individuals
with genealogical relationship R have m alleles IBD
(Table 1 lists km values for relationships commonly
of interest; Cotterman, 1941; Thompson, 1975). If, for
example, two individuals are unrelated, all loci within
the pair of individuals will have no alleles IBD (k0¼ 1,
k1¼ 0, k2¼ 0). If two individuals are parent–offspring, all
loci will share one allele IBD (k0¼ 0, k1¼1, k2¼ 0). And if
two individuals are full-siblings, loci may share 0, 1, or 2
alleles IBD (k0¼ 0.25, k1¼ 0.5, k2¼ 0.25). Where k0, k1, and
k2 are the k-coefficients for the relationship R, the
probability of observing G1/G2, given R, is calculated by:

PðG1=G2jk0; k1; k2Þ ¼ PðG1=G2jm ¼ 0Þk0

þ PðG1=G2jm ¼ 1Þk1

þ PðG1=G2jm ¼ 2Þk2

ð1Þ

All the terms on the right hand side of Equation (1)
are straightforward to calculate (eg Thompson, 1991).
Three of these depend on the genealogical relation-
ship between the individuals – k0, k1, and k2. The
remaining probabilities in Equation (1) [P(G1/
G2|m¼ 0), P(G1/G2|m¼ 1), P(G1/G2|m¼ 2)] depend on
the genotypes of the individuals and are calculated from
the allele frequencies in the population. Expressions for
P(G1/G2|m) are provided in Table 2 for all possible
genotype pairs, assuming no inbreeding and no null
alleles (Thompson, 1975). These probabilities have been
presented in two basic forms: one in which the
individuals are ordered and one in which they are not
ordered (ie, G1/G2 is not distinct from G2/G1). Either
approach is valid, but the approach used affects the
probabilities and it is necessary to be consistent. Here, we
use the ordered approach for individuals, although the
positions of alleles within individuals remain unordered.

The derivations of the probabilities in Table 2 differ
according to the number of alleles IBD. If m¼ 0, the two
genotypes being considered are independent, so that the
probability of obtaining the pair of genotypes is simply
the product of obtaining each of the two individual
genotypes:

PðG1=G2jm ¼ 0Þ ¼ PðG1ÞPðG2Þ ð2aÞ

Table 1 A list of k-coefficients for common relationship categories

Relationship k0 k1 k2

Parent–offspring 0 1 0
Full-siblings 0.25 0.50 0.25
Half-siblings/grandchild–grandparent/
niece/nephew–uncle/aunt

0.50 0.50 0

First cousin 0.75 0.25 0
Unrelated 1 0 0

km represents the probability that two individuals share m alleles
IBD under a given relationship.
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If m¼ 2, the two genotypes are identical and therefore
completely dependent, so that the probability of obtain-
ing the genotypes is the probability of obtaining either
genotype once:

PðG1=G2jm ¼ 2Þ ¼ PðG1Þ ¼ PðG2Þ ð2bÞ
Determining the probability of obtaining the observed

genotypes under m¼ 1 is more difficult and is best
explained by example. The most complex situation
occurs when m¼ 1 and both individuals are homozygous
for the same allele (G1 and G2¼ ii). Let pi indicate
the frequency of allele i in the population. For m¼ 1,
the probability of the individuals having the pair of
genotypes ii/ii is given by:

PðG1 ¼ ii=G2 ¼ iijm ¼ 1Þ
¼ PðG1 ¼ iiÞ½PðG2 ¼ iijG1 ¼ ii=m ¼ 1Þ�
¼ p2

i ½pi
1
2ð1Þ þ 1

2ð1Þpi� ¼ p3
i

ð2cÞ

In Equation (2c), the probability of the first ii genotype is
calculated directly from allele frequencies, but the
probability of obtaining a second ii genotype must then
take into account that one allele is IBD to an allele in the
first individual. Thus, the probability for the second
individual’s genotype is the product of the probability
of the second individual having one i allele (pi) and, for
the second allele in the second individual, the probability
(¼ 1) that the IBD allele is an i, and the probability (¼ 1

2)
that IBD allele is in the second position. This is the
first term within square brackets. The second term
within brackets accounts for the alternative possibility
that the IBD allele is in the first position. Probabilities
are calculated for the IBD allele being in each of the
two possible positions in the second individual and then
summed, giving pi

2pi¼ pi
3 (Table 2).

Using the same approach, the probability of two
individuals having the pair of genotypes ij/ik when
m¼ 1 would then consider the probability of getting an i
and j in the first individual in either configuration
(pipjþ pjpi¼ 2pipj). Probabilities for the second individual
are dependant on the probability of having a k allele (¼ pk)
and there being one allele IBD with the first individual:
the probability that the IBD allele is an i is 1

2, given that an i

or j could be IBD, while the probability of that IBD allele
being in either the first or second position is 1

2:

PðG1 ¼ ij=G2 ¼ ikjm ¼ 1Þ
¼ PðG1 ¼ ijÞ½PðG2 ¼ ikjG1 ¼ ij=m ¼ 1Þ�
¼ 2pipj½121

2 � pk� þ 2pipj½pk � 1
2

1
2�

¼ pipjpk

ð2dÞ

Similar logic can be used to determine the remaining
seven probabilities for m¼ 1 in Table 2, of which four
have zero probability because a pair of genotypes
with no alleles in common cannot have one allele IBD,
given that we are not (yet) allowing for null alleles in
‘observed’ genotypes.

Once the probabilities of Table 2 are defined, relation-
ships are evaluated using Equation (1), so that the likeli-
hood of the genotypic data is calculated for each
candidate relationship. The values for P(G1/G2|k0, k1,
k2) are multiplied across loci to yield the likelihood of the
relationship, L(R). By definition, the maximum likelihood
relationship between two individuals is the relationship
for which the observed data is most probable.

Relatedness (r )

Relatedness (r) may be interpreted as the proportion
of genes IBD between two individuals or groups of
individuals (Cotterman, 1941). For outbred individuals,
r is given by (Thompson, 1975):

r ¼ k1

2
þ k2 ð3Þ

The maximum likelihood estimate of r, ML(r), is equal to
the maximum likelihood estimate of k1/2 plus the
maximum likelihood estimate of k2. Maximum likelihood
estimates of k1 and k2 can be obtained from genotypic
data by varying k0, k1, and k2 through all possible values
(subject to the constraint that they sum to one) to find
the set of k-coefficients that maximize the product of
P(G1/G2|k0, k1, k2) (Equation (1)) across all loci. Note
the difference between estimates of relationship and
estimates of relatedness. When estimating relationship,
values for k0, k1, and k2 are determined by the genea-
logy of the relationship (Table 1) and then used in
Equation (1). When estimating r, Equation (1) is used to
find the optimum values of k1 and k2 that are then used in
Equation (3). If r is being calculated for an evaluation of
the relatedness of one individual to a group, the
individual of interest is first paired with each group
member and an average of the pairwise r-values is used.

Null alleles

The formulae above show how to estimate relationship
and relatedness assuming genotypes have no null alleles.
In other words, the above formulae show how to
calculate the probability if the true genotypes in two
individuals are G1 and G2. If null alleles are present at
a locus, however, the probability of observing G1 and G2,
P(Observe G1/G2|k0, k1, k2), needs to be determined.
Only observed homozygotes may have null alleles. If G1

or G2 is an observed heterozygote (eg ij), we assume that
the observed genotype is correct. However, if G1 or G2 is
an observed homozygote, it can be a true homozygote
(eg ii) or a heterozygote with one null and one non-null

Table 2 A list of all possible pairs of observed genotypes and the
probability of each pair given the number of alleles identical by
descent (m)

Genotypes Probability given m genes IBD

m¼ 0 m¼ 1 m¼ 2

ii/ii pi
4 pi

3 pi
2

ii/ij 2pi
3pj pi

2pj 0

ij/ii 2pi
3pj pi

2pj 0

ii/jj pi
2pj

2 0 0

ii/jk 2pi
2pjpk 0 0

jk/ii 2pi
2pjpk 0 0

ij/ij 4pi
2pj

2 pipj(pi+pj) 2pipj

ij/ik 4pi
2pjpk pipjpk 0

ij/kl 4pipjpkp1 0 0

The individual genotypes are ordered, so that ii/ij is distinct from
ij/ii, because ordering affects the probabilities for genotype pairs. px

represents the observed frequency of the allele x in the population.
This table assumes null alleles are not present.
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allele (eg in). If there are no homozygotes observed in the
pair, G1/G2, the only possible true genotype pair is
identical to the observed pair. However, if one homo-
zygote is observed, there are two possible genotype pairs
(eg the observed ii/ij may actually be ii/ij or in/ij).
Further, if two homozygotes are observed, there are four
possible true genotype pairs (eg the observed ii/ii may
actually be ii/ii, in/ii, ii/in, or in/in). Genotype pairs,
therefore, may have either 0, 1, or 2 null alleles, depending
on how many homozygotes are observed. As up to four
true genotype pairs can have the same observed
genotype, the likelihood of an observed genotype pair is
calculated by summing the probabilities of all the
genotype pairs that have the same observed genotype.
For example, the probability of observing ii/ii is calcu-
lated by summing the probabilities of two individuals
actually having genotypes ii/ii (no null allele), in/ii (null
allele in first individual), ii/in (null allele in second
individual), and in/in (null allele in both individuals).

Table 3 lists the true genotypes that may produce each
of the nine possible observed genotype pairs and the

corresponding probabilities under each value of m. Once
these new probabilities are determined, the probability of
the observed genotypes is still calculated following
Equation (1) by listing all true genotype pairs that would
be observed as G1/G2 and then summing P(Observe
G1/G2|k0, k1, k2) values for each possible true genotype.
In essence, all this entails is using the multiple
probabilities for the true genotype pairs in Table 3, rather
than the probabilities in Table 2. For example, if the
observed genotypes are ii/ii, then the true underlying
genotypes are taken from Table 3 and the probability of
the observed genotypes, accounting for the possible
presence of null alleles at a single locus, is thus:

PðObserve G1 ¼ ii=G2 ¼ iijk0; k1; k2Þ
¼ PðObserve ii=iijk0; k1; k2Þ
¼ Pðii=iijk0; k1; k2Þ þ Pðin=iijk0; k1; k2Þ
þ Pðii=injk0; k1; k2Þ þ Pðin=injk0; k1; k2Þ

ð4aÞ

The four probabilities listed in the right-hand side of
Equation (4a) are calculated using Equation (1). For example,

Pðii=iijk0; k1; k2Þ ¼Pðii=iijm ¼ 0Þk0

þ Pðii=iijm ¼ 1Þk1

þ Pðii=iijm ¼ 2Þk2

ð4bÞ

and

Pðin=iijk0; k1; k2Þ ¼Pðin=iijm ¼ 0Þk0

þ Pðin=iijm ¼ 1Þk1

þ Pðin=iijm ¼ 2Þk2

ð4cÞ

For those true underlying genotypes having null
alleles (n¼ 1 or 2), the probabilities are determined
following the same logic used in Table 2 (where
n¼ 0). For example, P(in/ii|m¼ 0), P(in/ii|m¼ 1), and
P(in/ii|m¼ 2) are calculated in the same way as was
P(ij/ii|m) for m¼ 0, 1, or 2. To be more specific,
P(in/ii|m¼ 0), P(in/ii|m¼ 1), and P(in/ii|m¼ 2) are
equal to 2pi

3pn, pi
2pn, and 0 (respectively, Table 3). Note

that although pn is a total null allele frequency, we
make no assumptions about the number of different null
alleles at a locus or about whether any null alleles are
IBD. We need only to account for the possibilities that
there are 0 or 1 or 2 null alleles in the pair (summing
along columns in Table 3) and that there are 0 or 1 or 2
null or non-null alleles IBD (summing along rows in
Table 3). As is true for all alleles, the probability under
m¼ 0 and the partial probability under m¼ 1 account for
the possibility that the null allele is not IBD, while the
alternative that there is an IBD null allele is accounted for
by the partial probability under m¼ 1 and the probability
under m¼ 2 (see Appendix for a demonstration that
having multiple non-IBD null alleles does not affect the
probability of observing any particular genotype).

Calculating P(Observe G1/G2|k0, k1, k2) requires
knowing the frequency of the null allele, pn. In practice,
pn will not be known, but it can be estimated with several
approaches (Chakraborty et al, 1992; Brookfield, 1996;
Summers and Amos, 1997; Kalinowski and Taper, in
press) that have been implemented in programs such
as Genepop (Raymond and Rousset, 1995), Cervus
(Marshall et al, 1998), Micro-Checker (Van Oosterhout
et al, 2004) and ML-Relate (Kalinowski et al, 2006) or can

Table 3 A list of all possible observed genotypes for a pair of
individuals, the underlying true genotypes that can produce the
observed genotypes given the possible number of null alleles (n),
and the probability of each underlying genotype pair given the
number of alleles identical by descent (m)

Observed

genotypes

True

genotypes

n Probability of true genotypes

given m genes IBD

m¼ 0 m¼ 1 m¼ 2

ii/ii ii/ii 0 pi
4 pi

3 pi
2

ii/in 1 2pi
3pn pi

2pn 0

in/ii 1 2pi
3pn pi

2pn 0

in/in 2 4pi
2pn

2 pipn(pi+pn) 2pipn

ii/ij ii/ij 0 2pi
3pj pi

2pj 0

in/ij 1 4pi
2pjpn pipjpn 0

ij/ii ij/ii 0 2pi
3pj pi

2pj 0

ij/in 1 4pi
2pjpn pipjpn 0

ii/jj ii/jj 0 pi
2pj

2 0 0

ii/jn 1 2pi
2pjpn 0 0

in/jj 1 2pipj
2pn 0 0

in/jn 2 4pipjpn
2 pipjpn 0

ii/jk ii/jk 0 2pi
2pjpk 0 0

in/jk 1 4pipjpkpn 0 0

jk/ii jk/ii 0 2pi
2pjpk 0 0

jk/in 1 4pipjpkpn 0 0

ij/ij ij/ij 0 4pi
2pj

2 pipj(pi+pj) 2pipj

ij/ik ij/ik 0 4pi
2pjpk pipjpk 0

ij/kl ij/kl 0 4pipjpkpl 0 0

px represents the frequency of allele x in population corrected for the
presence of null alleles (ie, pn is considered when summing allele
frequencies to 1). The genotypes within a pair are ordered, for
example, ii/ij is distinct from ij/ii. The probability of each observed
genotype pair at each locus is obtained by summing the probabilities
of the possible underlying true genotypes.
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be programmed into an Excel spreadsheet (Kalinowski
and Taper, in press). Frequencies for observed non-null
alleles may be corrected accordingly. As a source of
typing error, inaccurate estimates of pn would affect
probabilities of false exclusion in parentage analysis
(Sancristobal and Chevalet, 1997; Marshall et al, 1998).
The probabilities above and those in Table 3 assume
genotypes are observed in each case and that there are no
homozygotes for a null allele producing ‘blank’ geno-
types. The maximum likelihood approach developed by
Kalinowski and Taper (in press) and implemented in
ML-Relate (Kalinowski et al, 2006) uses an EM algorithm
and performs better under this assumption than the
approaches of Summers and Amos (1997) and Chakra-
borty et al (1992).

One aspect of Table 3 is particularly note worthy.
When parents and offspring are being considered,
definitive exclusion (as opposed to the relative consid-
erations made below) of the true parent–offspring (PO)
relationship occurs when the likelihood of that relation-
ship is zero (L(PO)¼ 0). By this measure, false exclusion
of the true relationship would occur when, at any locus,
parent and offspring are true heterozygotes with one
common null allele and distinct non-null alleles (in/jn)
but are observed as homozygotes for different alleles
(ii/jj). The probability of false exclusion is then equal to
the probability of having in/jn when one allele is IBD
(m¼ 1). From Table 3, this is pipjpn, which is just the
probability of having any two different alleles (pipj)
multiplied by the frequency of the IBD null allele. By
definition, this is equivalent to the observed hetero-
zygosity (Heobs) multiplied by pn, so the probability of
false exclusion of a parent–offspring relationship at a
single locus if null alleles are ignored is Heobspn.

Comparison of analytical methods

As discussed at the outset, there have been two
alternative approaches to the analysis of microsatellite
data that include null alleles when redesigning
existing or developing new primers is not an option.
One approach is to drop the data from affected loci.
Another approach is to use the data from affected loci
and proceed with estimation of relatedness or relation-
ship using Table 2, ignoring the existence of null alleles.
Above, we developed a new approach that explicitly
accounts for null alleles by using Table 3. We now
use empirical data to show how the results of these
approaches differ.

Table 4 shows microsatellite genotypes at eight loci
from a putative family of striped hyaenas (Wagner, 2006),
within which the adult female (F09) was thought to be

the mother of the three cubs (cubs 30, 31, and 32).
Ignoring null alleles and using Table 2 and Equation (1),
we tested the hypothesized parent–offspring relationship
for F09 to each of the three cubs. F09 is immediately
ruled out as the potential mother for two of the
three cubs (cub 30 and cub 31), because the female and
cubs share no alleles identical in state (and therefore
none IBD) at locus CCR5. At this locus, P(G1/G2|k0, k1,
k2)¼ 0 and, since probabilities are multiplied across loci
to determine the probability of the relationship, the entire
probability of maternity is 0. This is a good illustration of
the general problem that null alleles can easily create
observed genotypes at one locus that are impossible
under the hypothesized relationship even if genotypes at
other loci strongly support that relationship.

In this case, null alleles were detected at three of the
evaluated loci (CCRA5, CCRA3, and the critical CCR5)
and, for loci where null alleles were detected, adjusted and
null allele frequencies were calculated following Kali-
nowski and Taper (in press). Although the null allele
frequency at CCR5 was relatively low (0.074), it appears to
have created problems for assigning maternity. The
characteristics of this data set illustrate a common problem
contributing to the prevalence of studies that include, but
do not correct for, loci with null alleles (Dakin and Avise,
2004): in many existing data sets from wildlife studies
researchers are restricted to using existing primers, only a
limited number of loci are available, null alleles are
present, but retention of inferential and discriminatory
power requires salvaging those problem loci.

Table 5 summarizes conclusions about the maternity of
the cubs using the three approaches. For the female and
each cub, the probability of the genotypes for the three
adult–cub pairs was calculated for parent–offspring vs
unrelated relationships, although any hypothesized
relationships could be used for comparison. Likeli-
hood ratios were used to evaluate the relative degree
of support for the competing relationships. A ratio 41
indicates that the relationship in the numerator is more
likely, whereas a ratio o1 favors the denominator.
Clearly, support for the parent–offspring hypothesis is
highly dependent on the approach that is employed.
Accounting for the occurrence of null alleles can give
very different results than ignoring them (cubs 30 and
31) or discarding them (cubs 31 and 32). Only our
approach, applying a correction for the presence of null
alleles, retains enough information and correctly inter-
prets the observed genotypes to indicate that F09 is likely
to be the mother of all three cubs.

We also used the three competing approaches to
calculate the coefficient of relatedness between female
F09 and each of the three cubs, and to the cubs as a group

Table 4 Observed microsatellite genotypes at eight loci for a group of striped hyenas

Individual ID Locus

CCR4 CCR6 CCROC01 CCRA5* CCROC05 CCRA3* CCROC06 CCR5*

Female09 114/130 114/116 199/203 143/149 159/167 143/143 161/169 148/148
Cub30 114/130 114/114 203/203 143/143 159/167 143/143 161/169 152/152
Cub31 114/114 114/116 203/203 149/149 157/159 143/143 169/169 150/150
Cub32 114/130 114/116 203/203 143/143 157/159 143/143 169/169 148/150

Numbers in the table indicate specific observed alleles, expressed as number of base-pairs in the allele. Loci with null alleles are indicated by
an asterisk (*).

Null alleles and relatedness
AP Wagner et al

5

Heredity



(Table 5). In general, this example shows that correcting
for null alleles sometimes gives the same result as
dropping loci with null alleles (cub 31), sometimes gives
the same result as ignoring null alleles (cub 32), and
sometimes differs from both of these methods (cub 30).
When the presence of null alleles is not considered
and all loci are used, the observed genotype probabilities
for the F09-cub 31 pair under-estimates the relatedness
of the female to her own cub by more than 20%. When
cubs are viewed as a group, support for this female as the
mother of this litter would be greatly reduced based on
this result. Using the corrected approach, however, the
female would still be considered a likely candidate.

In addition to the empirical tests above, we used
computer simulation to further test the effectiveness
of our method for accommodating null alleles in
relationship and relatedness estimation. We did this by
repeatedly simulating genotype data for pairs of related
individuals and evaluating how accurately our method
could estimate the relationship between individuals,
in comparison to the commonly employed methods
of ignoring null alleles or discarding problem loci. Each
iteration of the simulation began by simulating para-
metric allele frequencies in a randomly mating popula-
tion, using broken stick random numbers. This method
produces allele frequencies that are uniformly distri-
buted in multidimensional space (eg [0.2, 0.2, 0.2, 0.2, 0.2]
is as likely as [0.96, 0.01, 0.01, 0.01, 0.01]) (Devroye, 1986).
All simulations had five alleles per locus, which resulted
in an average observed heterozygosity of 0.66 (which
was reduced to 0.59 when null alleles were introduced).
With these allele frequencies, genotypes of the adults in
the population were simulated by multinomial sampling.
We simulated relatedness within the population by
forming monogamous mating pairs from the adults
and then simulating genotypes for two offspring per
mating pair. For example, most of our simulated data
had 96 individuals in 24 families, each with a dam, sire,
and two offspring. We simulated null alleles by choosing

one allele at a locus to be a null allele. Loci that were
homozygous for null alleles were treated as missing data.
Note that the frequency of null alleles in our simu-
lated data is a random variable. Null alleles that have a
high frequency in a population are more likely to
interfere with relationship estimation than null alleles
having a low frequency. Therefore, we binned simu-
lated data according to the frequency of null alleles,
with a bin width of 0.10 (eg data that had null alleles
with a frequency Z0.15 and o0.25 were placed in the
‘0.2’ bin). In some cases, we simulated data for multiple
loci having null alleles. Here, data were binned accord-
ing to the average frequency of null alleles at all loci with
null alleles.

We used two statistics to measure how accurately
relatedness and relationship could be estimated. The
accuracy of estimates of relatedness was measured by
the root mean squared error (RMSE) of the estimates.
The accuracy of estimates of relationship was measured
by the proportion of simulated data that successfully
identified the correct relationship from among four
possibilities: unrelated, half-siblings, full-siblings, and
parent–offspring. Under each set of conditions, at least
one thousand simulated data sets were used to estimate
these statistics.

We examined the effect of the following variables upon
the accuracy of estimates of relatedness and relationship:
sample size (NSamples), total number of loci (NLoci),
number of loci having null alleles (NNulls), and the
frequency of null alleles (pnull) (Tables 6 and 7). In
addition, we evaluated six methods for estimating
relatedness and relationship – methods that spanned
the range of options available to geneticists encountering
null alleles. The first method, IGNORE, simply ignored
null alleles. The next three methods are variations of
the maximum likelihood approach we present above.
ML-APRIORI assumes that the user knows a priori which
loci have null alleles. ML-DETECTED assumes the user
does not know which loci have null alleles, and therefore
must test for them. We used a Monte-Carlo randomiza-
tion test (Guo and Thompson, 1992) for excess homo-
zygosity and the U-statistic (Rousset and Raymond,
1995) to detect null alleles. Loci that had a one-tailed
P-value of o0.05 divided by the number of loci in the
data were classified as having null alleles. ML-ALL

assumed null alleles were present at all loci. This strategy
may appear unreasonable, but if a locus did not have a
null allele, the estimated frequency of a null allele at
the locus was usually small. Last, we tested two variants
of removing loci with null alleles. REMOVE-APRIORI

assumed that loci having null alleles were identified a
priori. REMOVE-DETECTED used the randomization test
described above to detect loci having null alleles. In each
case, such loci were removed from the data.

Our method of correcting for the presence of
null alleles (ML-DETECTED, ML-APRIORI, or ML-ALL)
improves the accuracy of relatedness identification for
full-siblings (Table 6), but the differences can appear
subtle in this context. However, the ML-DETECTED

method improves RMSE by up to 6.2% over IGNORE

(average improvement¼ 2.2%) and represents up to a
14.0% improvement in relatedness estimation over
REMOVE-DETECTED (average¼ 7.6%). Across simulated
conditions, increasing the number of loci considered has
the greatest impact on reducing error in relatedness

Table 5 Relationship likelihood (L(R)) ratios and maximum likeli-
hood calculations of relatedness (ML(r)) for the population subset

Individuals Approach used L(R) ratio
PO/UR ML(r)

F09 cub30 Nulls not considered 0 0.44
Loci with nulls not used 14.91 0.70
Correction for nulls applied 15.09 0.61

F09 cub31 Nulls not considered 0 0.33
Loci with nulls not used 4.27 0.50
Correction for nulls applied 20.50 0.50

F09 cub32 Nulls not considered 15.21 0.50
Loci with nulls not used 3.25 0.39
Correction for nulls applied 10.17 0.50

F09 Cubs as a group Nulls not considered 0.43
Loci with nulls not used NA 0.53
Correction for nulls applied 0.54

L(R) ratios are the probability of the observed genotypes given the
hypothesized parent-offspring (PO) relationship vs the alternative
unrelated (UR) relationship. ML(r) was determined between F09
and each cub and all cubs as a group. Calculations were made
without considering null alleles (Table 2), without using loci for
which null alleles were detected, and with all loci corrected for the
probabilities of null alleles at each locus (Table 3).
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estimation and it is only when more than six loci are
considered that REMOVE-DETECTED approaches the accu-
racy of the IGNORE or ML approaches. Our method also
performs the best in relationship estimation, improving
the ability to correctly identify parent–offspring relation-

ships (Table 7). The biggest improvements over IGNORE

occur when null allele frequencies are high or when
many loci are available. The largest improvements in
accuracy of our method relative to REMOVE methods
occur when null alleles are present at multiple loci.

Table 6 The root mean square error of estimates of relatedness between full-siblings under simulated conditions varying the sample size
(NSamples), total number of loci (NLoci), number of loci having null alleles (NNulls), and the frequency of null alleles (pnull), as indicated (by bold
type) in the first four columns. Lower values indicate greater accuracy in relatedness estimation

NLoci NNulls NSamples pnull Statistical method

Ignore ML detected ML apriori ML all Remove detected Remove apriori

No null alleles
6 None 96 — 0.210 0.210 0.210 0.210 0.210 —

Vary number of loci having null alleles
6 1 96 0.2 0.216 0.214 0.214 0.214 0.226 0.224
6 2 96 0.2 0.221 0.216 0.216 0.216 0.236 0.243
6 3 96 0.2 0.226 0.220 0.220 0.220 0.253 0.268

Vary frequency of null allele
6 2 96 0.1 0.217 0.215 0.214 0.214 0.228 0.243
6 2 96 0.2 0.221 0.216 0.216 0.216 0.236 0.243
6 2 96 0.3 0.225 0.218 0.218 0.218 0.239 0.243
6 2 96 0.4 0.226 0.219 0.219 0.219 0.242 0.243

Vary sample size
6 2 48 0.2 0.225 0.221 0.220 0.220 0.238 0.243
6 2 96 0.2 0.221 0.216 0.216 0.216 0.236 0.243
6 2 192 0.2 0.218 0.212 0.212 0.212 0.235 0.243

Vary total number of loci
6 1 96 0.2 0.216 0.214 0.214 0.214 0.226 0.224
12 1 96 0.2 0.160 0.159 0.158 0.159 0.164 0.164
24 1 96 0.2 0.116 0.116 0.116 0.116 0.118 0.118

Bold characters indicate changes that were made between the simultations and correspond to the labels of the x-axis in Figures 1 and 2.

Table 7 Proportion of simulated data sets successfully able to identify the relationship between a parent-offspring pair when differing
characteristics of the data set are varied: sample size (NSamples), total number of loci (NLoci), number of loci having null alleles (NNulls), and the
frequency of null alleles (pnull). Higher values indicate greater accuracy in relationship estimation

NLoci NNulls NSamples pnull Statistical method

Ignore ML detected ML apriori ML all Remove detected Remove apriori

No null alleles
6 None 96 — 0.781 0.780 0.780 0.779 0.780 —

Vary number of loci having null alleles
6 1 96 0.2 0.718 0.757 0.758 0.759 0.740 0.751
6 2 96 0.2 0.663 0.728 0.730 0.731 0.706 0.705
6 3 96 0.2 0.624 0.711 0.713 0.716 0.676 0.653

Vary frequency of null allele
6 2 96 0.1 0.698 0.731 0.739 0.739 0.715 0.705
6 2 96 0.2 0.663 0.728 0.730 0.731 0.706 0.705
6 2 96 0.3 0.644 0.724 0.725 0.725 0.714 0.705
6 2 96 0.4 0.636 0.718 0.719 0.719 0.707 0.705

Vary sample size
6 2 48 0.2 0.660 0.714 0.721 0.723 0.703 0.705
6 2 96 0.2 0.663 0.728 0.730 0.731 0.706 0.705
6 2 192 0.2 0.663 0.734 0.735 0.736 0.711 0.705

Vary total number of loci
6 1 96 0.2 0.718 0.757 0.758 0.759 0.740 0.751
12 1 96 0.2 0.827 0.883 0.889 0.888 0.877 0.884
24 1 96 0.2 0.898 0.965 0.974 0.974 0.963 0.965

Bold characters indicate changes that were made between the simultations and correspond to the labels of the x-axis in Figures 1 and 2.
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We also considered the probabilities of drawing false
conclusions using two simple ways of evaluating
population genotype data. For the same three methods
applied in Table 5 (IGNORE, ML-DETECTED, and REMOVE-
DETECTED), we determined the percentage of simulated
parent–offspring pairs for which the likelihood of the
true parent–offspring relationship was less than the
likelihood of being unrelated (likelihood ratio less than
one), as a measure of the probability of reaching a false
conclusion in relationship estimation (Figure 1). In every
case, the probability of drawing false conclusions is
highest when null alleles are ignored: IGNORE leads to
false conclusions 7.4–19.1% of the time. Applying our
correction for null alleles also reduces the probability of
drawing a false conclusion relative to REMOVE methods,
except when a large number of loci are considered:
in this case the accuracy of the two approaches is
equivalent. We also used the percentage of calculated
r-values for all parent–offspring pairs that deviated by
more than 720% (70.1) from the true value of 0.5 as a
further test of these three competing methods (Figure 2).
For relatedness, up to 7% (IGNORE) or 4% (REMOVE-
DETECTED) more of the calculations over or under-
estimated r by 420% than when the correction for null
alleles is applied.

Finally, we evaluated the effect of the number of loci
(NLoci) on the accuracy of relationship and relatedness
estimates from our simulated genetic data having no null
alleles (Table 8). For a given number of loci, Table 8
indicates the levels of accuracy that could be expected if
the data are error-free and shows that accuracy improves
when the number of loci increases. Comparing the
results in Table 8 to Tables 6 and 7 also allows for
evaluation of the performance of our method to two
methods that would eliminate null alleles from the data.
First, researchers might consider replacing loci contain-
ing null alleles with loci having no null alleles. However,
if additional primers are developed, loci with null alleles

should be retained and our method applied: accuracy
would be improved by retaining all loci and applying
our correction rather than replacing loci because the
latter would reduce the total number of loci considered
(compare ML results for NLoci given NNulls, in Tables 6
and 7, to results for NLoci	NNulls in Table 8). Second,
if researchers consider redesigning existing primers,
instead of replacing loci, comparing the results in Table 8
to the ML results in Tables 6 and 7 shows that, for the
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Figure 1 Probability of falsely concluding that the likelihood of
unrelated is greater than the likelihood of the true parent–offspring
relationship from the simulated data using the three competing
approaches: ignoring problem loci and including loci with null
alleles without applying a correction (IGNORE), removing loci where
null alleles were detected from data analysis (REMOVE-DETECTED),
and applying our correction for null alleles at loci where they were
detected (ML-DETECTED). Vertical dotted lines separate sub-sets of
the simulated data within which one characteristic of the data set
was varied (as described in Table 7). y-axis indicates the percentage
of parent–offspring pairs for which L(PO)/L(UR) was incorrectly
determined to be o1.0.
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Figure 2 Probability of over or underestimating relatedness for
parents and offspring by more than 20% from the simulated data
using three competing approaches: IGNORE, REMOVE-DETECTED, and
ML-DETECTED. Vertical dotted lines separate sub-sets of the
simulated data within which one characteristic of the data set was
varied (Table 6). y-axis indicates the percentage of parent–offspring
pairs for which r estimates deviated by more than 720% from the
true value.

Table 8 The accuracy of simulated genetic data in estimating
relationship or relatedness when no null alleles are present

NLoci Proportion RPO correct RMSE rFS

1 0.44 0.42
2 0.59 0.31
3 0.65 0.27
4 0.71 0.24
5 0.75 0.22
6 0.78 0.21
7 0.81 0.20
8 0.83 0.19
9 0.85 0.18

10 0.87 0.17
11 0.88 0.16
12 0.90 0.16
13 0.91 0.15
14 0.92 0.15
15 0.92 0.14
16 0.93 0.14
17 0.94 0.14
18 0.94 0.13
19 0.95 0.13
20 0.95 0.13
21 0.96 0.12
22 0.96 0.12
23 0.96 0.12
24 0.97 0.12

The first column shows the number of loci (NLoci) in the simulated
data, the second the proportion of simulated data sets that
successfully identified parent offspring pairs (RPO), the third the
root mean square error (RMSE) of estimates of relatedness between
full sibs (rFS).
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same NLoci, the differences between the accuracy
achieved using error-free data or applying our corrected
method are small and diminish as the number of
loci increase. When few loci are available, the costs
of redesigning primers should then be evaluated relative
to the costs (slightly reduced accuracy) of applying our
corrected method to the imperfect data at hand. When
many loci are available, researchers would receive little
benefit by redesigning primers rather than applying our
correction.

Conclusion

Failure to correct for the presence of null alleles in
microsatellite data can produce badly biased estimates of
relatedness and incorrect assessments of relationships.
Even at low frequencies, null alleles can have a large
impact. Dropping data from problem loci altogether can
significantly alter the likelihoods of competing relation-
ships and this solution needlessly discards valuable
information. Even under relatively simple scenarios,
dropping loci does not perform as well as, and never
performs better than, correcting for null alleles, so it
cannot be considered the ‘conservative’ approach.
Inclusion of loci at which null alleles are present,
without correcting for them, is the approach most
likely to lead to false conclusions in relatedness and
relationship estimation.

Our method for including null alleles in calculations of
relationship probabilities and relatedness values is easy
to apply to co-dominant genotype data. Once null alleles
are detected and their frequency estimated, all of the
information required for these adjusted calculations is
present in the original genotyping data, so application of
our method bears no additional costs. Little modification
is required to the methods already in place for evaluating
relationships and relatedness: all that is required is to use
Table 3 rather than Table 2 when applying Equation (1).
This new approach provides a means by which a
previously recognized and widespread problem, pre-
dominantly discussed as a theoretical or conceptual
issue, can be corrected in practice.
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Appendix

We have shown how having a null allele at a locus affects
the probabilities of observing each possible pair of
genotypes. However, it is possible to have multiple,
distinct (non-IBD) null alleles at a single locus. If
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multiple null alleles are present at a locus, this expands
the number of true genotypes that may have produced an
observed genotype and it reasonable to question how this
might affect the probabilities of observing each genotype.
If there is no effect, the sum of the probabilities of all
possible true genotypes when two distinct null alleles are
considered should equal the sum of the probabilities in
Table 3 (for the same observed genotypes).

For example, if there are two null alleles at a locus (n1

and n2) and ii/jk are the genotypes observed, true
genotypes may be ii/jk or in1/jk or in2/jk. The sum of the
probabilities under m¼ 0 for ii/jk with two distinct null
alleles is:

PðG1 ¼ ij=G2 ¼ jkjm ¼ 0Þ ¼ PðObserve ij=ikjm ¼ 0Þ
¼ Pðij=ikjm ¼ 0Þ þ Pðin1=jkjm ¼ 0Þ þ Pðin2=jkjm ¼ 0Þ
¼ 2p2

i pjpk þ 4pipjpkpn1
þ 4pipjpkpn2

¼ 2p2
i pjpk þ 4pipjpkðpn1 þ pn2Þ

ðA-1Þ

Recall that we defined pn as the total frequency of all
null alleles at a locus, so pn ¼ pn1 þ pn2 , in this example.
The sum of the final quantities in the above equation is
then identical to the sum of the probabilities of the true
genotypes under m¼ 0 for ii/jk given in Table 3.

A more complex situation occurs when two homo-
zygotes for the same allele are observed (ii/ii). For this
set of observed genotypes, there are now nine possible
true genotypes that can produce that observation (see
Table A1) and we break up the possible true underlying
genotypes by the expanded set that corresponds with the
true genotypes in Table 3. For example, ii/in expands
to ii/in1 and ii/in2 and, for m¼ 0, the probabilities of

those true genotypes are 2p3
i pn1 and 2p3

i pn2 , respectively.
Summing these quantities gives:

Pðii=in1jm ¼ 0Þ þ Pðii=in2jm ¼ 0Þ
¼ 2p3

i pn1
þ 2p3

i pn2
¼ 2p3

i ðpn1
þ pn2

Þ ¼ 2p3
i pn

ðA-2aÞ

Similarly, in/in now expands to in1/in2, in2/in1,
in1/in1, and in2/in2. For m¼ 0, these probabilities
are 4p2

i pn1 pn2 , 4p2
i pn1 pn2 , 4p2

i p2
n1

, and 4p2
i p2

n2
, respectively.

Summing these quantities gives:

Pðin1=in2jm ¼ 0Þ þ Pðin2=in1jm ¼ 0Þ
þ Pðin1=in1jm ¼ 0Þ þ Pðin2=in2jm ¼ 0Þ
¼ 4p2

i pn1
pn2

þ 4p2
i pn1

pn2
þ 4p2

i p2
n1
þ 4p2

i p2
n2

¼ 4p2
i ð2pn1

pn2
þ p2

n1
þ p2

n2
Þ

¼ 4p2
i p2

n

ðA-2bÞ

For in/in, when m¼ 1:

Pðin1=in2jm ¼ 1Þ þ Pðin2=in1jm ¼ 1Þ
þ Pðin1=in1jm ¼ 1Þ þ Pðin2=in2jm ¼ 1Þ
¼ pipn1

pn2
þ pipn1

pn2
þ pipn1

ðpi þ pn1
Þ þ pipn2

ðpi þ pn2
Þ

¼ 2pipn1 pn2 þ ðp2
i pn1 þ pip

2
n1
Þ þ ðp2

i pn2 þ pip
2
n2
Þ

¼ pið2pn1
pn2

þ pipn1
þ p2

n1
þ pipn2

þ p2
n2
Þ

¼ piðp2
n þ piðpn1

þ pn2
ÞÞ

¼ piðp2
n þ pipnÞ ¼ pipnðpi þ pnÞ

ðA-2cÞ
The probabilities given in each cell of Table 3 can

similarly be shown not to be affected by the number of
distinct null alleles actually present at a locus.

Table A1 A list of all possible true genotypes for a pair of individuals, where ii/ii was the observed genotype, given the possible number of
null alleles (n) when null alleles are considered IBD (column 1) or distinct (column 2), and the probability of each underlying genotype pair
given the number of alleles identical by descent (m) when two distinct null alleles are present. px represents the frequency of allele x in
population corrected for the presence of null alleles (that is, pn or pn1 þ pn2

is considered when summing allele frequencies to 1)

True genotypes
from Table 3

True genotypes with
two null alleles

n Probability of true genotypes, given m genes IBD, when two distinct null alleles are at a locus

m¼ 0 m¼ 1 m¼ 2

ii/ii ii/ii 0 pi
4 pi

3 pi
2

ii/in ii/in1 1 2p3
i pn1 p2

i pn1
0

ii/in2 1 2p3
i pn2

p2
i pn2

0

in/ii in1/ii 1 2p3
i pn1 p2

i pn1
0

in2/ii 1 2p3
i pn2

p2
i pn2

0

in/in in1/in2 2 4p2
i pn1 pn2

pipn1 pn2
0

in2/in1 2 4p2
i pn1 pn2

pipn1 pn2
0

in1/in1 2 4p2
i p2

n1
pipn1

ðpi þ pn1
Þ 2pipn1

in2/in2 2 4p2
i p2

n2
pipn2

ðpi þ pn2
Þ 2pipn2

The probability of the observed genotype pair is obtained by summing the probabilities of the possible underlying true genotypes. Note that
the sum of the quantities in this table is the same as the sum of the true genotype probabilities for ii/ii in Table 3.

Null alleles and relatedness
AP Wagner et al

10

Heredity


