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Abstract

Genotypes are frequently used to identify parentage. Such analysis is notoriously vulnerable
to genotyping error, and there is ongoing debate regarding how to solve this problem. Many
scientists have used the computer program CERVUS to estimate parentage, and have taken
advantage of its option to allow for genotyping error. In this study, we show that the
likelihood equations used by versions 1.0 and 2.0 of CERVUS to accommodate genotyping error
miscalculate the probability of observing an erroneous genotype. Computer simulation
and reanalysis of paternity in Rum red deer show that correcting this error increases success
in paternity assignment, and that there is a clear benefit to accommodating genotyping
errors when errors are present. A new version of CERVUS (3.0) implementing the corrected
likelihood equations is available at www.fieldgenetics.com.
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Introduction

Genetic data are frequently used to estimate genealogical
relationships among individuals (see Blouin 2003 for review),
and such analyses have provided remarkable insight to the
reproductive lives of plants and animals. Parentage tests,
for example, have revealed extra-pair copulation among
birds (Charmantier & Blondel 2003; Castro et al. 2004),
estimated reproductive success in primate hierarchies
(Constable et al. 2001), and documented kin selection among
ground squirrels (Cordero et al. 1999; Shelley & Blumstein
2005).

Relationship estimation, however, is notoriously vulnerable
to genotyping error. Consider a mother and father with
genotypes ii and jj. Offspring from these parents will have
genotype ij. But, if the genotype of the offspring is mistakenly
scored as ii, the actual father will be excluded from paternity.
Such false exclusion can be caused by contamination, allelic
dropout, microsatellite stutter, null alleles, or human error.
The problem is particularly insidious because a single
genotyping error can exclude the true father no matter

how many loci are scored. In fact, if genotyping errors are
not accommodated during data analysis, increasing the
number of loci scored will probably increase the probability
of a false exclusion.

This problem has long been recognized (see Pompanon
et al. 2005 for a review), and several authors have suggested
statistical methods for accommodating genotyping
errors while estimating relationship (e.g. SanCristobal &
Chevalet 1997; Marshall et al. 1998; Wagner et al. 2006).
The method of Marshall et al. (1998) has been particularly
influential, for it is implemented by the popular computer
program cervus (Marshall et al. 1998). Most researchers
using cervus 1.0 and 2.0 have taken advantage of the
option for allowing for genotyping errors (Morrissey &
Wilson 2005).

Recently, Morrissey & Wilson (2005) used computer
simulations to show that in some circumstances (e.g. studies
with small numbers of loci) paternity could be assigned
more often by ignoring genotyping errors than by allowing
for error — even when genotyping errors were present
(Morrissey & Wilson 2005). This result is surprising for
it contradicts previous simulations which showed a clear
benefit to accommodating genotyping error (SanCristobal
& Chevalet 1997; Wang 2004; Vandeputte et al. 2006).
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Morrissey & Wilson (2005) also found that the best strategy
for estimating paternity was to assign a nonzero probability
of genotyping error, but to deliberately assign this rate a
value smaller than the actual rate.

The surprising results of Morrissey & Wilson (2005) can
be explained by examining the likelihood equations used
in their computer simulations. Morrissey & Wilson (2005)
used the likelihood equations of Marshall et al. (1998) that
were implemented by versions 1 and 2 of cervus. In this
study, we show that these equations artificially inflate
the rate at which erroneous genotypes are expected to be
observed. We use computer simulation to show that this
explains the results of Morrissey & Wilson (2005). Using
corrected likelihoods, we show a consistent benefit to
allowing for genotyping error while estimating paternity.
In addition, we show that these corrected likelihood
equations make it easier to establish paternity with a
high degree of statistical confidence. Lastly, we use a new
version of cervus (cervus 3.0) to re-analyse paternity in
Rum red deer (Marshall et al. 1998).

Methods

Likelihood equations

We use the random genotype replacement model of Marshall
et al. (1998) to model genotyping error. This model assumes
that when a genotyping error is made, the probability of
observing any specific erroneous genotype is equal to the
frequency of that genotype in the population. This model
is mathematically convenient without being implausible.
For example, it is a reasonable model for pipetting, labelling,
or data entry errors. Following Marshall et al. (1998), we
assume genotyping error rates are independent and constant
across individuals and loci. Let g represent an observed
genotype, let ε represent the genotyping error rate in a
laboratory, and let P(g) represent the Hardy–Weinberg
frequency of genotype g in a population. Given this model
of genotyping error, the probability of observing g is
equal to (1 – ε)P(g) + εP(g). The first term in this sum is the
probability that a locus is genotyped without error and has
genotype g. The second term in the sum is the probability
that an error has occurred and genotype g is observed.

Let gm, ga, go, represent genotypes observed in a mother,
alleged father, and offspring (respectively). Our goal is to
formulate the likelihood of these genotypes for alternative
relationships that might exist between the three individuals.
Let H1 represent the hypothesis that the alleged father
is indeed the father of the offspring. Let H2 represent
the hypothesis that the alleged father is unrelated to the
mother and offspring. By definition, the likelihood of
each hypothesis is the probability of observing gm, ga, go,
if the hypothesis was true. If the mother’s genotype is
known, the likelihood of H1 is equal to

(eqn 1)

where T(·) are standard Mendelian transition probabilities
(e.g. Marshall et al. 1998). The reader may note that equation
1 can be simplified (see the Appendix for simplified likelihood
equations for three different patterns of relatedness). We
have chosen the above form to facilitate comparison to the
corresponding equations developed by Marshall et al.
(1998) (equation 6 and its predecessor) and used in versions 1
and 2 of cervus. The difference between equation 1 (above)
and equation 6 of Marshall et al. (1998) is that the latter assigned
a value of 1 to all terms that we have underlined above.

Deconstructing equation 1 reveals the difference between
it and the corresponding equations of Marshall et al. (1998).
Equation 1 can be understood as follows. If the three
genotypes gm, ga, go are observed, one of four possibilities
must be true: (i) all of the genotypes are correct, (ii) two of
the genotypes are correct and one is incorrect, (iii) one of
the genotypes is correct and two are incorrect, or (iv) all
three of the genotypes are incorrect. The four lines on the
right side of equation 1 correspond to these cases, where
underlined terms refer to erroneous genotypes. The pro-
bability of each case is calculated in two steps. For example,
in the first line, the probability of all three genotypes being
correct is (1 – ε)3. If all genotypes are correct, the probability
of observing gm, ga, go is equal to T (go | gm, ga)P(gm)P(ga). The
last line shows the probability of erroneously genotyping
the mother, alleged father, and offspring, and observing
gm, ga, and go. The probability that all three genotypes are
incorrect is equal to ε3, and if all genotypes are incorrect, the
probability of observing gm, ga, go is equal to P(gm)P(ga)P(go).
Equation 1 is written for one locus. Likelihoods for multiple
unlinked loci are calculated by multiplying across loci.

The corresponding equation for the alternative hypothesis,
H2, that three individuals are mother, offspring, unrelated
male is

(eqn 2)
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Again, we have underlined terms that Marshall et al.
(1998) assigned a value of 1.

Essentially, Marshall et al. (1998) mistakenly indicated that
the probability of making a genotyping error and observing
g is equal to ε, instead of εP(g). This inflates the probability
of observing genotyping errors in the likelihood calcula-
tions. The most important consequence of this error is that
it reduces the impact of mismatched genotypes between
an offspring and alleged father. As discussed above, if the
genotyping error rate is assumed to be zero, one mismatched
genotype between an offspring and an alleged father will
exclude that male from paternity. If we allow for genotyping
errors, unrelated males cannot be excluded from paternity
with certainty. However, if sufficient data are collected, their
genotypes can be dismissed as unlikely. If the probability
of observing erroneous genotypes is high (either because
the error rates is high, or because the likelihood equations
unintentionally inflate it), mismatched genotypes appear
more likely. This makes it harder to dismiss an unrelated
male’s genotype as unlikely.

Computer simulations

We used computer simulations to assess the importance of
replacing the likelihood equations of Marshall et al. (1998)
with the new ones described above. In particular, we used
these simulations to ask if our reformulation produces better
assignment of paternity, and if there is likely to be a cost to
including genotyping error in likelihood calculations.

We designed our simulations to be comparable to those
of Marshall et al. (1998) and Morrissey & Wilson (2005).
These studies include several different scenarios; for
simplicity, we chose the problem of identifying a father
from a list of possible fathers when the mother’s identity
and genotype are known and all potential fathers in the
population have been genotyped. Each iteration of the
simulation began by randomly selecting actual genotypes
for 100 unrelated adult males and 100 unrelated adult
females. While doing this, we assumed that allele frequencies
in the population were [0.25, 0.25, 0.2, 0.15, 0.05, 0.05, 0.02,
0.01, 0.01, 0.005, 0.005]. Loci were assumed to be unlinked,
and each locus was assumed to have these same allele
frequencies. This set of allele frequencies was chosen because
they are representative of polymorphic microsatellite
loci commonly used to identify parentage and because
Morrissey & Wilson (2005) found that these specific allele
frequencies resulted in a high cost to allowing for genotyping
error. Once the genotypes of the adults were generated, we
randomly selected a male and female to be the parents of a
single offspring. The actual multilocus genotype of this
offspring was obtained by simulating Mendelian inheritance.
Genotyping errors were then simulated using the random
genotype replacement model of Marshall et al. (1998)
described above, and a genotyping error rate of 0.01.

Once the observed genotypes were constructed, we used
the statistical framework of Marshall et al. (1998) to identify
the most likely father and to assess the statistical confidence
of that identification. This entails calculating the natural
logarithm of the likelihood-odds ratio, LOD, for each adult
male. The LOD score for an alleged male is equal to

(eqn 3)

where likelihoods in the numerator and denominator
are calculated from equations 1 and 2. A positive LOD
indicates that a male is more likely to be the father than is
a male randomly drawn from the population. A negative
LOD indicates the male is less likely to be the father than
is a male randomly drawn from the population. Once
LOD scores are calculated for all males, the male with the
highest score is the putative father. The statistical confidence
of this estimate is measured by the difference between
LOD scores of the male with the highest score and the male
with the second highest score. If this difference, denoted
∆, is large, we can be confident that the male with the
highest LOD score is actually the father. Like in Marshall
et al. (1998), we used a LOD score of zero as a threshold
while calculating ∆ (see Marshall et al. 1998; p. 642 for details),
and used computer simulation to estimate a critical value
of ∆ to use to establish statistical confidence. This critical
value was chosen so that 99% of the ∆ values above ∆
critical (∆0.99) were correct assignments. These calculations
were done using both the original likelihood equations
of Marshall et al. (1998) and also the corrected equations
presented above.

In each iteration of the simulations, we recorded whether
the male with the highest LOD score was actually the father
and the value of ∆ for this male. One hundred thousand
simulations were run for each set of parameters.

An empirical example: paternity in Rum deer

We also used a new version of cervus that incorporates
the corrected likelihoods, cervus 3.0, to assess the impact
of the correction on assignment of paternity in red deer on
the Isle of Rum, Scotland. Analysis of this data set using the
original likelihoods, based on data from nine microsatellite
and three allozyme loci, was previously described in
Marshall et al. (1998). The analysis included 875 calves
born in the study population between 1982 and 1996 that
were typed at six or more loci. Of these offspring, 655 had
mothers that were also typed at six or more loci. Offspring
born in a given year were tested against stags typed at six
or more loci that were observed in the study area during
the preceding mating season. Simulations carried out to
establish critical values of ∆ used the corrected likelihoods
but otherwise used identical allele frequencies and parameters
as the original analysis. Note that for consistency with earlier
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studies, the confidence levels used in this analysis, 80%
and 95%, are lower than the 99% used for the simulations
described elsewhere in this study.

Results

The new likelihood equations presented above modestly
increased the rate at which paternity could be correctly
assigned with statistical confidence (i.e. ∆ > ∆0.99) (Fig. 1).
For example, when six loci were genotyped, and both
the actual and assumed genotyping error rates were 0.01,
the original likelihood equations of Marshall et al. (1998)
were able to correctly assign paternity (with a ∆0.99 level
of confidence) to 51% of the offspring. The corresponding
result for the corrected equations was 73%. The amount of
improvement depended on the number of loci genotyped
(Fig. 1). If sufficient loci were genotyped (e.g. 10+), both
methods worked well. However, when fewer than 10 loci
were genotyped, the corrected equations worked better.

The simulations also showed that the male with the
highest likelihood of being the father was in fact usually
the actual father — and that this was true using the original
likelihoods of Marshall et al. (1998) as well as the corrected
likelihoods (Fig. 2). In other words, the errors in the
equations of Marshall et al. (1998) resulted in decreased
confidence in a male being the father, but did not have a
substantial effect on identification of the correct father.

The simulations also showed a clear benefit to including
genotyping error in likelihood equations (Fig. 3). Morrissey
& Wilson (2005) reported that allowing for genotyping
error produced lower rates of paternity assignment than
assuming there were no errors — even when data contained

Fig. 1 The proportion of times that the correct father could be
identified confidently (∆ > ∆0.99) in computer simulations for the
original likelihood equations of Marshall et al. (1998) (dashed line)
and for the corrected equations presented in this study (solid line).
Simulated data had allele frequencies [0.25, 0.25, 0.2, 0.15, 0.05,
0.05, 0.02, 0.01, 0.01, 0.005, 0.005]. The x axis shows the number of
loci used for each simulation. A genotyping error rate of 0.01 was
used while simulating genotypes and while analysing the data.

Fig. 2 The proportion of times that the male with the highest LOD
score was actually the father in computer simulations for the original
likelihood equations of Marshall et al. (1998) (dashed line) and for the
corrected equations presented in this study (solid line). Simulated
data had with allele frequencies [0.25, 0.25, 0.2, 0.15, 0.05, 0.05, 0.02,
0.01, 0.01, 0.005, 0.005]. The x axis shows the number of loci used
for each simulation. A genotyping error rate of 0.01 was used
while simulating genotypes and while calculating likelihoods.

Fig. 3 The proportion of times that the correct father could be
identified confidently (∆ > ∆0.99) in computer simulations for
analyses that assumed the error rate was 0.01 (solid line) or
0.0 (dashed line) in the likelihood calculations — when the
actual genotyping error rate was 0.01. Simulated data had allele
frequencies [0.25, 0.25, 0.2, 0.15, 0.05, 0.05, 0.02, 0.01, 0.01, 0.005,
0.005]. Panel 3a shows results using the original equations of
Marshall et al. (1998). Panel 3b shows results using the corrected
equations described in this study. The x axis shows the number of
loci used for each simulation.
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errors. We obtained the same result using the original
likelihoods of Marshall et al. (1998) with between three
and seven loci (Fig. 3a). However, when we used corrected
equations, the apparent cost to including genotyping errors
either disappeared (when between four and seven loci
were used) or turned into a clear benefit (eight or more loci)
(Fig. 3b). Failure to allow for error actually led the number
of paternities assigned to fall if more than eight loci were
used.

The corrected likelihoods also improved the success of
paternity analysis in Rum red deer. More paternities were
assigned using the corrected likelihoods than using the
original likelihoods of Marshall et al. (1998) at 80% and 95%
confidence both when mothers were sampled (Fig. 4a) and
when mothers were unsampled (Fig. 4b). Increases were
large, around 10% of offspring tested, for analyses where
most paternities were previously unassigned (i.e. at the
higher 95% confidence level when mothers were sampled and
at both confidence levels when mothers were unsampled).

However, not all the individual paternities assigned using
the original likelihoods were assigned to the same males
when using the corrected likelihoods (Fig. 4a, b, columns 1
and 3). Around 17% of paternities assigned at 80% confidence
using the original likelihoods were not assigned using the
corrected likelihoods, both when mothers were sampled
and when mothers were unsampled. For approximately
two-thirds of these cases, the male assigned using the
original likelihoods was still the most likely male but could
no longer be assigned with the same level of confidence.
For the remaining third, a different male was most likely.
Ten paternities (3%) assigned at 80% confidence using the
original likelihoods were actually assigned to a different
male at 80% confidence using the corrected likelihoods
when mothers were sampled; there were no such cases
when mothers were unsampled. At the 95% confidence
level, 8% of paternities assigned using the original likeli-
hoods were not assigned using the corrected likelihoods
when mothers were sampled. In almost all of these cases,
the male assigned using the original likelihoods was still the
most likely male but could no longer be assigned with the
same level of confidence, and in no cases was another male
actually assigned paternity. When mothers were unsampled,
all paternities assigned at 95% confidence using the
original likelihoods were also assigned using the corrected
likelihoods.

The corrected likelihood equations are expected to decrease
the likelihood of paternities that involve father–offspring
mismatches at one or more loci. Using original and corrected
likelihoods, we examined the number of paternities assigned
at 80% confidence with zero, one or two or more mismatching
loci among the 12 tested (Fig. 5). The number of paternities
assigned with one or more mismatches decreased using the
corrected likelihoods even as the total number of assigned
paternities increased. Furthermore, the 25 paternities

assigned using the original likelihoods despite two or
more mismatches were reduced to just three when the
corrected likelihoods were used.

Finally, we repeated this analysis using the corrected
likelihoods but with a lower error rate in the likelihood
calculations than in the simulated genetic data as suggested
by Morrissey & Wilson (2005). Specifically, we used an error
rate of 0.01 in the genotypes simulated to calculate critical
values of ∆ and an error rate of 0.001 to calculate likeli-
hoods in both the simulation and the analysis of the

Fig. 4 The results of paternity inference for 875 Rum red deer calves
born between 1982 and 1996, comparing the number of paternities
assigned using the original likelihood equations of Marshall et al.
(1998) with the number of paternities assigned using the corrected
likelihood equations presented in this study. Cases where the
mother was sampled (Fig. 4a) were analysed separately from
those where the mother was unsampled (Fig. 4b) and in each case
paternities were assigned at two nested confidence levels, 80%
and 95%. Columns show paternities divided into two categories:
(i) assigned by both methods (dark fill), and (ii) paternities
assigned only using the original likelihoods (crosshatching) or
paternities assigned only using the corrected likelihoods (light
fill). Analysis was based on nine microsatellite and three allozyme
loci (Marshall et al. 1998); to be included, individuals had to be
typed at a minimum of six loci. In each case confidence was
determined by simulations using parameter values shown in
Marshall et al. (1998). Because on average only 65% of candidate
males were sampled, it is unlikely that the number of assigned
paternities would exceed 426 (Fig. 4a) or 143 (Fig. 4b) even with an
unlimited number of loci.
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real data. We found that when mothers were sampled, the
number of paternities assigned decreased by 4% at the
80% confidence level and 3% at the 95% confidence level.
When mothers were unsampled, the number of paternities
assigned increased by 1% at the 80% confidence level and
3% at the 95% confidence level.

Discussion

We have described equations for likelihood of paternity
that correct an error in the likelihood equations of Marshall
et al. (1998). The corrected equations have two important
consequences, demonstrated both by simulation and using
the reanalysis of Rum red deer. First, they significantly
increase the number of paternities that can be assigned at
a given level of confidence. Second, they eliminate the cost
of allowing for genotyping errors described by Morrissey
& Wilson (2005).

Users of versions 1 and 2 of the parentage analysis
software cervus, which implement the original likelihood
equations of Marshall et al. (1998), may wonder how the
error in the original likelihood equations impact their
existing analyses. The main impact is likely to be that fewer
paternities were assigned than could be assigned using the
corrected likelihood equations. However, the great majority
of paternities that were assigned would still be assigned
to the same male with at least that level of confidence using
the corrected likelihood equations — in the case of Rum
red deer, 82% of all paternities assigned at 80% confidence
using the original likelihood equations were also assigned
at 80% confidence or better using the corrected likelihoods;
93% of paternities assigned at 95% confidence using the
original likelihood equations were also assigned at 95%

confidence using the corrected likelihoods. The number of
cases where corrected likelihoods assign paternity with
confidence to a different male is likely to be small — in the
case of Rum red deer this happened for just 2% of all
paternities assigned using the original likelihoods at 80%
confidence and never at 95% confidence. Using corrected
likelihoods is also likely to decrease the number of paternities
assigned with one or more mismatches between father and
offspring, and especially the number of paternities assigned
with multiple father–offspring mismatches. In Rum red
deer, 6% of paternities assigned at 80% confidence with the
original likelihood equations involved multiple father–
offspring mismatches. Using the corrected likelihood
equations, just 0.4% of paternities involved multiple
father–offspring mismatches.

In general, the main benefit of using the corrected
likelihood equations, implemented in version 3 of cervus,
will be to increase the number of paternities that can be
assigned at a given level of confidence. However, in
studies where paternity can already be assigned for
most offspring using the original likelihood equations of
Marshall et al. (1998), the corrected equations will allow
some of these paternities to be assigned with increased
confidence. In Rum red deer, 85 paternities assigned at
80% confidence using the original likelihoods (19%) were
upgraded to 95% confidence using the corrected likelihoods.

We also assessed Morrissey & Wilson’s (2005) suggestion
that the error rate used in likelihood calculations could
be set to a low (but nonzero) value. The increased success
they found when analysing paternity in Rum red deer
using the original likelihood equations did not occur with
the revised likelihood equations. Indeed there was a slight
overall decrease in the number of paternities assigned
using this strategy. We believe that our revised likelihood
equations eliminate the need to use an artificially low error
rate in the likelihood calculations in order to optimize the
success of paternity analysis.

Although we have shown a consistent benefit to allowing
for genotyping error in paternity tests, this result must be
tempered by the acknowledgement that the model of
genotyping error employed in this study, and in Marshall et al.
(1998), is quite simplistic. This model assumed that all loci
had the same error rate, and that errors produced ‘random’
genotypes. We know both assumptions are not likely to be
true. Genotyping error rates vary across loci (e.g. Slate et al.
2000; Creel et al. 2003; Bonin et al. 2004), and some types of
errors are more common than others (e.g. Bonin et al. 2004).
Simple errors, such as those caused by null alleles can
easily be accounted for in paternity tests (Kalinowski &
Taper 2006; Kalinowski et al. 2006c; Wagner et al. 2006), but
other errors present a greater challenge. Progress is being
made. Likelihood equations have been developed for
increasingly realistic models of genotyping error (e.g. Gill
et al. 2000; Sobel et al. 2002; Wang 2004; Kalinowski et al.

Fig. 5 The number of paternities assigned at 80% confidence with
zero, one or two or more mismatches between assigned father
and offspring, comparing the results using the original likelihood
equations of Marshall et al. (1998) (crosshatching, N = 452) with the
results using the corrected likelihood equations presented in this
study (light fill, N = 501). The data are as for Fig. 4, combining cases
where the mother was sampled with cases where the mother was
unsampled.
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2006a), but these models have not yet been tested against
simpler models (e.g. SanCristobal & Chevalet 1997;
Marshall et al. 1998) to see whether they produce better
estimates of paternity. Perhaps more importantly, these
models have not been validated with empirical data. Other
authors have avoided this potential quagmire by focusing
on matches or mismatches between individuals (e.g. Slate
et al. 2000; Vandeputte et al.  2006; Kalinowski et al. 2006b).
This approach has the benefit of simplicity, but may prove
less efficient. All of these topics deserve additional research.
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Appendix

Here we describe corrected likelihood equations for all three
categories of parentage analysis: (i) identifying the father
when the mother is unknown, (ii) identifying the father when
the mother is known, and (iii) identifying the father and
mother jointly. Likelihoods for (i) and (ii) may equally be
applied to analysis of maternity. These supersede the
equations given by Marshall et al. (1998) and Morrissey &
Wilson (2005).

In each case, hypothesis H1 that the alleged parent is the
true parent is evaluated relative to an alternative hypo-
thesis H2 that the alleged parent is unrelated, using the
observed genotypes of alleged father and offspring (ga, go),
and when relevant genotypes of mother or alleged mother
(gm, gam). The likelihood L is calculated for each hypothesis
using standard Mendelian transition probabilities T (these
are given for autosomal codominant markers in Marshall
et al. (1998)), genotype probabilities P (calculated from allele
frequencies assuming Hardy–Weinberg equilibrium) and the
estimated rate of genotyping error, ε. When a genotyping
error occurs, the true genotype is replaced by a genotype
selected at random under Hardy–Weinberg assumptions.
The likelihood ratio is obtained by dividing L(H1) by L(H2).
In all cases, the probabilities of the parental genotypes
cancel out, so the likelihood ratios depend on the transition
probabilities, the offspring’s genotype frequency, and the
rate of genotyping error. The likelihoods for paternity when
the mother is unknown are:

and

The likelihoods for paternity when the mother is
known are

and

The likelihoods for paternity and maternity jointly are
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