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Abstract: Estimating the accuracy of genetic stock identification (GSI) that can be expected given a previously collected
baseline requires simulation. The conventional method involves repeatedly simulating mixtures by resampling from the
baseline, simulating new baselines by resampling from the baseline, and analyzing the simulated mixtures with the
simulated baselines. We show that this overestimates the predicted accuracy of GSI. The bias is profound for closely
related populations and increases as more genetic data (loci and (or) alleles) are added to the analysis. We develop a
new method based on leave-one-out cross validation and show that it yields essentially unbiased estimates of GSI accu-
racy. Applying both our method and the conventional method to a coastwide baseline of 166 Chinook salmon (Onco-
rhynchus tshawytscha) populations shows that the conventional method provides severely biased predictions of accuracy
for some individual populations. The bias for reporting units (aggregations of closely related populations) is moderate,
but still present.

Résumé : L’estimation de la précision de l’identification du stock génétique (« GSI ») qu’on peut espérer, étant donné
une banque de données de base récoltée antérieurement, nécessite des simulations. La méthode courante comprend des
simulations répétées de mélanges par ré-échantillonnage de la banque de données de base, des simulations de nouvelles
banques de données de base en ré-échantillonnant la banque de données et l’analyse des mélanges ainsi simulés à l’aide
des banques de données de base simulées. Nous montrons que cette méthode surestime la précision prédite de GSI.
L’erreur est importante dans les populations fortement apparentées et elle augmente à mesure que de nouvelles données
génétiques (locus et (ou) allèles) sont ajoutées à l’analyse. Nous mettons au point une nouvelle méthode basée sur une val-
idation croisée de type « leave-one-out » (avec retrait d’un élément) et nous montrons qu’elle produit essentiellement des
estimations non erronées de la précision de GSI. L’application de notre méthode et de la méthode courante à une banque
de données de base provenant de 166 populations de saumons chinook (Oncorhynchus tshawytscha) réparties sur toute la
côte montre que la méthode courante fournit des prédictions de la précision qui sont grandement faussées pour certaines
populations individuelles. L’erreur dans le cas des unités d’évaluation (des rassemblements de populations fortement appa-
rentées) est peu importante, mais réelle.

[Traduit par la Rédaction]

Introduction

Genetic data have been used to estimate the stock compo-
sition of mixed-stock fisheries for over two and a half dec-
ades (e.g., Grant et al. 1980; Milner et al. 1981). The basic
methodology for this is straightforward: fish from the mixed
fishery are genotyped, as are fish in ‘‘baseline’’ samples,
which are taken separately from the populations that might
contribute to the mixture. Mixture proportions in the fishery
are then estimated using conditional maximum likelihood
(Milner et al. 1981; Fournier et al. 1984; Millar 1987), un-
conditional maximum likelihood (Smouse et al. 1990), or
Bayesian (Pella and Masuda 2001, 2006) methods that relate
the genotypes in the mixture to the expected genotype fre-
quencies in the baseline populations. Most applications of
this sort of genetic stock identification (GSI) have involved
Pacific salmon, but the basic methodology has now been ap-

plied to a wide range of other species as well (Waldman et
al. 1997; McParland et al. 1999; Koljonen et al. 2005).

Initially, allozyme polymorphisms used for GSI provided
sufficient resolution to address many Pacific salmon man-
agement concerns; however, other types of genetic data are
now becoming increasingly abundant and inexpensive.
Highly polymorphic microsatellite loci have been shown to
provide considerable power for GSI (Kalinowski 2004;
Winans et al. 2004). Declining costs of genotyping and the
recent completion of a cross-laboratory, standardized, micro-
satellite DNA baseline for over 150 populations throughout
the range of Chinook salmon (Seeb et al. 2007) have led to
microsatellites replacing allozymes for many GSI applica-
tions. In addition, numerous single nucleotide polymor-
phisms (SNPs) are being discovered in Pacific salmon, and
these may soon become useful, low-cost, high-throughput
genetic markers for GSI (Smith et al. 2005a). At the same
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time, there is a growing need for these technologies in fish-
eries management: attempts are being made not only to ap-
ply GSI to mixtures of evermore genetically similar stocks,
but also to identify the origin of individual fish in mixed
fisheries rather than just the aggregate proportion of fish
from different populations. These management tasks require
highly informative genetic data.

This confluence of management needs and data availabil-
ity makes it imperative that fisheries geneticists have at their
disposal a reliable method for assessing the expected accu-
racy of GSI with a given baseline data set. Developing such
a method is the main purpose of this paper. GSI is most ac-
curate when there is a high degree of genetic differentiation
between populations, when the baseline samples for each
population are large, and when large numbers of loci are
genotyped (Wood et al. 1987; Kalinowski 2004), but there
is no simple formula available to calculate how accurate
GSI is expected to be; therefore computer simulation must
be used. However, as we explain below, the simulation
methods currently in use to do this are flawed in a way that
leads them to consistently overestimate the expected accu-
racy of GSI.

If parametric allele frequencies in source populations
could be known without error, then estimating the accuracy
of GSI via computer simulation would be straightforward
(Fig. 1a). Baseline and mixture samples could be simulated
from the allele frequencies in the source populations, and
these data could be used to estimate mixture proportions.
The mean squared error (or some other summary statistic)
for a large number of these estimates would provide an esti-
mate of how accurate GSI is likely to be. In reality, para-
metric allele frequencies of source populations are never
known exactly, so an alternative simulation procedure must
be used. The standard approach in such situations is to as-
sume that the parametric allele frequencies in the source
populations are equal to the observed allele frequencies in
the baseline samples taken from the source populations

(Fig. 1b). Baseline and mixture genotypes are then simulated
from these allele frequencies in the same manner as they are
when parametric allele frequencies are known (Fournier et
al. 1984; Beacham et al. 2006). The only difference is that
the allele frequencies in the baseline samples are used as if
they were the parametric allele frequencies.

This approach for estimating the accuracy of GSI has
been in use for a long time in a variety of computer pack-
ages (including some of our own) and produces reasonable
estimates of the accuracy of GSI in many circumstances;
however, as we show below, GSI is generally less accurate
than these conventional simulations predict it will be, and
the discrepancy is most severe for the most challenging ap-
plications of GSI. The crux of the problem is that conven-
tional simulation does not properly account for sampling
error in baseline allele frequencies, and this error induces a
spurious correlation between the baselines and the individu-
als simulated by resampling from the baseline. Sampling er-
ror makes the allele frequency divergence observed between
samples larger, on average, than the true differences be-
tween the populations. Using these observed sample allele
frequencies to naively drive simulations of GSI will lead
one to exaggerate the accuracy of GSI. The magnitude of
this problem can be understood heuristically in terms of
FST, a standardized measure of genetic differentiation be-
tween populations that is familiar to most population geneti-
cists. If sampling error is not accounted for, FST for two
samples from a pair of populations will be inflated by a
term of approximate magnitude 1/(2n) (Wright 1978; Chak-
raborty and Leimar 1987), where n is the number of individ-
uals sampled. The estimated value of FST, F�ST, between two
source populations will then be equal to the true value plus
1/(2n). Because the accuracy of GSI increases with FST, an
inflated F�ST will lead to overly optimistic assessments of
how accurate GSI is likely to be.

A few numerical examples illustrate the potential impor-
tance of this type of bias. Assume that the parametric FST

Fig. 1. Diagrams representing different ways of simulating mixtures for the assessment of genetic stock identification (GSI) accuracy with
two populations (A and B) in the baseline. Both baseline samples, SA and SB, are assumed to be of size n individuals. Broken arrows repre-
sent the simulation of genotypes. (a) Individuals in the mixture are drawn directly from parametric population allele frequencies, as are the
baseline samples used to analyze the mixture. The magnitude of difference in parametric allele frequencies between A and B is indicated by
FST. Pursuing this method is typically impossible because the allele frequencies in A and B are never known without error. (b) The con-
ventional method in use today: parametric bootstrap with baseline resampling (PB-R). The baseline sample provides estimates of allele fre-
quencies, and these estimates are used to generate simulated individuals for the mixture and for a new ‘‘resampled’’ baseline. On average,
the magnitude of allele frequency difference between the populations, estimated from the baseline (F�ST), will be larger than between the
true population allele frequencies; F�ST ¼ FST þ 1

2n
. As a result, individuals in the mixture will be genetically more divergent than is really

the case, leading to overly optimistic estimates of power. (c) As in b, but without baseline resampling (PB-NR).
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between source populations A and B is 0.02 and that the
baseline samples, SA and SB, for these populations each in-
clude n = 50 individuals. The expected magnitude of infla-
tion of F�ST due to sampling error is then 1/(2n) = 0.01. In
this case, the degree of genetic differentiation that character-
izes individuals simulated for the mixture is F�ST ¼ 0:02
(parametric) + 0.01 (baseline sampling) = 0.03, which is in-
flated by 50% compared with the true FST for the popula-
tions. In the extreme, if A and B are really parts of the
same panmictic population, there is no basis whatsoever for
resolving a ‘‘mixture’’ of A and B individuals. However, a
mixture analysis conducted as in Fig. 1b would suggest that
some ability to resolve this mixture does exist. Furthermore,
as more and more loci are added to the analysis, the appa-
rent power to resolve this spurious mixture will increase. If,
on the other hand, allele frequency differences between pop-
ulations actually are much larger (e.g., FST = 0.1), the mix-
ture analysis will have high intrinsic power, and the
relatively small inflation of F�ST due to baseline sampling
will have comparatively little effect on estimated power.

In this paper, we propose a new method based on a leave-
one-out procedure for assessing GSI accuracy that is easy to
implement and that reduces the bias to a negligible amount
in most cases. Leave-one-out cross validation is not new to
genetic classification problems (Spielman and Smouse 1976;
Piry et al. 2004). However, the utility of the leave-one-out
procedure has not been fully appreciated in the context of
GSI, perhaps because its application to GSI is not as
straightforward or obvious as its application to genetic as-
signment tests. We illustrate the utility of the new method
and evaluate the magnitude of the bias in the conventional
method using simulated data. Finally, we assess GSI accu-
racy in a large microsatellite baseline using both the conven-
tional biased method and our new method to demonstrate
the practical implications of the bias.

Methods
Once a baseline sample, which includes, say, M popula-

tions, has been collected, it is natural to inquire how accu-
rately that baseline can be used to estimate the mixed-stock
fishery proportions, p = (p1, . . ., pM), using a fishery sample
of size N fish that might be collected in the future. For this
exercise, it is typical to assume some value p* of the mix-
ing proportions and perform simulations to see how closely
the maximum likelihood estimates, b�����, correspond to p*.
The conventional method to do this, as implemented in
SPAM (Alaska Department of Fish and Game 2000) and
GMA (Kalinowski 2003), involves the following steps for
each simulated data set. (1) The number of fish in the mix-
ture from each of the M populations is drawn from a multi-
nomial distribution of N trials with cell probabilities p*. (2)
A genotype G for each fish in the mixture from population i
is simulated by sampling, with replacement, from population
i’s allele frequencies, byyyyyi, as estimated from the observed
baseline. (3) A new baseline sample of the same size as the
observed baseline is created by sampling alleles, with re-
placement, from the observed baseline. A genotype for each
fish in the simulated baseline from population i is simulated
by sampling with replacement from byyyyyi. (4) The simulated
baseline is applied, using the standard conditional-likelihood

GSI framework (Fournier et al. 1984; Millar 1987), to find
the conditional MLE, bppppp, from the simulated mixture.

The conditional likelihood function commonly in use
today is an integrated likelihood that assumes a unit-
information Dirichlet prior on allele frequencies (Rannala
and Mountain 1997). In such a case, genotypes can be simu-
lated from their posterior predictive distribution (a com-
pound Dirichlet–multinomial distribution) rather than by
simply sampling alleles with replacement from the base-
lines. There seems to be little practical difference between
these two approaches.

Although the unconditional likelihood framework for GSI
(Smouse et al. 1990) and Bayesian methods (Pella and Ma-
suda 2001, 2006) may be preferable to a conditional likeli-
hood analysis, the conditional likelihood framework is
usually used for analyzing the simulated data sets because it
is customary to analyze many simulated data sets, and max-
imizing the conditional likelihood requires far less computer
time than maximizing the unconditional likelihood or com-
puting the Bayesian posterior distribution.

We call the above method the parametric bootstrap
method with baseline resampling (PB-R). A second method,
which is available as an option in SPAM, is the parametric
bootstrap with no baseline resampling (PB-NR). PB-NR is
identical to PB-R except that step 3 is omitted and the simu-
lated mixture is analyzed with the original baseline sample.
Our simulations (see below) show that both PB-R and PB-
NR provide upwardly biased predictions of GSI accuracy.

We introduce a slight modification to the steps above to
provide an essentially unbiased method for predicting GSI
accuracy. It proceeds as follows: step 1 is unmodified; step
2 is slightly modified, the two gene copies at a locus in a
single individual are drawn without replacement (but they
are both replaced before the next individual is simulated);
step 3 is omitted (it is not necessary to simulate a new base-
line sample); and in step 4, a leave-one-out procedure is
used when computing PðGjbyyyyyiÞ, the probability of the simu-
lated fish’s genotype G given the baseline allele frequencies.
This leave-one-out procedure takes the following form: if i
is not the population from which the individual was simu-
lated, then PðGjbyyyyyiÞ is computed as before. If, however, i is
the population from which the individual was simulated,
then PðGjbyyyyyð�Þi Þ is used instead of PðGjbyyyyyiÞ. byyyyyð�Þi is just the
MLE of qi computed after subtracting the gene copies car-
ried in G from the genes found in the baseline from popula-
tion i.

We refer to this new method as the cross-validation
method over gene copies (CV-GC). We explore two other
methods as well: cross validation over single locus geno-
types (CV-SL) and over multilocus genotypes (CV-ML).
CV-SL is identical to CV-GC except that in step 2, each sin-
gle-locus genotype is simulated by randomly sampling, with
equal probability, from among the single-locus genotypes
carried by members of the appropriate population in the
baseline. CV-ML is identical to CV-GC except that in step
2 each individual’s full, multilocus genotype is simulated
by randomly sampling, with equal probability, from among
the multilocus genotypes carried by members of the appro-
priate population in the baseline.

Some notation will be useful for the following section: we

Anderson et al. 1477

# 2008 NRC Canada



use bTj to denote the scaled likelihood vector of the jth indi-
vidual in a mixture. If the jth individual has genotype G, this
vector is obtained by starting with a vector the elements of
which are all PðGjbyyyyyiÞ and scaling them to sum to one. It
shall be understood that when using any of the leave-one-
out, cross-validation methods, one of the elements of bTj

will have been computed using PðGjbyyyyyð�Þi Þ. It can be shown
by the factorization theorem (Casella and Berger 1990,
p. 250) that the set of all bTjs is the sufficient statistic for p,
and a mathematical justification for our cross-validation
methods may be described in terms of the distribution of si-
mulated values of this sufficient statistic; however, for brev-
ity, we omit those details. The simulation results provide
enough evidence of the utility of our new methods.

Simulation experiments
We perform three separate experiments using purely si-

mulated data. In the first two, the structured coalescent
model (Hudson 1990) implemented in makesamples
(Hudson 2002) is used to simulate genotypes of individuals
from different populations in both the baseline and the mix-
ture samples. Each locus was simulated using a separate, in-
dependent realization of the coalescent process on a
nonrecombining DNA segment that we will refer to as a
‘‘chromosome’’. This creates loci that are independently seg-
regating. An island model of migration was used to effect a
given degree of divergence between the populations. Under
this model, populations that exchange many migrants each
year are not very highly diverged, and populations that ex-
change few migrants each year will be more highly di-
verged. In makesamples, the migration rates are
parameterized by a migration matrix [4Nemi,j], where mi,j is
the fraction of population i that is composed of migrants
from population j each generation and Ne is the effective
size of each population. Ne was assumed to be equal among
all populations and constant in time.

For example, to simulate 10 microsatellite loci in 200 in-
dividuals (400 chromosomes) from each of three populations
in a symmetric island model with 4Nemi,j = 5, we would first
use the makesamples command line ‘‘ms 1200 10 –t 8.0 –I 3
400 400 400 10’’. The above produces data using the infinite
sites model of mutation with rate controlled by the parame-
ter 4Ne� = 8.0, where � is the rate of neutral mutation each
generation. Each mutation in the infinite-sites model corre-
sponds to a mutation at a single, unique nucleotide on the
chromosome. For each chromosome in the simulation,
makesamples returns an ordered string of 1s and 0s, which
denote whether the chromosome did or did not, respectively,
inherit the mutated form of the nucleotide. We convert those
ordered arrays of infinite-sites mutations to microsatellite al-
leles following a stepwise mutation model with occasional
multistep mutations in the following manner: the ancestral
microsatellite allele length is set to a large value and each
mutant nucleotide in the locus is randomly assigned to be
an allele length increase or decrease with equal probability.
The magnitude of the length change associated with each
mutant nucleotide with probability of 0.85 was chosen to be
1 and with probability of 0.15 was 2 + W, where W is drawn
from a Poisson distribution with a mean of 3. Our mutation
parameters yielded simulated loci with an average of 15 al-

leles. The simulation of microsatellite alleles from infinite
sites mutations was done using the program ms2geno avail-
able from E. Anderson upon request.

For each simulation replicate, the genotypes of a large
number of individuals from each population were simulated.
Some of those individuals were randomly assigned to be
members of the baseline samples, and other, separate indi-
viduals were chosen to be members of the mixture samples.
We simulated different numbers of individuals under vary-
ing parameter values in the two coalescent simulation ex-
periments. Specifics are described below. The number of
individuals in the baseline sample from population p is de-
noted by np, the number of individuals from population p in
the mixture is denoted by Np, and the size of the whole mix-
ture sample is denoted by N.

All the simulation output was analyzed using the program
gsi_sim written by Eric Anderson. The programs GMA,
SPAM, and cBayes (Neaves et al. 2005) are not amenable
to large-scale simulation studies because they are available
only for the Microsoft Windows platform and cannot be
easily scripted in a Unix-like environment. We verified the
results of our large simulations on small test cases analyzed
by GMA and SPAM. All of the analyses, and the parametric
bootstrapping of mixtures, were done using the likelihood
model proposed by Rannala and Mountain (1997) with the
unit-information prior. Nearly identical results were obtained
using the unifom prior (result not shown).

Our first experiment investigates the simplest population
scenario possible: a mixture formed from two populations,
indexed 1 and 2, simulated with a migration rate 4Nem1,2 =
4Nem2,1 [ {PANMIX, 1000, 250, 100, 25, 10} between them.
We use ‘‘PANMIX’’ to denote the case in which the popula-
tions are entirely panmictic. It is sometimes easier to think
of these migration rates in terms of the expected FST values
that they will produce between the populations. Under an in-
finite alleles model, the expected FST values would be ap-
proximately 0, 0.001, 0.004, 0.01, 0.04, and 0.09,
respectively. Mutation rate was 4Ne� = 4.5 (for the PAN-
MIX case, 4Ne� was set to 8.0 to ensure roughly the same
number of alleles in all cases). Baseline sample sizes from
each of the two populations were n1 = n2 = 144, and each
individual had genotypes at L = 13 loci. These sample sizes
and L are identical to those throughout the baseline gathered
by the Pacific Salmon Commission (PSC) Genetic Analysis
of Pacific Salmon (GAPS) Consortium (Seeb et al. 2007).
We compared the true distributions of bTj and bppppp with the dis-
tributions obtained by simulating new individuals using re-
sampling from the baseline allele frequencies. The true
distributions, which we refer to as ‘‘true’’, were obtained by
computing bTj and estimating bppppp from mixtures containing in-
dividuals that were distinct from the individuals in the base-
lines, but which were simulated on the same coalescent
trees. The distributions of bTj and bppppp for mixtures formed by
resampling from the baseline allele frequencies were ob-
tained using the PB-NR, PB-R, CV-ML, CV-SL, and CV-
GC methods described above. Mixtures of N = 400 were si-
mulated. For assessing the distributions of bTj, N1 = 400 and
N2 = 0 and we investigated the distribution of the mean over
all fish j of bT j;1. The distribution of bppppp was assessed in the
simulation with N1 = 400 and another with N1 = 250. Note
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that in this case, the proportion of fish from the two popula-
tions is fixed in the sample itself. Thus the variance of bppppp
does not include the variance due to finite sampling of fish
from the mixture. For each value of N1, 1000 simulated
baselines and mixtures were used. For analyses involving re-
sampling, a single mixture was simulated and analyzed per
baseline. Thus, each distribution is estimated using 1000
realizations of the variable.

In the second experiment, we simulated five populations
in a symmetric island model with migration rates 4Nemi,j [
{PANMIX, 62.5, 25, 6.25, 2.5} for all i = j. In a single coa-
lescent simulation for each migration rate, we generated
enough individuals to produce 25 replicate baselines con-
taining 144 individuals from each of the five populations
and 250 mixture samples of size N = 400. The true mixing
proportions p for populations 1–5 were 0.5, 0.25, 0.125,
0.0625, and 0.0625, respectively. We analyzed each mixture
sample using the 25 replicate baselines. Additionally, using
both the CV-GC and the PB-R methods, for each of the
25 baselines, we created and analyzed 250 mixtures by re-
sampling genes from the baselines. For each of the 25 base-
lines, the average value of bppppp over the 250 mixtures was
recorded. The results are presented in terms of the mean
and standard deviation of this mean bppppp over the 25 baselines
considered across the five different populations and the five
different migration rates.

The third and final simulation was designed to determine
whether the bias of the PB-R method is a complication of
using loci with large numbers of alleles, some of which are

at very low frequency, or whether the bias is evident even
when the loci used have few alleles, all of them at inter-
mediate frequency. Kalinowski (2004) found that the total
number of alleles (across all loci) was a key determinant of
the accuracy of GSI. Therefore, we fixed Ktot, the total num-
ber of informative alleles in the simulation, at 256, and then
varied L, the number of loci, in powers of two from 1 to
256. We assumed two populations with identical, uniform,
allele frequencies. Thus, for a simulation with L loci, each
locus had k = 1 + Ktot/L alleles, each at a frequency of 1/k.
Five-hundred different baselines were simulated by sampling
144 individuals for each population from these uniform al-
lele frequencies. For each baseline, a single mixture of N =
400 fish, all of them from population 1, was simulated and
analyzed using the CV-ML, CV-SL, CV-GC, PB-R, and PB-
NR methods. For each mixture, we recorded the average
value, over individuals in the mixtures, of bT j;1. We present
the results in terms of the average value of bT j;1 over the
500 replicate baselines. Because the two populations have
identical allele frequencies, the expected value of bT j;1 is
0.5, and any systematic departure from that is a sign of bias.

Analysis of empirical data
We use the coastwide Chinook microsatellite baseline de-

veloped by the PSC-funded GAPS consortium (version 2.1
of the baseline, unpublished data, obtained in 2006 from M.
Banks, Coastal Oregon Marine Experiment Station, Hatfield
Marine Science Center, Department of Fisheries and Wild-
life, Oregon State University, Newport, OR 97365) as the

Table 1. Comparison of the CV-GC and PB-R methods using the GAPS microsatellite baseline (version 2.1 of the baseline, unpublished
data, obtained in 2006 from M. Banks, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Department of Fisheries
and Wildlife, Oregon State University, Newport, OR 97365) and mixing proportions from the 2006 Monterey Bay recreational fishery.

Mean �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE of �i

p Fraction of individual
assignments correct

Region or reporting unit Population True � CV-GC PB-R CV-GC PB-R CV-GC PB-R
Central Valley Fall Feather Hatchery Fall 0.3298 0.3374 0.3441 0.0337 0.0377 0.504 0.746
Central Valley Spring Feather Hatchery Spring 0.2731 0.2704 0.2742 0.0292 0.0303 0.596 0.773
Central Valley Fall Battle Creek 0.2069 0.2062 0.2107 0.0265 0.0272 0.513 0.739
Central Valley Fall Stanislaus River 0.0570 0.0526 0.0465 0.0168 0.0176 0.151 0.498
Central Valley Fall Butte Creek Fall 0.0489 0.0467 0.0377 0.0156 0.0169 0.145 0.462
Central Valley Winter Sacramento Hatchery 0.0321 0.0317 0.0320 0.0086 0.0088 0.999 1.000
Central Valley Spring Butte Creek Spring 0.0150 0.0147 0.0148 0.0063 0.0062 0.905 0.947
Central Valley Spring Mill Creek Spring 0.0083 0.0088 0.0086 0.0053 0.0049 0.552 0.748
Rogue River Applegate Creek 0.0077 0.0063 0.0072 0.0038 0.0040 0.732 0.854
California Coast Eel River 0.0039 0.0036 0.0037 0.0024 0.0024 0.896 0.952
California Coast Russian River 0.0030 0.0032 0.0031 0.0024 0.0024 0.909 0.945
Klamath River Trinity Hatchery Spring 0.0028 0.0026 0.0027 0.0023 0.0023 0.646 0.788
Northern California –

southern Oregon Coast
Chetco River 0.0026 0.0025 0.0026 0.0020 0.0021 0.900 0.942

Klamath River Klamath River Fall 0.0024 0.0023 0.0024 0.0021 0.0021 0.733 0.845
Klamath River Trinity Hatchery Fall 0.0020 0.0023 0.0022 0.0024 0.0022 0.636 0.766
Central Valley Spring Deer Creek Spring 0.0018 0.0019 0.0017 0.0023 0.0018 0.303 0.610
Upper Columbia River Hanford Reach 0.0014 0.0012 0.0016 0.0019 0.0021 0.453 0.667
Rogue River Cole Rivers Hatchery 0.0005 0.0012 0.0008 0.0020 0.0015 0.587 0.750
Mid-Oregon Coast Umpqua Hatchery 0.0005 0.0009 0.0007 0.0017 0.0015 0.510 0.723
Mid-Oregon Coast Coquille River 0.0005 0.0003 0.0004 0.0007 0.0009 0.557 0.736

Note: True � refers to the value of � used to generate the simulated mixtures. CV-GC, cross-validation method over gene copies; PB-R, parametric
bootstrap with baseline resampling. Summary statistics for b�i and the fractions of correct individual assignments were calculated from 2500
simulated mixed-fishery samples.
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basis for two analyses to demonstrate practical consequences
of using the conventional, biased method for predicting GSI
accuracy. This baseline includes 22 231 fish from 166 Chi-
nook salmon populations ranging from central California to
Alaska (the Quinault Hatchery population was removed be-
cause of its small sample size). The baseline contains at
least 144 fish from most of the 166 populations.

In the first analysis, we performed ‘‘100% mixture simu-
lations’’ for each population in the baseline. In such a simu-
lation, multiple mixture samples composed entirely of fish
from a single population, say population i, are simulated
and analyzed. The accuracy of GSI is assessed on the basis
of how close the average value of b�i is to 100%. Such 100%
mixture simulations may not be a particularly realistic way
of assessing the utility of a set of markers for GSI, but they
have been used numerous times in the literature (for exam-
ple, see Seeb and Crane (1999), Smith et al. (2005b), Hab-
icht et al. (2007), etc.). We simulated one-hundred 100%

mixtures of size N = 200 for each of the 166 populations in
the baseline. These mixtures were simulated using both the
CV-GC and the PB-R methods. For each method, we re-
corded the mean over the 100 samples of b�i. A separate set
of simulations was performed with identical conditions ex-
cept that each mixture was composed entirely of individuals
from populations within a single one of 44 reporting groups
that partition the 166 populations. Populations within each
reporting group were assumed to contribute equally to the
mixture. For the reporting group simulations, we recorded
the mean over 100 replicates of the sum over populations i
in the reporting group of b�i.

In the second analysis, we simulated 2500 mixed-fishery
samples of size 400 fish using both the CV-GC and the PB-
R methods. The value of p used to simulate the mixture
samples was set close to the mixing proportions estimated
using GSI from 735 Chinook salmon sampled from the
Monterey Bay recreational fishery in the spring of 2006
(Table 1). Each sample was analyzed using the entire coast-
wide Chinook baseline. We recorded the mean and mean
squared error (MSE) over all 2500 samples of b�i for each
population i represented in the mixture. Additionally, we as-
signed each fish in every simulated mixture to the popula-
tion having highest posterior probability, approximated
using the MLE, b�. In other words, fish j was assigned to
the population i that had the maximum value of

Pj ¼
b�iTj;iX
k
b�kTj;k

We recorded the fraction of fish from each population as-
signed in this manner to the correct population.

Results

Simulation experiments
The results of our first simulation experiment demonstrate

a profound bias in bTj when using the PB-NR and PB-R
methods and show that the cross-validation methods provide
essentially unbiased values of bTj (Fig. 2). Because this vec-
tor can be shown to be the sufficient statistic for estimating
p using the conditional MLE method, bias in Tj indicates a
serious problem for any simulation procedure. The bias is
most pronounced when the two simulated populations are
panmictic. In that case, the expected value of bT j;1 is, by a
simple symmetry argument, 0.5, which is also the mean
value obtained using the CV-ML, CV-SL, and CV-GC
methods. In contrast, as expected for PB-NR, the distribu-
tion of bT j;1 is extremely biased, having a mean close to 0.7.
Interestingly, using resampled baselines does little to correct
the bias: the PB-R method shows an average value of bT j;1 of
0.66, far closer to the PB-NR value 0.7 than to the correct
value of 0.5. As the migration rate decreases, the relative
magnitude of the bias decreases, but the PB-NR and PB-R
methods continue to deliver clearly biased values of bT j;1 all
the way up to 4Nem = 10 (expected FST & 0.09). All the
cross-validation methods appear to remain unbiased at all
migration rates.

The impact of this bias on the estimation of p is pro-
nounced (Fig. 3). Even when a mixture is composed entirely

Fig. 2. Box plots of bTj simulated in five different ways. Bold lines
are the medians, boxes span the interquartile range, whiskers extend
to 1.5� the interquartile range beyond each box edge, and open
circles denote data points falling beyond the whiskers. For each re-
plicate, 400 fish from population 1 were simulated and the mean
value of T̂ j;1 over those 400 fish was computed. Each box plot
summarizes the distribution of the mean of the T̂ j;1 values over
1000 replicates. (a–f) Different migration rates, as shown in the ti-
tle of each panel. The method producing each box plot appears be-
low the x axis. In the ‘‘true’’ method, each mixture sample of
400 simulated fish is obtained by simulating additional leaves on
the coalescent tree used to simulate the baseline samples. In addi-
tion to the bold line in the box plot, an extended broken line ap-
pears at the average T̂ j;1 value obtained with the true method.
Departures by the other methods from this line represent bias. In
the other methods, each mixture sample of 400 fish is simulated by
resampling from the baselines via either a parametric bootstrap
method (PB-R, parametric bootstrap with baseline resampling; PB-
NR, PB without baseline resampling) or a cross-validation method
(CV-GC, cross-validation over gene copies; CV-SL, CV over single
locus genotypes; CV-ML, CV over multilocus genotypes).
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of fish from population 1, if populations 1 and 2 are pan-
mictic, then the true, expected value of b�1 is 0.5. The aver-
age value of b�1 obtained with the cross-validation methods
is very close to 0.5. For the PB-R method, however, the
average is 0.82. In this case, the bias inherent in bTj using
the PB-R method is magnified, creating an even more appa-
rent bias in the estimates of b�1. All the results in Fig. 3
show that the PB-R method provides biased estimates of p1
at various migration rates and for two different true values
of p1, demonstrating that the conventional method overesti-
mates, sometimes greatly so, the accuracy that can be ex-
pected from GSI given a particular baseline.

Though the mean values of bT j;1 and b�1 obtained using the
cross-validation methods are very close to those obtained
with the ‘‘true’’ method, it can be seen from the box plots
that there are differences between the full distributions of
bT j;1 and b�1 obtained by the different approaches. This is
likely the case because bTjs simulated by the cross-validation
methods are not conditionally independent given the base-
line, as they are under the true model. Despite this non-
independence, however, it appears that the cross-validation
methods provide an adequate approximation to the true dis-
tribution.

The five-population simulations deliver results (Fig. 4)
similar to the two-population simulations. Under panmixia,
the true expected value of b�i is 0.2 (one divided by the
number of populations), and in fact, the observed mean b�i
of the ‘‘true’’ simulations (circles in Fig. 4) do fall on 0.2
for the panmictic simulations. The mean b�i from the CV-
GC method is also close to 0.2; the slight discrepancy,
where it appears, is due, most likely, to the means being
based on only 25 replicates. The PB-R method, however,
tends to produce estimates of b�i that are much closer to the
value of �i used to simulate the mixtures. As before, when
the divergence between populations increases, the bias be-
comes less apparent: with 4Nem = 25, the average b�i is close
to the true value of pi for all methods. This suggests that the
bias of the PB-R method should not be extremely problem-
atic if all populations are well diverged genetically. These
simulations, like the previous ones, confirm that the PB-R
method yields consistently upward-biased estimates of GSI
accuracy.

In our third simulation experiment, we found that the total
number of alleles exerts a strong influence on the bias of the
PB-R method (Fig. 5). The distribution of those alleles into

a large or small number of loci had a secondary influence on
the bias. For example, the degree of bias, measured in terms
of mean bT j;1, was nearly equal whether using 256 diallelic
loci or 8 loci with 33 alleles each. (Because the frequency
of one allele at each locus is completely determined by the
remaining alleles, each diallelic locus has one independent
allele and each locus with 33 alleles has 32 alleles, which,
though not technically independent, are often referred to in
the literature as ‘‘independent’’ alleles. Thus, 256 diallelic
loci and 8 loci with 33 alleles have the same number of ‘‘in-
dependent’’ alleles.) Only when the number of alleles per lo-
cus approaches 64 does there seem to be a noticeable
increase in bias resulting from the very low allele frequen-

Fig. 3. Box plots of �̂1 in a two-population mixture model. Each
box plot summarizes 1000 replicate simulations with n1 = n2 = 144
and N = 400. The actual proportion of fish from population 1 in
each simulated mixture sample is represented by the horizontal, so-
lid line (1.0 in panels a–f and 0.625 in panels g–l). The ‘‘true’’ box
plot shows the true distribution of �̂1 obtained when the mixture
sample is from the same population as the baseline sample but is
taken separately from the baseline. The mean of this distribution is
also denoted with a horizontal, broken line. The other box plots re-
flect mixtures obtained by resampling from the baselines. The dis-
tribution of �̂1 is notably biased for the PB-NR and PB-R methods.
Such methods overestimate the accuracy of genetic stock identifi-
cation (GSI). PB-R, parametric bootstrap with baseline resampling;
PB-NR, PB without baseline resampling; CV-GC, cross-validation
method over gene copies; CV-SL, CV over single locus genotypes;
CV-ML, CV over multilocus genotypes.
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cies, and even this increase is minor. The results also show
that with more data (i.e., more alleles in total), the bias in-
creases. In other words, as more and more genetic markers
become available and are applied to resolve mixtures of
closely related populations, it becomes increasingly vital
that an unbiased method of GSI accuracy prediction be
used. Regardless of the number of alleles or loci in this sim-
ulation, all the cross-validation methods yielded unbiased

values of bT j;1. (Recall that, by symmetry, the true expecta-
tion of bT j;1 is 0.5.)

Analysis of empirical data
The simulations described above established that the

cross-validation methods provide largely unbiased estimates
of GSI accuracy. Now, the results obtained using the CV-
GC and PB-R methods applied to real data give us a some-
times alarming picture of the practical implications of the
PB-R method’s bias. This is plainly apparent in the 100%
simulated mixtures of populations in the GAPS baseline
(Fig. 6a). Using the PB-R method, only 17 of 166 popula-
tions had a mean b�i < 0:8. By contrast, the CV-GC method
reveals that fully 78 of 166 populations have mean b�i values
less than 0.8. Many populations having mean b�i � 0:85
under the PB-R method have mean b�i close to 0.6 using the
CV-GC method. For all those populations, the predicted ac-
curacy using PB-R is biased upward by some 40% from its
unbiased value obtained using CV-GC. When focusing on
reporting units, the bias appears to be not as great because,
overall, accuracy is higher for estimating contributions of re-
porting units than for estimating contributions of their con-
situent populations. Nonetheless, there is some bias
apparent (Fig. 6b). When using PB-R, none of the 44 report-
ing units (except for one, composed of a single population)
has mean � values < 0.9, whereas when using the CV-GC
method, 4 of them do.

The fact that the bias of the PB-R method is of less con-
sequence when genetic differentiation is substantial between
populations was confirmed in our simulations mimicking the
Monterey Bay recreational fishery (Table 1). There were no
clear, systematic differences in the mean estimates of p be-
tween the CV-GC and the PB-R methods relative to the
value of p used to drive the simulation. In this case, the
lack of apparent bias in PB-R is not unexpected; even when

Fig. 4. Mean �̂ in a simulation of five populations (a–e, popula-
tions 1–5, respectively). The true proportion that each population
contributes to the mixture is shown by a horizontal, solid line. Re-
sults from simulations using different migration rates are designated
by the migration rates listed at the bottom of each panel. Circles
represent the mean of the average �̂ expected if mixture samples
are separate from baseline samples. These reflect the true accuracy
that can be expected of genetic stock identification (GSI) given a
baseline. Additionally, a horizontal, broken line is drawn at the le-
vel of this true expected �̂. Triangles indicate the results for the
CV-GC (cross-validation over gene copies) method. The open
squares indicate the results for the PB-R (parametric bootstrap with
baseline resampling) method. Vertical bars denote the standard de-
viation of the means. The CV-GC values correspond closely to the
true, expected accuracy of GSI. The PB-R values are biased toward
the true value of �, suggesting greater accuracy than is truly avail-
able from a given baseline. The differences between the methods
are minimal at low migration rates (high genetic divergence) but
are remarkable at high migration rates (low divergence).

Fig. 5. Effect of the number of alleles per locus on the magnitude
of the bias. Total number of alleles is constant, but number of loci
changes. Cross-validation methods (CV-GC, CV over gene copies;
CV-SL, CV over single locus genotypes; CV-ML, CV over multi-
locus genotypes) with 128 and 256 alleles are all denoted by open
triangles. Parametric bootstrap method with baseline resampling
(PB-R) with 128 and 256 alleles are denoted by open squares and
open circles, respectively. In a two-population scenario, the amount
of bias in the PB-R method is shown here to be roughly constant,
whether alleles are apportioned into just a few loci, each with many
alleles, or into many loci, each with only two alleles.
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using the CV-GC method, the mean b�i is close to the true
value of pi for all the populations. If you are getting an ex-
cellent estimate from an unbiased method already, then the
bias of the PB-R method cannot contribute much spurious,
additional accuracy. Additionally, the MSE of the estimates
were not substantially different between the two methods.
This, also, is to be expected as most of the MSE in this
case results from the multinomial variance associated with
the number of fish from each population appearing in each
simulated mixture sample, and not from the inaccuracy of
genetic discrimination between the populations.

Though there was no discernible difference between using
CV-GC and PB-R in the estimation of bppppp in the Monterey
Bay Fishery simulations, there was a marked difference in
the observed rate of correct assignment of individual fish to
their population of origin (see Individual assignment col-
umns in Table 1). The fraction of correctly assigned fish us-
ing the PB-R method was always biased high relative to the
fraction using the CV-GC method. For some populations,

this bias was very pronounced. For example, the estimated
rate of correct allocation of salmon from Stanislaus River
and Butte Creek Fall, using PB-R, is over three times too
high. For applications requiring a careful assessment of the
accuracy of assignment of individual fish from mixed fish-
eries, it is critically important to use an unbiased method
like one of the cross-validation methods in preference to the
PB-R method.

Discussion
In this paper, we have demonstrated that the conventional

simulation method, which we call the PB-R method, invari-
ably provides a biased, overly optimistic prediction of the
accuracy achievable with genetic stock identification. The
PB-R simulation method involves resampling from the ob-
served baseline to produce a simulated mixture and a simu-
lated baseline that is used to analyze the simulated mixture.
It has been widely appreciated that the PB-NR method, ana-
lyzing the simulated mixture with the observed baseline,
might yield biased results, and we have shown this to be
the case. However, for over 20 years, it seems to have been
commonly believed that resampling the baseline as in the
PB-R method will minimize or eliminate that bias; it is clear
from our computer simulations that it does not.

We have also described and implemented a method that
provides essentially unbiased esimates of GSI accuracy. The
three versions of this method (CV-ML, CV-SL, and CV-GC)
are all based on the leave-one-out, cross-validation proce-
dure. Using simulated data, we first confirmed that our
cross-validation methods give essentially unbiased results.
Then, by applying the PB-R and CV-GC methods to empiri-
cal data sets, we were able to assess the practical consequen-
ces of the PB-R method’s bias.

We wish to stress that our method yields essentially un-
biased estimates of GSI accuracy only within the confines
of the asssumptions of the model, and particularly the as-
sumption that all populations in the mixture are accurately
represented in the baseline. Clearly, if individuals will ap-
pear in the mixture from populations that do not occur in
the baseline, or if there is temporal or spatial structure in
the baseline populations that is not well represented by the
baseline sample, then not even the CV-GC, CV-SL, or CV-
ML methods will reflect the accuracy that you can expect in
performing GSI. It would seem that there is no way to sys-
tematically and correctly account for the possibility of indi-
viduals from unsampled populations in the mixture.

There is little apparent difference in results for the three
cross-validation methods that we tried, but these differences
might be larger under certain conditions. For example, CV-
ML has the advantage that if some loci (or pairs of loci) are
out of Hardy–Weinberg (or linkage) equilibrium, that will
be reflected in the simulated genotypes; in addition, this op-
tion might best reflect the distribution of missing data. On
the other hand, CV-SL might be preferable if individual
loci show Hardy–Weinberg departures but pairs of loci are
in linkage equilibrium. Finally, CV-GC is perhaps the most
flexible option, as it can be used when only allele frequen-
cies (and not genotypes) are available, and the space of pos-
sible simulated genotypes is largest with that option.

To facilitate analysis of the large number of simulated

Fig. 6. One-hundred percent mixture results. (a) Each circle repre-
sents a single one of 166 populations in the coastwide Chinook
baseline. (b) Each circle represents one of 44 regions (or reporting
units) into which the 166 populations fall. The position along the
x axis indicates the mean over 100 simulations of the proportion of
that population (or region) estimated from a mixture sample com-
posed exclusively of members from that single population (or re-
gion) simulated using the CV-GC method (cross validation over
gene copies). The y axis indicates the results using the parametric
bootstrap method with baseline resampling (PB-R). The broken line
falls along y = x. The PB-R method is biased upward relative to the
CV-GC method, overestimating genetic stock identification (GSI)
accuracy (greatly so in the case of some individual populations).
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data sets, we only evaluated results for the conditional GSI
method. Although the unconditional GSI and Bayesian
methods have some potential advantages for genetic mixture
analysis, as currently implemented, they are not designed to
deal with the problem of inflated F�ST in simulated mixtures
due to baseline sampling error discussed in this paper.
Therefore, we would expect the same general patterns of
bias from these methods as we found for conditional GSI.

The impact of the bias is greatest in situations involving
closely related populations, and the extent of bias increases
as more loci and alleles are added to the data set. Both of
these observations make sense intuitively based on the con-
cepts of signal-to-noise ratio and statistical power. In closely
related populations, the noise (spurious divergence due to
sampling error) is large relative to the true population diver-
gence (signal), and this exacerbates the bias. For any given
inflated value of F�ST, the apparent (but inflated) power to
resolve the mixture increases as more loci and more alleles
are used. Further simulations (not shown) show that this lat-
ter effect occurs whether the genetic markers in question are
microsatellites or SNPs.

In the fisheries literature, populations yielding an average
estimated mixture proportion of 90% from 100% mixture
simulations are often considered highly identifiable in mixed
fisheries (Smith et al. 2005b). Using the essentially unbiased
CV-GC method, only 54 of the 166 populations in the
GAPS data set would be considered highly identifiable. Us-
ing the traditional PB-R simulations, however, 110 popula-
tions in the GAPS data set exceeded this highly identifiable
threshold. Thus, in the case of the GAPS data, the PB-R
method has misclassified more than half of the 110 popula-
tions placed in the highly identifiable category. We expect
that most fisheries managers will find this degree of bias in
the PB-R method unacceptable. One-hundred percent mix-
ture simulations, using the PB-R method and typically im-
plemented in SPAM (Alaska Department of Fish and Game
2000) or GMA (Kalinowski 2003), have been employed in a
great number of studies. Unfortunately, our work indicates
that re-evaluation of those past results may be warranted.

When inference for individual populations is not critical
and similar populations can be aggregated into larger report-
ing units (collections of multiple populations), the conse-
quences of the PB-R method’s bias are not so dramatic.
This occurs because the genetic divergence between mem-
bers of different reporting units often is large enough that
the additional bias from using the PB-R method is relatively
less noticeable. Our results show that although there is still a
consistent bias in the 100% mixture results for 44 reporting
units, the relative magnitude of the bias is not nearly so
great as with individual populations.

When multiple populations contribute to a mixture, the ef-
fects of the PB-R method’s bias can be more difficult to pre-
dict. This is apparent from our simulated Monterey Bay
Recreational Fishery samples. In this case, the PB-R and
the CV-GC methods delivered similar estimates of the accu-
racy with which mixing proportions of individual popula-
tions can be estimated (i.e., the means and the mean-
squared errors from both methods were roughly compara-
ble). This is likely because the actual numbers of fish from
each population in these simulated mixture samples were
themselves random variables (with means equal to N times

the true p), and the variance associated with each one re-
sulting from this random variation may have been large
enough to obscure the differences between the PB-R and
the CV-GC methods. On the other hand, if one intends to
use genetic data not only for estimating p, but also for allo-
cating individual fish to populations, then the PB-R method
still provides strongly biased results. In the Monterey Bay
example, when individuals were assigned to the population
having highest posterior probability, the rate of correct as-
signment predicted by the PB-R method was, for some pop-
ulations, over three times greater than the unbiased
prediction from the CV-GC method.

Our results apply to simulations in which hypothetical
mixture samples are simulated using the baseline as input.
When in possession of both a baseline sample and a separate
sample from a mixed fishery, the sampling distribution of bppppp
is sometimes estimated by repeatedly bootstrap resampling a
new mixture sample from the real mixture sample and a new
baseline sample from the observed baseline sample and then
estimating p from the bootstrapped samples (Fournier et al.
1984). Because this procedure does not induce a positive
correlation (with respect to the true population allele fre-
quencies) between the bootstrapped mixtures and the base-
lines, it should not suffer from the same degree of bias as
the PB-R method. In fact, this is apparent by comparing the
OBSERVED, SIMULATE, and BOOTSTRAP columns of
tables 10.2 and 10.3 in Pella and Milner (1987, p. 254). It
should be kept in mind, however, that such a bootstrapping
scheme yields only the sampling distribution of bppppp, which
may not reflect the range of possible true values of p that
could yield such estimates, especially when closely related
populations are present in the baseline.

We introduced this problem in terms of the biased value
of FST between populations obtained when the effect of
sampling is not taken into account. If one desires merely an
unbiased estimator of FST, then such an estimator is avail-
able using an analysis of variance approach (Weir and Cock-
erham 1984). On the basis of such an unbiased estimate of
FST, it would be possible to simulate genes from two popu-
lations, adjusting the results so as to achieve samples having
properties that would be expected of two populations di-
verged by an amount FST rather than by F�ST (see Introduc-
tion). Such maneuvers might allow for simulations of
mixtures and baselines that would provide a less biased
(than PB-R) prediction of GSI accuracy, using an approach
that is of an entirely different character than ours. In fact,
such a method was used to parametrize simulations of
spring- and fall-run Chinook salmon in the Trinity River
(Kinziger et al. 2008) designed to help interpret the results
of the program structure (Pritchard et al. 2000). Though
such an approach is useful when only two populations are
involved, its implementation becomes more complicated
when the baseline includes a large number of populations at
widely varying degrees of divergence. A related approach
would involve using estimates of baseline frequencies that
were adjusted by some shrinkage toward a grand mean allele
frequency. For predicting GSI accuracy, it seems unlikely
that such shrinkage methods would be as elegant and simple
to implement as the cross-validation method; however, it
could prove very useful in some contexts.

The bias effect we have described might not be limited
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merely to genetic stock identification in fisheries; it could
also confound other accuracy estimation problems in molec-
ular ecology. One example occurs with Bayesian, model-
based clustering approaches like those implemented in struc-
ture (Pritchard et al. 2000), NewHybrids (Anderson and
Thompson 2002), and BayesAss+ (Wilson and Rannala
2003). With closely related populations, it may be difficult
to interpret the output from these programs, and it is thus
becoming increasingly common to run the programs multi-
ple times on data simulated to look like the original data set
and, from the ensemble of outputs, arrive at an interpretation
of the original results. For example, Nielsen et al. (2003)
take this approach using the program structure to argue that
there is an Atlantic cod hybrid zone. We believe that doing
this type of simulation is an important step in applying such
Bayesian clustering methods; however, our current work
demonstrates that particular care must be taken in choosing
how to perform the simulations. For example, naively simu-
lating new data sets from the posterior mean allele frequen-
cies in the clusters suffers from the same problems as the
PB-R method and could lead one to conclude that more
power is available for resolving clusters than really exists.
It might be possible, however, to design such simulations
using the same principles of leave-one-out cross validation
as applied here. We are currently investigating the potential
for this in the context of Bayesian model checking and sen-
sitivity analysis executed during the run time of the Markov
chain Monte Carlo algorithm of each program.

We foresee that more and more genetic markers will be-
come available, and the demands placed on them for fish-
eries management will only increase. Managers will likely
seek resolution between increasingly closely related popula-
tions, and applications for allocation of individual fish will
continue to develop in fisheries. In such a climate, it is im-
portant to have accurate methods for assessing statistical
power for GSI. We suggest that the software packages cur-
rently in use be updated to include, as the default option, at
least one of the cross-validation methods described here.
ONCOR, a Windows-based program, for implementing the
simulations described here is available at http://www.
montana.edu/kalinowski. Another program, gsi_sim, with a
command line interface suitable for Unix-like operating
systems is available at http://swfsc.noaa.gov/staff.
aspx?id=740.
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