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Abstract: Statistical approaches for studying the spatial distribution of genetic diversity that assume that organisms move
through a two-dimensional landscape are not well suited to study populations of freshwater fish. We present a new statisti-
cal method for mapping genetic differences among populations of freshwater fish to the sections of streams that connect
them. The method is useful for freshwater species that can only disperse through stream corridors and for other species
that live in habitats for which there is one, and only one, corridor connecting each pair of populations (e.g., alpine organ-
isms confined to ridge tops). The model is a simple extension of the least-squares method for constructing evolutionary
trees. In this model, the genetic distances between populations are modeled as a sum of genetic distances mapped onto
landscape features (e.g., stream sections). Analysis of simulated data shows that the method produces useful results with
realistic amounts of data. The model was fit to empirical microsatellite data from four metapopulations of freshwater fish
and showed an excellent fit in three out of four cases. Software to perform the necessary calculations is available from the
authors at www.montana.edu/kalinowski.

Résumé : Les méthodologies statistiques pour l’étude la répartition spatiale de la diversité génétique qui présupposent que
les organismes se déplacent dans un paysage bidimensionnel ne conviennent pas bien à l’étude démographique des pois-
sons d’eau douce. Nous présentons une nouvelle méthode statistique pour cartographier les différences génétiques entre
des populations de poissons d’eau douce en relation avec les cours d’eau qui les relient. Cette méthode est utile pour les
espèces d’eau douce qui ne peuvent se disperser que par des corridors formés par des cours d’eau et pour les autres espè-
ces pour lesquelles il existe un, et un seul, corridor reliant chaque paire de populations (par ex., les organismes alpins con-
finés aux sommets des crêtes). Le modèle est une simple extension de la méthode des moindres carrés utilisée pour
construire des arbres phylogénétiques. Dans ce modèle, les distances génétiques entre les populations sont représentées
comme la somme des distances génétiques cartographiées sur des éléments du paysage (par ex., des sections de cours
d’eau). L’analyse de données simulées montre que la méthode fournit des résultats utiles avec un nombre réaliste de don-
nées. Nous avons ajusté le modèle à des données empiriques sur les microsatellites dans quatre métapopulations de pois-
sons d’eau douce et obtenu un excellent ajustement dans trois des quatre cas. On peut obtenir des auteurs le logiciel pour
réaliser les calculs nécessaires à www.montana.edu/kalinowski.

[Traduit par la Rédaction]

Introduction

The goal of landscape genetics is to understand how
geography shapes the genetic composition of populations
(e.g., Manel et al. 2003; Storfer et al. 2007). The first step
in accomplishing this is usually to describe the spatial distri-
bution of genetic variation. Once genetic relationships
among populations have been mapped onto the physical
landscape, the influence of landscape features upon genetic
structure may be inferred. Increasingly abundant genetic
data have recently heightened interest in such research, but

investigations of genetic diversity and geography date back
many decades (e.g., Wright 1943; Edwards and Cavalli-
Sforza 1964).

Traditional methods for describing genetic differences be-
tween populations often have disadvantages that limit their
usefulness for answering spatial questions. For example, the
most commonly used strategy for inferring how geography
has influenced population structure is to construct an evolu-
tionary tree showing genetic relationships between popula-
tions and then use this tree to identify landscape features that
are associated with genetic discontinuities. This approach can
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be very successful. For example, a tree showing genetic rela-
tionships among populations of Atlantic salmon (Salmo
salar) clearly showed that the largest genetic differences
were associated with the Atlantic Ocean (King et al. 2001).
Most trees, however, are not so easy to interpret because trees
show only genetic similarity; relating the branching pattern of
a tree to the physical landscape is often difficult.

The relationship between population genetic structure
and geography is often explored by testing for an
isolation-by-distance relationship. A significant correlation
between genetic difference and geographic distance means
that genetic differences are proportional to geographic dis-
tances and suggests that the rate of gene flow between
populations is proportional to how far they are apart. If ge-
netic differentiation shows a strong isolation-by-distance
pattern, no further analysis may be required to explore
how geography and genetic structure are related. However,
the absence of correlation between genetic differentiation
and geographic distance must be interpreted with caution,
because there are two very different explanations for how
such population structure could evolve. There may be no
correlation between genetic structure and geography either
because geography has not played an evolutionarily impor-
tant role in shaping genetic population structure or because
other geographic variables besides distance have been im-
portant. For example, barriers may prevent gene flow be-
tween populations that are close to each other, and
corridors may facilitate gene flow between populations that
are far apart. If a landscape contains barriers and corridors,
populations on the landscape may not show an isolation-
by-distance pattern, even though the genetic structure of
the populations may have been shaped entirely by the
physical landscape.

Many exciting analytic methods have recently been devel-
oped to map genetic differences among individuals and pop-
ulations (e.g., Manni et al. 2004; Miller 2005; Foll and
Gaggiotti 2006). The relative merits of these methods and
related techniques have not been clearly identified, but most
of these methods assume that individuals move through a
two-dimensional landscape. For many freshwater organisms,
there is only one potential corridor between each pair of
populations, and this information should be taken into ac-

count when studying how genetic diversity is distributed
throughout the landscape. Most of the current statistical ap-
proaches for studying landscape genetics cannot do this (the
computer program BARRIER, described by Manni et al.
(2004), is an exception) and are, therefore, poorly suited for
describing genetic diversity for many freshwater fishes.

In this paper, we present a simple statistical method for
mapping genetic differences between populations to the sec-
tions of streams that connect them. The method is a slight
modification of the least-squares approach for making evo-
lutionary trees and therefore has the advantage of using es-
tablished statistical methods that have proven to be useful.
We present this tool as a method for partitioning genetic dif-
ferences among populations living in a watershed, but the
method could be used for any populations for which there
is only one possible path between each pair of populations
(e.g., alpine populations connected by ridges, coastal organ-
isms living on a shoreline).

A spatial model of genetic differentiation
Let us assume that a matrix of pairwise genetic distances

(e.g., FST) has been estimated for a set of populations con-
nected by streams in a watershed. The goal of our analysis
is to map the genetic differences between these populations
to the streams that connect them. The model that we pro-
pose does this by assigning each section of stream in the
watershed a genetic distance that quantifies how much ge-
netic differentiation occurs across that stream section. If, for
example, a stream section contains a waterfall that is a bar-
rier to gene flow, we would probably expect that stream sec-
tion to be assigned a large genetic distance. Let us represent
the genetic distance mapped to the kth stream section as rk
(Fig. 1). The algorithm that we describe below assigns val-
ues of r to each stream section in such a manner that if we
sum up the rs for all of the stream sections between a pair
of populations, the sum of these genetic distances will equal
the observed genetic distances between the populations. For
example, if the pairwise FST between populations A and B is
equal to 0.17, and populations A and B are separated by
stream sections 1, 2, and 3, we seek values of r1, r2, and r3
so that r1 + r2 + r3 = 0.17 (Fig. 1).

Fig. 1. (a) A map showing the locations of five hypothetical populations of fish (A–E) connected by six stream sections. (b) A matrix of
genetic distances for the five populations. The goal of the statistical method described in this manuscript is to estimate the parameters r1 to
r6 so that the sum of the rs between each pair of populations is equal (or nearly equal) to the genetic distance observed between them. Such
estimates are shown in the ‘‘stream tree’’ in c. In this example, there is a perfect fit of the model to the data (i.e., the sum of the genetic
distances in the stream tree (c) are exactly equal to the genetic distances observed in the matrix (b).
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The main assumption in our model is that genetic distan-
ces between populations can be modeled as a sum of ge-
netic distances for the stream sections that connect them.
This may seem to be an overly simplistic model of genetic
differentiation, but it makes the same assumption used to
construct additive evolutionary trees (e.g., neighbor joining,
unweighted pair group method with arithmetic mean
(UPGMA); Felsenstein 2004). Additive evolutionary trees
are constructed so that the sum of branch lengths connect-
ing each pair of populations is approximately equal to the
observed genetic distance between the populations. The
main difference between the stream-based approach that
we describe below and an evolutionary tree is that we use
the network of streams in the watershed as the topology of
the tree, with each stream section in the watershed corre-
sponding to a branch in an evolutionary tree. For this rea-
son, we call our model of genetic differentiation a stream
tree.

Stream trees can be constructed from a matrix of genetic
distances as follows. Let N represent the number of popula-
tions that have been sampled in a watershed, and let Dij rep-
resent the genetic distance observed between populations i
and j. Let S represent the total number of stream sections
in the watershed (see below for a discussion of exactly how
to define stream sections). Let rk represent the genetic dis-
tance mapped to the kth stream section (Fig. 1), and let r
represent the vector of all these distances, r = {r1, r2, . . .,
rS}. We seek values of r so that the sums of the genetic dis-
tances for stream sections connecting populations are close
to the observed genetic distances between the populations.
We use the indicator variable xij,k to calculate these sums.
xij,k equals one if stream section k is between populations i
and j and equals zero otherwise. The genetic distance pre-
dicted by our model between populations i and j, dij, is
equal to

ð1Þ dij ¼ r1xij;1 þ r2xij;2 þ . . . þ rSxij;S

We use least-squares estimation to estimate r (Cavalli-
Sforza and Edwards 1967; for a review, see Felsenstein
2004, chapter 11). Let Q represent the sum of squared dis-
crepancies between predicted genetic distances and observed
genetic distances.

ð2Þ Q ¼
XN

i¼1

XN

j¼iþ1

ðDij � dijÞ2

Least-squares estimates of r are the values of r that mini-
mize Q. Several iterative and exact methods have been de-
veloped to find values of r for the mathematically identical
problem of phylogeny estimation. Here we use a slight mod-
ification of Cavalli-Sforza and Edwards’ (1967) approach.
To estimate r, we construct a matrix of genetic distances, D,
and a matrix of indicator variables, X. The genetic distance
matrix D contains the genetic distances for the N sampled
populations arranged in a single column with N(N – 1)/2
rows. We order the genetic distances so that the first row
contains the genetic distance for populations 1 and 2, the
second row contains the genetic distance for populations 1
and 3, and so forth. In the example shown in Fig. 1, D
equals

ð3Þ D ¼

DAB

DAC

DAD

DAE

DBC

DBD

DBE

DCD

DCE

DDE

2
666666666666664

3
777777777777775

The matrix X contains the coefficients xij,k in a matrix with
N(N – 1)/2 rows and S columns. Each row corresponds to a
comparison between two populations (arranged in the same
order as D), and each column corresponds to a stream sec-
tion. In the example shown (Fig. 1), X equals

ð4Þ X ¼

1 1 1 0 0 0

1 1 0 0 0 0

1 0 0 1 1 0

1 0 0 1 0 1

0 0 1 0 0 0

0 1 1 1 1 0

0 1 1 1 0 1

0 1 0 1 1 0

0 1 0 1 0 1

0 0 0 0 1 1

2
666666666666664

3
777777777777775

As above, a one in the matrix indicates that a stream section
connects two populations (or is at least part of the connec-
tion between populations). Given these matrices, least-
squares estimates of r are obtained

ð5Þ r ¼ ðXTXÞ�1XTD

(Cavalli-Sforza and Edwards 1967). This method for esti-
mating the genetic distances of each stream section in our
model has been used for a long time to estimate branch
lengths in evolutionary trees, e.g., by the computer program
FITCH (part of the PHYLIP software package; Felsenstein
2005). The neighbor-joining algorithm for estimating trees
(Saitou and Nei 1987) has probably been used more often
than least-squares approaches, but both approaches are
mathematically related (Felsenstein 2004).

A well-known problem with eq. 5 is that some of the
estimated branch lengths can be negative (Felsenstein
1997), and negative genetic distances have no biological
meaning. We have used the following iterative procedure
when one or more estimates are negative. First, we identify
the genetic distance that is most negative and constrain it
to equal zero. This is done by removing its column from
matrix X. Then we re-estimate the genetic distances for
the remaining stream sections. If some of resulting esti-
mates are negative, we constrain the most negative distance
to equal zero (in addition to the distance previously con-
strained to equal zero) and continue in this fashion until
all estimates are nonnegative. Algorithms like this are com-
monly used in constrained optimizations (McCulloch and
Searle 2001).

Once estimates of r have been obtained, it is natural to
ask if the resulting model fits the data well. This can be
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done by calculating the coefficient of determination, R2, for
the stream tree:

ð6Þ R2 ¼ 1�
P
ðdij � DijÞ2P
ðDij � DÞ2

where D is the average pairwise genetic distance between
the populations and summation is taken over all pairs of po-
pulations. If R2 is nearly equal to 1.0, the stream tree pro-
vides a good fit to the observed data.

We have modeled the genetic distance between each pair
of populations as a linear function of the genetic distances
for the stream sections connecting them (eq. 1) and have
used least-squares estimation to estimate these stream-spe-
cific distances (eq. 5). This approach is mathematically
equivalent to linear regression through the origin, which
means that any linear regression software package can be
used to estimate r. If regression is used, the observed pair-
wise genetic distance between populations is the dependent
variable. The indicator variables xij,k are the independent
variables, and the branch-specific genetic distances r are the
unknown parameters in the regression model. This is a no-
intercept model. Appendix A (Table A1) illustrates how the
data might be organized to perform this analysis. There are
two computational advantages to this approach. First, it can
be implemented with ordinary statistical software. Second,
some software packages offer methods for constraining re-
gression coefficients to be positive, so the iterative approach
described above may not need to be used. To prevent confu-
sion, we note that some software packages calculate R2 from
uncorrected sum of squares for a no-intercept model instead
of as we have in eq. 6.

Now that we have described the general structure of our
geographic model of population differentiation and ex-
plained how the model parameters can be estimated, we
will clarify exactly how to define stream sections. Each
sampled population must first be labeled on a map. Next,
the minimum number of stream sections connecting the pop-
ulations must be identified. Each of these stream sections
must end at either a sampled population or an intersection
with two other stream sections. Stream sections may not be
defined so that they are arranged in tandem fashion in which
one section starts at the end of another (unless there is a
sampled population at that point). A potentially confusing
scenario occurs when a tributary enters a main-stem section
downstream of all other populations (population D in
Fig. 2). The tributary and the main-stem section immediately

upstream of the tributary must be considered as a single
stream section. This is because all fish passing through the
tributary (e.g., coming from or going to population D in
Fig. 2) must also pass through the adjacent section of the
main stem if they are to travel to another population. There
is no way to differentiate between an obstacle to movement
in the tributary or the adjacent section of the main stem. In
mathematical terms, if the main-stem section and the tribu-
tary were treated independently (e.g., Fig. 2a), there would
not be a unique solution to eq. 2. Any pair of genetic distan-
ces for the tributary and immediately upstream main-stem
section (r5 and r6 in Fig. 2) that had the same sum would
fit the observed data equally well. Therefore, for the model
to be applied correctly, the sections must be labeled as a sin-
gle section (r5 in Fig. 2b).

Materials and methods

Simulations
We used computer simulation to test whether the stream

tree algorithm produced reasonable population structures us-
ing realistic amounts of data. These tests were not intended
to be comprehensive; instead, we attempted to verify that
the method worked well in circumstances that it should and
that it clearly failed when applied to populations with inap-
propriate evolutionary histories. In each test, genotypes were
simulated for samples from populations in a watershed, and
the stream tree algorithm was used to estimate genetic dis-
tances for each stream section in the watershed. Three spa-
tial models of gene flow were used in the simulations: a
headwater model, a linear stepping stone model, and a
semi-realistic model having a complex model of gene flow.

In the headwater model of gene flow (Fig. 3), eight popu-
lations were located at the headwaters of a watershed. We
assumed that the rate of gene flow between populations was
proportional to how closely populations were connected in
the watershed. Populations that were connected through the
upper part of the watershed (e.g., populations A and B)
were given a migration rate of 10–1. Populations that had
connections in the middle and lower parts of the watershed
were given pairwise migration rates of 10–3 and 10–5, re-
spectively. Each population was assumed to have a constant
effective population size (Ne) of 1000. The infinite alleles
mutation rate used to simulate genotypes was equal to 10–4.
Genotypes were simulated for 12 unlinked loci using stand-
ard coalescent methods (Hudson 1990). FST (Weir and
Cockerham 1984) was used as a pairwise genetic distance.

Two variations of the headwater model of gene flow were
also examined. In the ‘‘variable Ne’’ simulation, half of the
populations (B, D, F, and H; Fig. 3) in the watershed were
given a Ne of 500, and half the populations (A, C, E, and
G) were given an Ne of 1000. Genetic drift is stronger in
smaller populations, so in this scenario, the stream sections
that connect these smaller populations (sections 2, 4, 6, and
8; Fig. 3) to the rest of the watershed should have a larger
genetic distances than the stream sections connecting to the
larger populations (sections 1, 3, 5, and 7). A second varia-
tion of the headwater model examined the impact of head-
water exchange on the ability of a stream tree to describe
genetic structure. In this model, genotypes were simulated
using migration rates as above. However, before a stream

Fig. 2. A hypothetical stream network having four sampled popula-
tions (A–D) and stream sections defined either (a) incorrectly or (b)
correctly for the stream network model.
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tree was constructed for the watershed, the samples from
populations D and E were thoroughly admixed.

In the linear stepping stone model of gene flow (Fig. 4),
the rate of gene flow between adjacent populations was as-
sumed to be equal and symmetric. Three different migration
rates were examined: m = 0.01, 0.003, and 0.001. Ne for
each population was 1000. As for all models, the infinite al-
leles mutation rate was 10–4. Genotypes were simulated for
12 loci.

The third and last spatial model used to validate the
stream tree algorithm was the semi-realistic model. This
model assumed that rate of gene flow between populations
was determined by the geography of the watershed. The
model was inspired by an ongoing study of bull trout (Salve-
linus confluentus) population genetic structure in Glacier
National Park, Montana (M.H. Meeuwig, unpublished data).
Four types of waterways were modeled: a main-stem river,
tributary rivers, streams within tributaries, and a waterfall
(see Fig. 5 for a map depicting the hypothetical watershed).
Each of these four types of river sections was assigned a
barrier coefficient, z, that quantified how much of a barrier
to gene flow the section represented. The migration rate be-
tween each pair of populations was then modeled as 10�Sz,
where summation was taken over the barrier coefficients for
each stream section between the populations. The barrier co-
efficient for main-stem river sections was given a value of
0.0, indicating that it was not a barrier to gene flow. Streams
were assigned a barrier coefficient of 1.0, tributaries a coef-
ficient of 2.0, and the waterfall a coefficient of 4.0 (indi-
cating that the waterfall reduced the rate of gene flow by a
factor of 10–4). For simplicity, migration rates were assumed
to be equal upstream and downstream. A few examples il-
lustrate how migration rates were calculated (Fig. 5). The
migration rate between populations A and B was 10–(1+1) =
0.01. The migration rate between populations D and E was
10–(1+0+4) = 0.00001. As above, Ne for each population was
assumed to equal 1000, and the infinite alleles mutation rate

was assumed to equal 10–4. Genotypes were simulated for
data sets with 12 loci.

Empirical examples
We constructed stream trees of four metapopulations of

trout to illustrate the method and to assess whether stream
trees fit empirical data well. The four data sets that we ana-
lyzed included (i) 19 populations of rainbow trout (Onco-
rhynchus mykiss) in the Klickitat River basin, Washington,
genotyped at 13 microsatellite loci (Narum et al. 2008), (ii)
19 populations of bull trout in Glacier National Park, Mon-
tana, genotyped at 10 microsatellite loci (M.H. Meeuwig,
unpublished data), (iii) 20 populations of bull trout in the
Boise River, Idaho, genotyped at six microsatellite loci
(Whiteley et al. 2006), and (iv) 16 populations of Lahontan
cutthroat trout (Oncorhynchus clarkii henshawi) in the
Marys River drainage, Nevada, genotyped at 11 microsatel-
lite loci (Neville et al. 2006). We used FST (Weir and Cock-
erham 1984) as a pairwise genetic distance and used the
statistical software package SAS (SAS version 9.1; SAS In-
stitute Inc., Cary, North Carolina) to construct stream trees
and calculate R2 values (eq. 6). We were interested in how
stream trees would compare with a traditional bifurcating
evolutionary tree, so we made a neighbor-joining tree
(Saitou and Nei 1987) for each of these four data sets and
calculated a R2 value for the tree in the same way as we
did for stream trees.

Results
The stream tree algorithm did a very good job of describ-

ing genetic structure in the simulated models of gene flow.
Results for each of the three models will be presented in
turn.

Fig. 3. The headwater model of gene flow used in simulations.

Fig. 4. The linear stepping stone model of gene flow used in simu-
lations. Each population (A–H) was assumed to have the same ef-
fective population size and the same rate of gene flow into adjacent
populations.

Fig. 5. The semi-realistic model of gene flow used in computer si-
mulation. Each type of waterway in the figure (main stem, tribu-
tary, stream, and waterfall) was assumed to affect gene flow in a
different manner.
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The average R2 value for the headwaters model was
greater than 0.99, showing that the stream tree did an excel-
lent job of fitting the model to the data. The results also
made evolutionary sense. The average genetic distance as-
signed to the stream sections in the headwaters, which were
connected by high rates of gene flow, was 0.0022; the aver-
age genetic distance assigned to middle reaches, which had

a lower rate of gene flow, was 0.012; and the average ge-
netic distance assigned to the lower reaches, which had the
lowest rate of gene flow, was 0.13.

Results were similar for the variable Ne version of the
headwaters model. The average R2 was greater than 0.99,
and the average genetic distance for the headwater streams
connected to populations with an Ne of 500 (stream sections
2, 4, 6, and 8) was nearly twice as large as the genetic dis-
tance mapped to headwater streams connected to popula-
tions with an Ne of 1000 (stream sections 1, 3, 5, and 7)
(0.0046 vs. 0.0025). This shows that the stream tree algo-
rithm was successfully able to identify the genetic differen-
tiation associated with the stronger genetic drift in the small
populations.

As expected, the stream tree algorithm did not do a good
job of describing population structure for the headwater ex-
change model. In this model, populations D and E were ge-
netically identical, despite being far apart on the network of
streams. The average R2 for this model was 0.72 (down
from 0.99 for the standard headwater model). This shows
that violations of the assumption of the stream tree model
of genetic differentiation can be detected by checking R2

values.
The stream tree algorithm generally did a good job of de-

scribing population structure in the linear stepping stone
model, but the simulations revealed an important limitation
of the stream tree approach. The R2 value for stream trees
constructed for the linear stepping stone model was 0.94
when the migration rate was 0.01 between adjacent popula-
tions. This R2 is lower than values obtained for the head-
water model reported above. The decrease is apparently
caused by sampling error, for if the number of loci sampled
were increased, R2 would climb towards 1.0 (results not
shown). Not only did stream trees constructed from linear
stepping stones have relatively high R2 values, but the ge-
netic distances assigned to the stream sections faithfully de-
picted the symmetric pattern of gene flow between
populations. For the case of a migration rate of 0.01, each
stream section was assigned a genetic distance of approxi-
mately 0.011. When the migration rate was decreased to
0.003, the fitted genetic distance between populations in-
creased to approximately 0.031, and the R2 value stayed
high (average = 0.93).

Something interesting happened, however, when stream
trees were made for the stepping stone model having a
lower rate of gene flow. When the migration rate was de-
creased to 0.001, the average R2 value dropped to 0.74 (and
even lower values were obtained when lower rates of gene

Table 1. The proportion of variation explained by the stream tree model of genetic differentiation de-
scribed in this paper and neighbor-joining (NJ) trees for four metapopulations of freshwater fish.

R2

Study Species N S FST Stream tree NJ tree
Narum et al. 2008 Rainbow trout 19 28 0.10 0.974 0.987
M.H. Meeuwig, unpublished data Bull trout 19 29 0.27 0.971 0.952
Neville et al. 2006 Cutthroat trout 16 22 0.12 0.994 0.934
Whiteley et al. 2006 Bull trout 20 36 0.06 0.681 0.742

Note: N, number of populations sampled; S, number of stream sections in the watershed; FST, global FST for all po-
pulations sampled. Rainbow trout, Oncorhynchus mykiss; bull trout, Salvelinus confluentus; cutthroat trout, Onco-
rhynchus clarkii henshawi.

Fig. 6. The stream tree for rainbow trout (Oncorhynchus mykiss)
populations in the Klickitat River. All sections of river not labeled
have a genetic distance of zero.
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flow were tested). This relatively poor fit was not caused by
sampling error but by an inability of the stream tree to accu-
rately depict genetic relationships among populations that
are highly differentiated. A close look at the stream tree il-
lustrates the problem. When the rate of gene flow between
adjacent populations was 0.001, the average genetic distance
between adjacent populations was approximately 0.10. The
stream tree algorithm might be expected, therefore, to assign
a genetic distance of 0.10 to each stream section in the lin-
ear stepping stone model. However, if this was done, the ge-
netic distance between the first and last of the eight
populations would be equal to 0.7. This would be a problem,
because the maximum value of FST is approximately equal
to the average homozygosity of the loci examined (Kali-
nowski 2002), and in this case, this was 0.36. Assigning a
value of 0.10 to each stream section would, therefore, dra-
matically overestimate the observed genetic distance be-
tween the first and last population (which averaged 0.36, as
expected). The best that the stream tree algorithm could do
was to assign each section of the river a genetic distance of
approximately 0.06. This underestimated the genetic dis-
tance between adjacent populations but did not drastically
overestimate the genetic distance between distant popula-
tions.

This inability of the stream tree algorithm to accurately
depict genetic relationships among highly differentiated pop-
ulations should not be viewed as a critical shortcoming of
the algorithm. The source of the problem is that FST asymp-
totically approaches a maximum value as populations be-
come highly diverged. Switching to a genetic distance that
has a range of 0 to ? may alleviate this problem if genetic
differentiation is not too extreme. For the case of the step-
ping stone model with a migration rate of 0.001, switching
to Nei’s (1978) distance raised the average R2 to over 0.99.
If, however, genetic differentiation is so extreme that popu-
lations have diverged to the point that they share no alleles,
this will not solve the problem. The important lesson here is
that stream trees (and any summary of population structure)
should be interpreted with caution when genetic distances
approach their maximum value.

The semi-realistic model of gene flow yielded no sur-
prises. In all of the simulated data sets, the genetic distance
assigned to the stream section having the waterfall was the
highest value in the stream tree (average = 0.33). The tribu-
tary sections had an average genetic distance of 0.12, which
was appropriate because they had the second lowest rate of
gene flow between them. The stream sections having a mi-
gration rate of 0.1 had an average genetic distance of
0.0038, and the main-stem sections had an average of
0.0031. This shows that there is some bias in the main-stem
estimates (the correct estimate would be 0.0). However, such
bias is inevitable because we constrained genetic distances
in stream trees to be nonnegative (the median estimate of
the genetic distance for main-stem sections was 0.0, as we
would wish). The similarity of the estimates for the main-
stem sections and the stream sections (0.0031 vs. 0.0038)
shows that there is a limit to how accurately subtle amounts
of genetic differentiation can be detected. This is not sur-
prising; from a genetic perspective, a migration rate of 0.1
is very high. In these simulations, this corresponded to 100
migrants per generation. Detecting the subtle amount of ge-

netic differentiation that would persist in the presence of
such gene flow, and differentiating it from the case of no
differentiation, is possible but requires substantially more
than 12 loci (results not shown).

Empirical examples
In three out of four empirical tests that we performed, our

stream tree model of genetic differentiation had an R2 value
greater than 0.97 (Table 1). This indicates that the genetic
differentiation in three of the four species can be success-
fully mapped to the stream sections connecting the popula-
tions. In one metapopulation of bull trout (Whiteley et al.
2006), the stream tree model of population structure had a
modest R2 of 0.68. We do not have a satisfactory explana-
tion for why the stream tree model was not successful for
this metapopulation, but Whiteley et al. (2006) did find an
unexpected genetic discontinuity in one of the drainages
that they could not explain and suggested that there may
have been headwater exchange in another drainage.

The stream tree constructed for rainbow trout in Klickitat
watershed was consistent with the geography of the basin
(Fig. 6). The largest genetic distances on the stream tree cor-
respond to stream section having waterfalls or beaver dams
that are thought to prevent upstream fish passage. The
smallest genetic distances on the map generally corre-
sponded to sections of the main-stem Klickitat and to stream
sections connecting anadromous populations. Note in partic-
ular that each section of the lower main-stem Klickitat River
was assigned a genetic distance of zero. This suggests that
these stream sections are not even a subtle barrier to gene
flow among steelhead.

The four empirical examples showed that stream trees
usually did as good of a job of summarizing a matrix of
genetic distances as neighbor-joining trees (Table 1).
Neighbor-joining trees had higher R2 values for two out of
the four cases. The neighbor-joining tree had a poor fit to
the data of Whiteley et al. (2006), as did the stream tree.
Other than this, no obvious trends were observed.

Software
We have written a computer program, StreamTree, to per-

form the calculations described in this paper. StreamTree
runs on the Windows operating system and is available for
free download at www.montana.edu/kalinowski. Instructions
and a sample input file are available at that Web site.

Discussion
We have presented a novel statistical method to map ge-

netic differences among populations to stream sections of a
watershed. The method is conceptually and computationally
straightforward. It worked well with simulated data and with
three out of the four empirical data sets that we analyzed. In
the one empirical example where our model did not provide
a good fit for the data, neither did a neighbor-joining tree.

The goal of landscape genetics is to understand how
geography affects genetic diversity. Such research often has
two steps: the first descriptive and the second explanatory.
Stream trees are primarily useful for the first step, describ-
ing the spatial distribution of genetic diversity. The stream
tree algorithm assigns genetic distances to stream sections
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but does not try to explain how these differences evolved, or
even to correlate them with physical characteristics of the
river. The only geographic information used by the algo-
rithm is the topology of the watershed. Because of this,
stream trees will be equally useful for mapping genetic di-
versity to stream sections whether genetic diversity has
been shaped by geography or by historical processes unre-
lated to geography.

The stream tree model of population structure could be
modified to include geographical features other than stream
sections. For example, if two watersheds were separated by
a mountain range, the mountain range could be included as
a geographic feature ‘‘connecting’’ the populations on each
side of the range (provided that this was done in such a
way that only one path connected each pair of populations).

The stream tree model assumes that genetic differences
between populations accumulate in an additive manner
through a watershed. This is not the same as assuming an
isolation-by-distance relationship; the stream tree algorithm
can assign short stream sections a large genetic distance and
long stream section a small genetic distance. The algorithm,
however, does assume that genetic differentiation does not
decrease with distance. This means that if populations A, B,
and C are arranged in a watershed and that population B is
between populations A and C, the stream tree algorithm as-
sumes the genetic distance between A and B, DAB, to be less
than or equal to the genetic distance between A and C, DAC
(the model also assumes that DBC £ DAC). If this assumption
is not true, the stream model will not fit the genetic data
well.

There are at least a few evolutionary processes that can
violate this assumption. First, as shown in the ‘‘headwater
exchange’’ simulation, if gene flow between populations A
and C occurs outside of the recognized water channels (i.e.,
headwater exchange or transplant of fish by fisheries manag-
ers), populations A and C may be more similar to each other
than to population B. Alternatively, the three populations
may have historically been connected by high rates of gene
flow, but then became isolated from each other. If popula-
tion B experiences a population bottleneck that causes rapid
genetic drift, and populations A and C retain a large effec-
tive population size, populations A and C might be the
most genetically similar. Lastly, populations A and C might
have a different life history than population B and may have
more gene flow between them than to population B. Other
evolutionary scenarios that create patterns are possible, but
populations having such distributions of genetic diversity
are probably less common than populations having spatially
additive relationships.

As we have noted above, the stream tree algorithm only
provides a map of genetic differences among populations.
We anticipate that more geographically explicit models will
be constructed in which the genetic distance between popu-
lations is explicitly related to stream width, gradient, or
other physical variables. This will be more helpful in identi-
fying how landscape characteristics shape genetic variation
among populations, which, of course, is the ultimate goal of
landscape genetics.
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Appendix A

Table A1. An example data file that could be used to construct a stream tree using
linear regression for the populations depicted in Fig. 1.

COMP DOBS SEC_1 SEC_2 SEC_3 SEC_4 SEC_5 SEC_6
AB 0.17 1 1 1 0 0 0
AC 0.07 1 1 0 0 0 0
AD 0.13 1 0 0 1 1 0
AE 0.07 1 0 0 1 0 1
BC 0.10 0 0 1 0 0 0
BD 0.22 0 1 1 1 1 0
BE 0.16 0 1 1 1 0 1
CD 0.12 0 1 0 1 1 0
CE 0.06 0 1 0 1 0 1
DE 0.08 0 0 0 0 1 1

Note: The column at far left, COMP, lists the populations being compared. This is useful to
keep the data organized but is not used in the regression. The next column, DOBS, is the ob-
served genetic distance for each pair of populations. The columns SEC_1 to SEC_6 contain 0s
and 1s that indicate whether each section of stream (1 to 6) is between the populations listed in
the COMP column. When conducting the regression, DOBS is the dependent variable and SEC_1
through SEC_6 are the independent variables. There is no intercept. The output from the regres-
sion will be a set of six coefficients (0.04, 0.03, 0.10, 0.02, 0.05, 0.01). These are the genetic
distances to assign to each section of stream in the watershed.
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