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Abstract
Acoustic recording units (ARUs) enable geographically extensive surveys of sensitive 
and elusive species. However, a hidden cost of using ARU data for modeling species 
occupancy is that prohibitive amounts of human verification may be required to cor-
rect species identifications made from automated software. Bat acoustic studies ex-
emplify this challenge because large volumes of echolocation calls could be recorded 
and automatically classified to species. The standard occupancy model requires ag-
gregating verified recordings to construct confirmed detection/non-detection data-
sets. The multistep data processing workflow is not necessarily transparent nor 
consistent among studies. We share a workflow diagramming strategy that could 
provide coherency among practitioners. A false-positive occupancy model is ex-
plored that accounts for misclassification errors and enables potential reduction in 
the number of confirmed detections. Simulations informed by real data were used to 
evaluate how much confirmation effort could be reduced without sacrificing site oc-
cupancy and detection error estimator bias and precision. We found even under a 
50% reduction in total confirmation effort, estimator properties were reasonable for 
our assumed survey design, species-specific parameter values, and desired precision. 
For transferability, a fully documented r package, OCacoustic, for implementing a 
false-positive occupancy model is provided. Practitioners can apply OCacoustic to 
optimize their own study design (required sample sizes, number of visits, and confir-
mation scenarios) for properly implementing a false-positive occupancy model with 
bat or other wildlife acoustic data. Additionally, our work highlights the importance 
of clearly defining research objectives and data processing strategies at the outset to 
align the study design with desired statistical inferences.
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1  | INTRODUC TION

Remotely deploying acoustic recording units (ARUs) to survey cryp-
tic animals is an important tool for ecology and conservation biology 
(e.g., Blumstein et al., 2011; Newson, Bas, Murray, & Gillings, 2017; 
Parsons & Szewczak, 2009). Acoustic recording units are capable 
of collecting detection/non-detection data on focal species nonin-
vasively and with minimal effort across broad geographic extents, 
making coordinated monitoring practical and feasible, even for sen-
sitive species (e.g., Acevedo & Villanueva-Rivera, 2006; Loeb et al., 
2015). Despite these advantages, the sheer volume of data collected 
by ARUs often necessitates automated species identification via 
classification software, resulting in the potential for two types of de-
tection errors: imperfect detection and misidentification. Imperfect 
detection occurs when the focal species is present but no calls are 
recorded, or calls are recorded but none are identified as the focal 
species. Misclassification errors result from the classification soft-
ware incorrectly assigning at least one recorded call to the focal 
species, when in fact, the species is absent from a site. Statistical 
analyses of ARU datasets can provide decision-makers with critical 
baseline information about the probability of species occurrence 
(site occupancy) and species distributions for at-risk species (e.g., 
McClintock, Bailey, Pollock, & Simons, 2010; Rodhouse et al., 2015). 
Standard occupancy models can be used to address these research 
goals while accounting for imperfect detection, but the modeling 
framework assumes no misidentification errors (MacKenzie et al., 
2006). When misidentification errors are ignored, estimators from 
standard occupancy models can be biased (e.g., McClintock et al., 
2010; Miller et al., 2011; Royle & Link, 2006) and lead to unreliable 
management and conservation decisions.

Bat acoustic surveys that set out ultrasonic microphones for 
recording bat echolocation calls provide acute examples of how 
misidentification and imperfect detection may arise and complicate 
statistical inferences. Challenges associated with traditional cap-
ture and visual methods coupled with the increased risk of multiple 
threats (e.g., Hammerson, Kling, Harkness, Ormes, & Young, 2017; 
Jones, Jacobs, Kunz, Willig, & Racey, 2009; O’Shea, Cryan, Hayman, 
Plowright, & Streicker, 2016) have accelerated the widespread use 
of ARUs for surveying bats. Broad-scale monitoring programs have 
been initiated across Europe, North America, and elsewhere (e.g., 
Barlow et al., 2015; Jones et al., 2013; Loeb et al., 2015; Roche et al., 
2011; Walters et al., 2012) and rely in part on coordinated acoustic 
surveys. The complication is that shared echolocation call charac-
teristics from morphologically and ecologically similar bat species 
can result in incorrect species assignments from automated iden-
tification software and misidentification errors for the focal spe-
cies (Russo, Ancillotto, & Jones, 2017; Russo & Voigt, 2016; Rydell, 
Nyman, Eklof, Jones, & Russo, 2017). Imperfect detection can occur 
when all echolocation calls from the focal species are of such low 
quality that they are filtered out during call processing. Another 
source is when all calls from the focal species do not exhibit enough 
distinguishing characteristics to receive a single-species classifica-
tion resulting in no species assignment or a group classification such 

as low- or high-frequency bat. Additionally, the focal species could 
be present despite having none of its calls recorded.

Detection error rates arising from automated identification 
software are impacted by the focal species’ call characteristics 
and behavior, the choice of detector (e.g., type and model), detec-
tor settings (e.g., gain level), detector placement in relation to en-
vironmental clutter (e.g., vegetation that may alter call behavior), 
the classification software used, and the call processing workflow 
employed. To promote coherency between these important consid-
erations and the eventual modeling framework used, we diagram a 
generalized workflow for recording, processing, and verifying bat 
echolocation call files in Section 2.2. This workflow diagramming 
strategy highlights how typical practices may influence the appro-
priateness of certain modeling approaches for bat acoustic data and 
serves as a conceptual model for practitioners interested in design-
ing ARU-based surveys for any taxa.

Standard occupancy models can account for imperfect detection 
if multiple within-season visits are made to each site (e.g., MacKenzie 
et al., 2002, 2006), a sampling design commonly used for bat acoustic 
surveys (e.g., Gorrensen, Miles, Todd, Bonaccorso, & Weller, 2008; 
Rodhouse et al., 2015; Weller, 2008). Furthermore, automated spe-
cies identifications can be manually verified by a human to remove 
misidentification errors and provide confirmed detections prior to 
analysis (e.g., Wright, Irvine, & Rodhouse, 2016). For species that can 
be verified consistently and truly, the amount of effort and expertise 
required for this approach is impractical for large-scale coordinated 
monitoring. The difficulty posed by this verification burden can lead 
to the naive modeling approach of applying a standard occupancy 
model to unverified bat acoustic data, effectively ignoring misidenti-
fication errors. We propose an alternative option of explicitly model-
ing misidentifications in a false-positive occupancy model.

Three classes of false-positive occupancy models are outlined 
in Chambert, Miller, and Nichols (2015): site confirmation models 
(Miller et al., 2011, 2013), calibration models (Chambert et al., 2015; 
Ruiz-Gutierrez, Hooten, & Grant, 2016), and the observation con-
firmation (OC) model (Chambert et al., 2015). Chambert, Waddle, 
Miller, Walls, and Nichols (2018) recently introduced another type of 
OC model that has the potential to extend inferences to include esti-
mates of relative abundance of some taxa. False-positive occupancy 
models require auxiliary information about true site occupancy from 
a subset of sites or calibration information about the detection de-
vice’s misidentification rate to ensure estimates of detection proba-
bilities are unique. To our knowledge, Clement, Rodhouse, Ormsbee, 
Szewczak, and Nichols (2014) provide the only application of a false-
positive occupancy model to a bat acoustic survey. Clement et al. 
(2014) drew on mist-netted bats as true detections from a subset of 
sites to inform the probability of misidentification using a multiple 
method site confirmation model (Miller et al., 2011). However, cap-
turing bats is invasive, costly, and quickly becomes impractical for 
geographically extensive surveys. It is also debatable whether hand 
captures constitute true detections for certain bat species, as many 
species are morphologically cryptic (e.g., Rodhouse, Scott, Ormsbee, 
& Zinck, 2008; Rodriguez & Ammerman, 2004; Weller, Scott, 
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Rodhouse, Ormsbee, & Zinck, 2007). Bat acoustic data pose chal-
lenges for the calibration model as well, as the libraries of echoloca-
tion calls used to build classification software for automated species 
identifications are not always made under realistic conditions (Russo 
et al., 2017). The OC models, on the other hand, show promise for 
leveraging information from bat acoustic surveys while potentially 
reducing the manual verification burden.

We extend Chambert et al.’s (2015) OC model to accommodate 
known sources of heterogeneity in occupancy and detection prob-
abilities and allow for spatially explicit estimates of occurrence and 
detection probabilities. Otherwise, ignoring potential sources of 
heterogeneity in detection probabilities could result in biased esti-
mators (Miller et al., 2015). Further, our OC model extension allows 
for more flexibility in allocating confirmation effort than is afforded 
by the original formulation of the OC model in Chambert et al. 
(2015). We focus on whether using our extended OC model for anal-
yses can provide a way to increase efficiency of ARU-based surveys 
through reduced confirmation effort. Our investigation into confir-
mation effort is complementary to the one presented in Chambert 
et al. (2018). Here, we focus on exploring a simpler OC model that 
does not rely on specifying an appropriate statistical distribution for 
nightly bat activity.

We use simulation to compare the three approaches for address-
ing misidentification errors in statistical modeling of ARU-based 
surveys: (a) REMOVE, removing them and applying a standard oc-
cupancy model; (b) IGNORE, ignoring them and applying a standard 
occupancy model; and (c) MODEL, using our extended OC model to 
explicitly account for them in the modeling framework. We com-
pare approaches with respect to their estimator properties such as 
bias, precision, and coverage. We also explore how the allocation 
of confirmation effort affects OC parameter estimator properties. 
Our simulations were based on species-specific parameter esti-
mates from real bat acoustic data and illustrate the importance of 
using available pilot data when considering sample size questions. 
Importantly, we provide a fully documented R (R Core Team, 2016) 
package, OCacoustic, for conducting customized investigations. 
To improve access and applicability for practitioners, all of our func-
tions incorporate the common r-formula syntax used in glm and 
occu. The package is bundled with an extended vignette providing 
instructions and guidelines for its use (Appendix S3).

2  | MATERIAL S AND METHODS

2.1 | General terminology

The unit of analysis or sample unit for occupancy models is com-
monly a predefined spatial unit (MacKenzie et al., 2006). In our appli-
cation, sites are defined as 10-km × 10-km grid cells within the state 
of Oregon, USA, Rodhouse et al. (2012), where the area was chosen 
based on focal species behavior and analysis objectives. In general, 
we suggest a probabilistic sampling design for choosing sites (e.g., a 
design based on the generalized randomized-tessellation stratified 
(GRTS) algorithm; Stevens & Olsen, 2004). Observations arising from 

different sites are assumed to be independent, as are those arising 
from different visits to the same site. We define a single visit as a 
one-night deployment of an ARU to a unique location within a site. 
The replication needed to account for imperfect detection could be 
spatial replicates with multiple ARUs deployed within a site (if a spa-
tial unit) on the same night, or temporal replicates with one ARU de-
ployed for multiple nights at the same location within a site (although 
see Wright et al. (2016) for potential drawbacks). It is assumed that 
the occupancy status of a site is the same for all visits. The standard 
occupancy model and the OC model both use this terminology and 
require these assumptions.

Many bat echolocation call files can be recorded during a visit 
and detection/non-detection could be considered at two different 
levels: the observation level (i.e., individual recordings of echolo-
cation calls) or the visit level (i.e., aggregating individual recordings 
up to a visit). For both levels, we define two types of detections: 
ambiguous detections which can include misidentifications of the 
focal species, and unambiguous detections without misidentification 
errors. Species identifications made by automatic software con-
stitute ambiguous detections, whereas, those that are a posteriori 
verified by a qualified expert are unambiguous. We define verifi-
cation as the process for obtaining unambiguous observation-level 
detections, confirmation as that for unambiguous visit-level detec-
tions, and the confirmation design as the visit-level detections that 
are chosen to be confirmed. Although the confirmation of visit-level 
ambiguous detections is done through verification at the observa-
tion level, the verification strategy employed will impact modeling 
options. Therefore, an important step in the planning phase of any 
ARU-based survey is diagramming the acoustic data workflow (e.g., 
Figure 1).

2.2 | Bat acoustic data workflow

Diagramming the conceptual workflow for any study begins with 
clearly articulated inferential goals and objectives (start of Figure 1). 
Here, our objective is to use information from bat acoustic surveys 
to estimate site occupancy probabilities for one focal species with 
uncertainty. Most importantly, the focal species must be detectable 
acoustically and the number of sites, number of visits, and visit de-
sign should be based on species-specific behavioral characteristics 
(e.g., MacKenzie et al., 2006). Before deployment, detector locations 
and settings should be chosen specifically for species of interest fol-
lowing a consistent protocol (e.g., Loeb et al., 2015; NPS, 2016).

After calls have been recorded, workflow decisions during “Call 
Processing and Species Identification” (Figure 1) directly affect 
the final set of echolocation calls used in statistical analysis, and in 
turn, inferences from the three modeling approaches we consider. 
Call processing begins by removing Non-Bat Files (e.g., wind and 
insects) from the collection of Raw Audio Files, and retaining only 
Bat Call Files. Then, using classification software (e.g., Sonobat, 
Kaleidoscope, etc.), Bat Call Files are assigned to one of three types 
of classifications: single-species identification (Auto IDs, Figure 1); 
combination of potential species or frequency group identification 
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(e.g., EPFU/LANO or HiF; Unused Files, Figure 1); or no ID (Unused 
Files, Figure 1). Auto IDs assigned to the focal species constitute 
observation-level ambiguous detections, and they are used to de-
termine visit-level ambiguous detections: ambiguously detected if 
at least one Auto ID is identified to the focal species, undetected 
otherwise. Some Raw Audio Files ending up in the Non-Bat Files or 
Unused Files data-storage containers could be missed calls from the 
focal species. The estimated imperfect detection rate encapsulates 
all possible ways a focal species may end up with zero Auto IDs in-
cluding the possibility of the species not being recorded at all.

Next, a decision about the confirmation design must be made: 
employ a confirmation design and have an expert verify Auto IDs, 
or accept visit-level ambiguous detections and proceed with the 
IGNORE approach by naively fitting a standard occupancy model. If a 
confirmation design is chosen, it is assumed that calls from the focal 
species can be verified consistently and truly by an expert. Verified 
Auto IDs receive corresponding Manual IDs, which are then used to 
confirm visit-level ambiguous detections: unambiguously detected 
(confirmed) if at least one Manual ID is from the focal species, un-
detected otherwise. The REMOVE approach requires confirmation 
for all visit-level ambiguous detections, but it does not require all 
Auto IDs within visits to be verified. Conversely, for the MODEL ap-
proach, the OC model does not require confirmation for all visits but 
does assume that all (or a representative sample from all) of the Auto 
IDs within visits are verified. We discuss implications for commonly 

employed verification strategies used for our REMOVE approach 
and suggest modifications to ensure consistency with OC model as-
sumptions in Section 4.

2.3 | The OC model applied to bat acoustic data

In the context of bat acoustic surveys, the OC model (Chambert 
et al., 2015; pg. 336) uses observation-level Auto IDs and Manual 
IDs to estimate visit-level detection and misclassification probabili-
ties (concept diagram in Figure 2) conditional on the ARU workflow 
employed (e.g., Figure 1). This model assumes the occupancy status 
of the ith site (i = 1, 2, ···, n) is a Bernoulli random variable with a 
constant probability of ψ (Zi ∼ Bernoulli(ψ): Zi = 1 if the focal species 
occupies the ith site, Zi = 0 otherwise). It also assumes species detec-
tions during visits occur at occupied sites (visit-level true detections) 
with probability p11 and at unoccupied sites (visit-level misidentifi-
cations) with probability p10. That is, visit-level ambiguous detec-
tions during the jth ( j = 1, 2, ···, Ji) visit to the ith site also arise from 
a Bernoulli distribution, Yambigij

∼Bernoulli(p11×Zi+p10× (1−Zi)), 
where yambigij

=1 if at least one Auto ID is identified to the focal spe-
cies during visit j to site i, yambigij

=0 otherwise (yambig in Figure 2).
The visit-level unambiguous detection (ν in Figure 2) is assumed 

to be a multinomial random variable with levels defined by the (dis)
agreement between the observation-level Auto IDs and their corre-
sponding verified Manual IDs: (ν = 0) “no detections”- no Auto IDs 

F IGURE  1 A bat acoustic survey workflow diagram. This workflow begins with goals and objectives (occupancy modeling in this 
example) and ends with inferences and conclusions. All intermediate steps influence downstream tasks (blue boxes). A critical step in any 
analysis is outlining the workflow to facilitate conversation among collaborators and ensure consistency among data collection, analysis, 
and dissemination of results prior to deploying ARUs. The focus of this diagram is occupancy modeling using bat acoustic data, but similar 
workflow diagrams can be created for different analysis objectives and/or different animals of interest (e.g., insects, frogs, and birds). The 
style of this diagram was inspired by the business workflow modeling software, Bizagi Modeler (www.bizagi.com)
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identified to the focal species implying no detection to confirm 
(Figure 2, Columns 1, 5), (ν = 1) “all false” – all Auto IDs identified to 
the focal species are overturned and their corresponding Manual IDs 
denote a different species or “no ID” (Figure 2, Columns 2, 6), (ν = 2) 
“all true” – all Auto IDs identified to the focal species are verified 
by Manual IDs that denote the focal species (Figure 2, Column 3), 
and (ν = 3) “mixed” – at least one Auto ID identified to the focal spe-
cies is overturned and at least one is verified (Figure 2, Column 4). 
The OC model assumes that at least one Auto ID is recorded and 
subsequently correctly identified to the focal species by the classi-
fication software with probability s1 (at least one observation-level 
true-positive) and incorrectly identified to the focal species with 
probability s0 (at least one observation-level misidentification). Thus, 
conditional on the occupancy status of the site, the probability space 
for the visit-level unambiguous detection during the jth visit to the 
ith site (νij) is defined as,

The detection probabilities for the visit-level ambiguous  
detections can also be written in terms of s0/s1: Pr(Yij = 1|Zi = 1) = p11 
= s1 + s0 − s1s0, and Pr(Yij = 1|Zi = 0) = p10 = s0, fully parameterizing 

the OC model by two detection probabilities and the probability of 
occurrence: s1, s1, and ψ, respectively (see also, Figure 2).

We provide more flexibility in how much verification effort is 
allocated to each site by allowing for a combination of ambiguous 
(yambig) and unambiguous (ν) detections within a site. The likelihood 
for our extended OC model is written as,

where I(C)ij = 1 if the jth visit to the ith site is confirmed and I(C)ij = 0 
otherwise. Relationships between site-level covariates (Xi) and site 
occupancy (ψ i) and site- and visit-level covariates (Wlij

) and detection 
probabilities (slij; for l = 0,1) are modeled using the logit link function 
as, logit(�i)=�Xi and logit(slij )=�lWlij

, for l = 0,1, respectively. The oc-
cupancy and detection coefficients are represented by the � and �l 
vectors, respectively.

One source of heterogeneity in the observation process for bat 
acoustic data is the overall quality of calls obtained during a visit. 
We expect overall call quality to be a function of detector and mi-
crophone placement, the amount of “environmental clutter” (e.g., 

(1)Pr(�ij={0,1,2,3}|Zi=1)={(1−s0)(1−s1), s0(1−s1), s1(1−s0), s0s1}

(2)Pr(�ij={0,1,2,3}|Zi=0)={s0,1−s0,0,0}.

(3)

(�i,s0ij ,s1ij |I(C)ij,�ij,yambigij
)=

n∏

i=1

[

�i×

(
J∏

j=1

I(C)ij(Pr(�ij|zi=1))+ (1− I(C)ij)p
yambigij

11ij
(1−p11ij )

1−yambigij

)

+(1−�i)×

(
J∏

j=1

I(C)ij(Pr(�ij|zi=0))+ (1− I(C)ij)p
yambigij

10ij
(1−p10ij )

1−yambigij

)]

,

F IGURE  2 Diagrammatic representation of the OC model applied to bat acoustic data. True site occupancy status is represented by 
the color of the bat (dark = occupied, light = unoccupied). At the observation level, Auto IDs are single-species classifications receiving an 
ID to the focal species (X) or to a different species (O). For the OC model, visit-level ambiguous detections (Yambig) are determined by the 
aggregation of Auto IDs, and unambiguous detections (ν) by the (dis)agreement between all of the Auto IDs and the Manual IDs collected 
during the visit. Probabilities for each visit-level OC model outcome are provided below the outcomes, where s1[s0] = the probability that 
during a single visit, at least one observation (Auto ID) is recorded and then correctly[incorrectly] identified to the focal species by the 
classification software. Detection/non-detection data for REMOVE (Yconfirmed) and IGNORE (Yambig) are obtained through the aggregation of 
Manual IDs and Auto IDs to the visit level, respectively
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vegetation, rocks, and water surfaces) near the detector, weather 
(e.g., wind and rain), and potentially other sources. A reasonable 
proxy to use for call quality is the total number of Auto IDs recorded 
during a visit, as only calls of a certain quality will ultimately receive 
single-species Auto IDs. We let Kij be the total number of Auto IDs 
recorded by the detector deployed at visit j in site i, and we note that 
Kij is always greater than or equal to zero. We expect that at some 
value of Kij, the proxy for quality ceases to substantially influence 
detection probabilities (i.e., the difference between observing 1 and 
50 Auto IDs is more reflective of a change in call quality between 
visits than is the difference between observing 1,001 and 1,050 
Auto IDs). Therefore, for our application and simulations, we assume 
a logit-linear relationship between the natural log of Kij + 1 (adding 
one to ensure the value being logged is greater than zero) and the 
detection probabilities,

If available, visit-level covariates explaining heterogeneity in 
detection probabilities (e.g., software packages, regional classifi-
ers, and “clutter”) could be directly incorporated into the mean 
structure through Equation 4. Similarly, covariates also could be 
included at the site level (e.g. habitat type and average elevation) 
to account for heterogeneity in site occupancy using a logit link 
function on ψ i.

2.4 | Simulation study design

We were interested in whether the extended OC model was a vi-
able alternative to the REMOVE approach. We conducted a simula-
tion study comparing estimation of occupancy (ψ) among REMOVE, 
IGNORE, and our extended OC model with a confirmation design 
where all visits within all sites were confirmed (i.e., all unambigu-
ous data). We included the IGNORE approach to corroborate that 
ignoring misidentifications from bat species classification software 

in a standard occupancy model can result in erroneous conclu-
sions (e.g., Clement et al., 2014). To explore the impacts of the 
confirmation design on parameter estimation using our extended 
OC model, we also investigated nine different confirmation de-
signs: all, half, or a quarter of sites with all, half, or a quarter of 
the visits being confirmed (i.e., contributing information in terms 
of ν (unambiguous) rather than yambig (ambiguous) in Figure 2). We 
explored all possible combinations for a range of parameter values 
(� ,(�0,s1 ,�1,s1 ), and (�0,s0 ,�1,s0 )), chosen to represent realistic species-
specific characteristics based on empirical data (see Appendix 
S1 for empirical results). For this study, we specified ψ to reflect 
narrowly and widely distributed species (Label: low (L), high (H); 
“Occupancy” in Table 1). We set the regression coefficients as-
sociated with correct automated identifications (at least one call 
recorded and correctly classified to the focal species during a visit 
(�0,s1 ,�1,s1 )) to represent species that were hard, average, or easy to de-
tect (Label: low (L), medium (M), high (H), “Baseline detect” in Table 1). 
Similarly, we set regression coefficients associated with automated 
misidentifications (�0,s0 ,�1,s0 ) to represent species that were more eas-
ily or less easily confused with other species by the classification soft-
ware (i.e., harder to misidentify or easier to misidentify; labeled low 
(L) or high (H) for “Baseline misID” in Table 1, respectively).

For each parameter combination, we generated 500 realizations 
of data (datasets) assuming the same sampling design as that used 
in our empirical data (n = 84 sites, and Ji = 4 visits for all i), and as-
suming unambiguous visit-level observations arose from the data-
generating process described by the extended OC model. That is, we 
assumed a confirmation design where all visits within all sites were 
confirmed resulting in unambiguous data (ν-values) for all visits. We 
first generated true occupancy states (Zi) from a Bernoulli(ψ) distri-
bution. Then, we obtained realistic covariate values for each visit by 
sampling with replacement from K-values in the empirical data. Using 
Zi and the Kij-values, we produced visit-level detection probabilities 

(4)logit(slij )=�0,sl
+�1,sl

( log (Kij+1)); l=0,1.

TABLE  1 Parameter combinations representing species characteristics based on empirical data (see Appendix S1). Three-letter labels 
reflect levels for ψ, (�0,s1 ,�1,s1 ), and (�0,s0 ,�1,s0 ), respectively. For example, HMH represents a widely distributed species (ψ = 0.8) with average 
detection ((�0,s1 ,�1,s1 ) = (0, 1.6)) that can be easy to misidentify (i.e., easily confused with other species) in the automated identification 
classification process ((�0,s0 ,�1,s0 ) = (−2.2, 1.5))

Label Occupancy (ψ) Baseline detect (�0,s1) Baseline misID (�0,s0)

HHL Widely distributed Easier Harder

HLL Widely distributed Harder Harder

LLL Narrowly distributed Harder Harder

LLH Narrowly distributed Harder Easier

HMH Widely distributed Average Easier

Label {� ,(�0,s1 ,�1,s1 ),(�0,s0 ,�1,s0}

HHL {0.8, (1.5, 1.6), (−3, 1.5)}

HLL {0.8, (−1.4, 1.6), (−3, 1.5)}

LLL {0.2, (−1.4, 1.6), (−3, 1.5)}

LLH {0.2, (−1.4, 1.6), (−2.2, 1.5)}

HMH {0.8, (0, 1.6), (−2.2, 1.5)}
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(s0ij∕s1ij) following Equation 4 and generated the unambiguous data-
set by taking random draws from the appropriate multinomial distri-
bution for each site (νij|Zi = 1 or νij|Zi = 0, Equations 1 and 2). Using 
the unambiguous dataset, we obtained a dataset for the REMOVE 
approach (yconfirmed-values) and a dataset for the IGNORE approach 
(yambig-values) according to the relationships conveyed in Figure 2 
(e.g., �11=1⇒yambig11

=1, yconfirmed11
=0 for site 1 and visit 1).

We then investigate reduced confirmation efforts for the MODEL 
approach. We let Cp,d denote a confirmation design where p indicates 
the proportion of confirmed sites (p = 1, 0.5, 0.25), and d indicates the 
number of confirmed visits within those sites (d = 1, 2, 4). To construct 
a dataset for the confirmation design Cp,d, we randomly selected 
p × 84 sites to receive d confirmed visits. We remained consistent 
with the extended OC model by assigning confirmation to visits  
with ambiguous detections (yambigij

=1) prior to those with non-de-
tections (yambigij

=0). The dataset was completed using unambiguous 
data (νij-values) for visits with I(Cp,d)ij = 1 and ambiguous data (yambigij

-values) for visits with I(Cp,d)ij = 0. Our approach to data generation 
used the unambiguous dataset to obtain datasets for the REMOVE ap-
proach, IGNORE approach, and the eight other confirmation designs 
for the OC model, effectively minimizing Monte Carlo (MC) error in 
our simulation investigations. Thus, we minimized MC error in our 
comparisons of modeling approaches and confirmation designs.

All programming was performed in r Statistical Software ver-
sion 3.3.2 (R Core Team, 2016). Maximum-likelihood (ML) estimates 
for OC model parameters were found by minimizing the negative 
log-likelihood (negative log of Equation 3) using nlm, and corre-
sponding standard errors (SEs) were calculated by inverting the 
Hessian. The occu function from the unmarked package (Fiske & 
Chandler, 2011) was used to fit the two standard occupancy mod-
els (REMOVE and IGNORE). For each approach and each dataset, 
we saved parameter estimates, their corresponding approximate 
(±2 SE) 95% confidence intervals, and whether or not the data-
generating parameter values were captured in their correspond-
ing intervals. We also tracked three types of computational errors: 
if the negative log-likelihood function could not be evaluated at 
randomly generated starting values, if the minimization failed to 
converge, and if there was an error in inverting the Hessian. We 
defined convergence as a dataset that resulted in an ML-estimation 
process where the Hessian was invertible and parameter estimates 
and their corresponding SEs were reasonable (estimate ≤10 and CI 
width ≤30 for parameters on the logit scale, CI width ≤0.7 for pa-
rameters on the probability scale). For all realizations of data that 
converged, we computed the average point estimate (average of 
individual estimates), average approximate 95% confidence inter-
val (lower/upper endpoint defined by the average of the individual 
lower/upper estimates), and coverage for each parameter.

3  | SIMUL ATION STUDY RESULTS

For brevity and clarity in Sections 3.1–3.3, we focus on results 
from the five parameter combinations in Table 1 and a subset of 

confirmation designs. General patterns for other parameter com-
binations and confirmation designs were similar, and results are in-
cluded in Appendix S2.

3.1 | Directly comparing IGNORE, REMOVE,  
and MODEL

The average 95% CIs for occupancy probability were nearly iden-
tical for the REMOVE approach and the MODEL approach where 
the OC model was applied to all unambiguous data (Figure 3, 
top and bottom CIs). This suggests the two approaches pro-
duce similar inferences regarding species occupancy for the 
species-specific characteristics we considered. Furthermore, 

F IGURE  3 Average approximate 95% confidence intervals for 
occupancy (ψ) using the REMOVE approach (bottom CI), the IGNORE 
approach (middle CI), and the OC model fit to only unambiguous 
data (top CI). We generated five hundred simulated datasets 
for each parameter combination (rows). Three-letter labels for 
parameter combinations indicate assumed occupancy (L = narrowly 
distributed, H = widely distributed), baseline detection (L = hard 
to detect, M = average, H = easy to detect), and baseline 
misidentification (L = hard to misidentify, H = easy to misidentify). 
Assumed parameter values are shown with large black vertical 
tick marks, and their corresponding average estimates are shown 
with colored tick marks. Coverage is indicated by color (0 = red, 
1 = blue). Simulation created using oc _ sim _ gen, and Figure 
created using FNOC _ psi _ compare in OCacoustic
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both approaches resulted in reasonably unbiased estimators with 
nominal coverage (≥0.95) and enough precision to be informa-
tive (e.g., all rows, Figure 3). The IGNORE approach (middle CIs, 
Figure 3), on the other hand, resulted in consistently positively 
biased estimators for species-specific characteristics considered, 

often accompanied by poor coverage probabilities (all but HLL, 
Figure 3).

For all three approaches, precision, coverage, and bias of 
the occupancy estimator varied based on the species-specific 
characteristics assumed during data generation. In particular, 

F IGURE  4 Average approximate 95% confidence intervals for each OC model parameter (column), computed from 500 simulated 
datasets generated assuming five parameter combinations (rows) for the OC model, assuming five confirmation designs (denoted Cp,d on 
the y-axis, where p indicates the proportion of confirmed sites and d indicates the number of confirmed visits within those sites). Three-
letter row-labels indicate assumed occupancy (L = narrowly distributed, H = widely distributed), baseline detection (L = hard to detect, 
M = average, H = easy to detect), and baseline misidentification (L = hard to misidentify, H = easy to misidentify). Assumed parameter 
combinations are shown with large black vertical tick marks along with corresponding average estimates in colored tick marks. Coverage 
is indicated by color, note that the scale for coverage ranges from 0.9 (brown) to 1 (green), rather than 0 to 1 Figure created using oconly _
compare _ gen in OCacoustic
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precision was sensitive to detectability. For example, we ob-
served wider confidence intervals for occupancy in widely dis-
tributed species that were also assumed to be hard to detect 
(HLL in Figure 3) than we did when their detection was assumed 
to be average or easy (HMH and HHL in Figure 3; see also, 
Figures S2.1 and S2.2). This pattern held for IGNORE, REMOVE, 
and OC (all three CIs in Figure 3). Interestingly, there was little 
to no difference in the precision, coverage, and bias of the oc-
cupancy estimator when comparing high versus low misidentifi-
cation rates for species with the same assumed occupancy and 
baseline detectability (LLH vs. LLL in Figure 3, see also Figures 
S2.1 vs. S2.2).

3.2 | Comparing confirmation design scenarios 
within the MODEL approach

Fitting the OC model to all unambiguous data (OC[1,4] in Figure 4) 
provides a reference case producing similar results to the verifi-
cation intensive REMOVE approach. Here, we compare different 
confirmation designs to assess the OC model’s potential to re-
duce verification effort. We observed that for a fixed number of 
confirmed visits (e.g., compare CIs for OC[1,2], OC[0.5,2], OC[0.25,2], 
Figure 4), the precision for all OC model parameters decreased (CIs 
became wider) as the proportion of confirmed sites decreased; 
this observation held for all parameter combinations (see also, 
Figures S2.1 and S2.2). Whereas, for a given proportion of con-
firmed sites, decreasing the number of confirmed visits resulted 
in little difference in the uncertainty of estimated OC model pa-
rameters (e.g., compare CI widths OC[1,4] to OC[1,2] and OC[0.5,4] to 
OC[0.5,2], Figure 4; see also Figures S2.1 and S2.2). Although this 
pattern held for all confirmation designs, many realized datasets 
generated assuming a confirmation design with only one unambig-
uous visit did not converge. This suggests that to successfully fit 
the extended OC model to species with characteristics like those 
that we assumed, the confirmation design should have at least two 
confirmed visits within confirmed sites (see Section 3.3).

Therefore, we found the properties of the extended OC model es-
timator depended on the confirmation design and the species-specific 
characteristics assumed during data generation. For harder-to-detect 
species, we observed less than nominal coverage probabilities (<0.95) 
for all parameters when only two visits were confirmed within a quar-
ter of the sites. For narrowly distributed species, we observed esti-
mator bias for the partial regression coefficients associated with true 
detection. The widely distributed species, on the other hand, showed 
bias for partial regression coefficients associated with misidentifica-
tion. This bias was most pronounced for confirmation designs with 
half or a quarter of the sites confirmed (e.g., rows HLL, LLL, LLH, and 
top three CIs). Similarly, for a given occupancy and misidentification 
rate, we observed wider average CIs for occupancy with harder-to-
detect species and less confirmed data (HHL vs. HLL, all CIs; Figure 4). 
Interestingly, however, the baseline misidentification rate (when mov-
ing from L to H, or 0.05 to 0.10 on the probability scale) did not largely 
affect the confirmation design required to produce an unbiased and 
precise extended OC model estimator (LLL vs. LLH in Figure 4).

3.3 | Computational limitations

For confirmation designs with unambiguous data in only a quarter 
of the sites or only one visit within sites, a large number of reali-
zations failed to converge (Figure 5, see also Figure S2.3). Similarly, 
the IGNORE approach displayed convergence issues more frequently 
than the REMOVE approach or any of the confirmation designs with 
the extended OC model. Fitting the extended OC model to datasets 
generated assuming easier-to-detect species (label = − M − or − H −) 
and confirmation designs with more confirmed visits (OC[1,4] OC[1,2]) 
resulted in minimal convergence issues for all parameters (Figure 5, 

FIGURE 5 Heatmap for the occupancy parameter, ψ, showing 
the number of iterations out of 500 that the optimizer failed to 
converge for a given method (y-axis) and assumed parameter 
combination (x-axis). Three-letter row-labels indicate assumed 
occupancy (L = narrowly distributed, H = widely distributed), 
baseline detection (L = hard to detect, M = average, H = easy 
to detect), and baseline misidentification (L = hard to 
misidentify, H = easy to misidentify). The confirmation effort 
denoted Cp,d on the y-axis, where p indicates the proportion 
of confirmed sites and d indicates the number of confirmed 
visits within those sites. Color intensity displays the number 
of iterations that resulted in the optimizer failing to converge. 
Note that for a widespread species that was easy to detect and 
hard to misidentify (HHL), there were no convergence issues for 
any of the approaches. Figure created using converge _ plot 
in OCacoustic
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see also Figure S2.3). This pattern suggests there is a minimum con-
firmation effort required for fitting the extended OC model and the 
minimum will vary based on the assumed species characteristics.

4  | DISCUSSION

We outline an occupancy modeling framework that accounts for 
misidentification errors and simultaneously reduces the manual 
verification burden required for defensible inferences to inform 
conservation and management. This framework also allows for 
variability in detection probabilities related to field deployment 
conditions and the classification software used for automated 
identification; making it a flexible approach for geographically 
extensive surveys. Standard occupancy models require all visit-
level misidentification errors to be eliminated from a dataset (i.e., 
REMOVE approach). In comparison, our MODEL approach accounts 
for possible misidentification errors while still allowing for some 
ambiguous detections to be included in the analysis. In this way, 
the extended OC model inherently provides increased efficiency 
of ARU-based surveys by maintaining tolerable levels of uncer-
tainty with reduced confirmation effort. Generally, we found con-
firming more sites resulted in more precise extended OC model 
estimators compared with confirming more visits within sites, but 
the “optimal” confirmation design was dependent on assumed 
species characteristics (detectability and occupancy).

We suggest diagramming the workflow (Section 2.2) as a first 
step in the survey design process because it highlights key deci-
sions that may impact statistical inferences. Here, we focus on 
how the selection of Auto IDs for verification impacts the proper 
interpretation of parameter estimates. During visits, large volumes 
of Auto IDs can be recorded, making verifying all observation-level 
ambiguous detections impractical. Therefore, in practice, the fol-
lowing verification strategy is often employed for confirming vis-
its: sort Auto IDs based on some a priori measure of call quality 
(e.g., probability calculated based on an artificial neural network, 
number of call pulses within a file classified to a species) and ver-
ify the “top” calls until enough have been verified that the verifier 
feels confident the species was present during the visit (e.g., a 
criterion of 3–5 calls)—or—until all Auto IDs have been overturned 
(i.e., correcting a visit-level misidentification). This type of strat-
egy is typically employed to increase efficiency with the REMOVE 
approach, but it is problematic for the OC model. Interpretations 
of detection probabilities estimated by the OC model become 
conditional on the specific subset of Auto IDs used for verifica-
tion and the criterion chosen for confirmation. Because of this, it 
is essential that methods for call processing and verification ac-
company results from statistical analyses. Importantly, to enable 
broader and more defensible syntheses among projects and years, 
we recommend a verification strategy where all, or a random sam-
ple of all Auto IDs, are reviewed so that results are compatible and 
comparable (random sample also suggested in Chambert et al., 
2018).

For simplicity, we presented the verification process for bat 
acoustic data in the context of a single focal species. In reality, 
verification is done for all potential species expected at each visit 
location. That is, the observation has multiple outcomes, with 
each outcome representing a potential species available for de-
tection. For example, non-detections for focal species A are, in 
fact, ambiguous detections for species B (i.e., AutoID = “species 
B”, a different species). Therefore, detection information about 
species B is available in the analysis for focal species A, but is 
ignored by the extended OC model. Further extensions to ac-
commodate multiple species (e.g., community occupancy mod-
els) could exploit this valuable information and are worthy of 
investigation.

Our extended OC model incorporates observation-level in-
formation into the analysis through the agreement/disagreement 
of ambiguous and unambiguous detections of the same obser-
vation, but the analysis is aggregated to the visit level. Recently, 
Chambert et al. (2018) model the count of ambiguous detections 
using a zero-truncated Poisson distribution, and they discuss 
linking occupancy and relative abundance. However, equating 
nightly bat activity (number of Auto IDs recorded by a stationary 
detector) as a measure of relative abundance is more controversial 
for bats compared with anurans or birds (Hayes, 1997). Guillera-
Arroita, Lahoz-Monfort, van Rooyen, Weeks, and Tingley (2017) 
also directly incorporate information at the observation level 
into their model, but the number of Auto IDs obtained during a 
visit can be so large that they cannot be handled by the Binomial 
distributions underlying their model. Essentially, by aggregating 
to the visit level, we avoid the need for additional model com-
plexity to account for likely overdispersion in nightly bat activity. 
However, more methodology that directly uses observation-level 
information and also accounts for the idiosyncrasies (e.g., volume, 
data processing pipeline, ad correlation among recorded calls) of 
acoustic data could be the focus of future work.

Consistent with other work (e.g., Clement et al., 2014; Newson 
et al., 2017), we found evidence of species misidentification er-
rors from classification software and, if ignored, occupancy was 
severely overestimated, supporting the need for verification. We 
assumed the Manual IDs were consistent and true, but if acoustic 
data are verified by more than one expert, this assumption be-
comes more tenuous, such that standardizing the workflow is key. 
Currently, human verification provides the most reliable source 
of unambiguous detections for bat acoustic data, but this is sub-
ject to change. If call libraries for classification software used to 
obtain automatic species identifications improve and become 
more representative of conditions observed in the field, the cal-
ibration model (see Chambert et al., 2015; Ruiz-Gutierrez et al., 
2016) has the potential to eliminate verification from the acous-
tic data workflow entirely, effectively removing all costs associ-
ated with a manual confirmation design. As discussed in Russo 
and Voigt (2016), quality calibration information is not currently 
found among the published literature. Until then, we advocate 
using the extended OC model to reduce costs associated with 
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the verification process for bat acoustic data, when appropriate. 
The OC model rests on the assumption that verification is con-
sistent and true. This appears to be a reasonable assumption for 
most bats species that occur within a given faunal assemblage 
(see Fritsch & Bruckner, 2014; Russo & Voigt, 2016; Rydell et al., 
2017), but becomes tenuous for rare species, species that are dif-
ficult to manually verify, or when multiple verifiers with different 
levels of experience are working on the same region of interest 
(Fritsch & Bruckner, 2014; Rydell et al., 2017). For rare bat species 
or less experienced verifiers, an entirely different survey design 
and analysis strategy should be pursued (e.g., using captured bats 
as in Clement et al., 2014) and the assumptions of that approach 
must also be carefully assessed.

Diagramming the workflow associated with wildlife acoustic 
data can help facilitate coherency among acoustic call process-
ing and species identification decisions and subsequent statistical 
analysis and interpretations. In addition to providing functions like 
those available in unmarked (e.g., occu) for fitting the extended 
OC model, our r package (OCacoustic) provides the capacity for 
researchers to conduct their own investigations into design require-
ments (e.g., sample size and a desired level of uncertainty) prior 
to collecting data. OCacoustic facilitates exploring trade-offs in 
extended OC model estimator precision and bias related to num-
ber of sites, number of visits, covariate structures at the site level 
and visit level, assumed data-generating parameter values (ideally 
coming from estimates from pilot data), and confirmation designs. 
Importantly, OCacoustic provides a design tool to increase effi-
ciency of future animal surveys that rely on ARUs to collect detec-
tion/non-detection data for estimating spatially explicit occurrence 
probabilities (species distribution maps) to inform conservation and 
management.
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