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Abstract
1.	 Surveying	wildlife	communities	provides	data	for	informing	conservation	and	man-
agement	decisions	that	affect	multiple	species.	Autonomous	recording	units	(ARUs)	
can	efficiently	gather	community	data	for	a	variety	of	taxa,	but	generally	require	
software	algorithms	to	classify	each	recorded	call	to	a	species.	Species	classification	
errors	are	possible	during	this	process	and	result	in	both	false-negative	and	false-
positive	detections.	Available	approaches	for	analysing	ARU	data	do	not	model	the	
species	classification	probabilities,	meaning	erroneous	detections	are	attributed	to	
an	omnibus	source	instead	of	the	presence	of	another	species.	Additionally,	counts	
of	call	recordings	for	each	species	are	often	summarized	to	binary	detection	data	
for	analyses.	Expanding	statistical	models	to	capture	these	nuances	of	ARU	data	
would	allow	for	improved	inferences	about	occupancy	and	relative	activity.

2.	 Motivated	by	bat	acoustic	surveys,	we	developed	a	model	to	analyse	counts	of	call	
recordings	from	multiple	species	simultaneously	while	accounting	for	species	clas-
sification	errors.	Our	model	expands	on	previously	developed	false-positive	occu-
pancy	models	to	better	describe	acoustic	data.	We	used	simulations	to	compare	
our	model	to	other	false-positive	occupancy	models	for	an	example	scenario	with	
ARU	data	from	two	species.	We	also	analyse	acoustic	data	for	eight	bat	species	in	
Montana	using	our	model.

3.	 In	simulations,	 single-species	models	 resulted	 in	biased	estimates	of	occupancy	
and	relative	activity	because	they	failed	to	associate	false	positives	with	the	pres-
ence	of	the	second	species.	Models	analysing	binary	observations	ignored	avail-
able	information	on	relative	activity	and	led	to	less	precise	estimates.	Applying	our	
model	to	bat	acoustic	data	from	Montana	allowed	for	species-specific	estimates	
of	 occupancy	 and	 relative	 activity.	 This	 analysis	 illustrates	 the	 flexibility	 in	 our	
model	framework	while	also	highlighting	the	assumptions	and	data	requirements	
for	implementation.	Specifically,	additional	information	on	the	species	classifica-
tion	probabilities	is	needed	and	we	discuss	considerations	for	reliably	estimating	
these	parameters.

4.	 Directly	 modelling	 the	 species	 classification	 probabilities	 allows	 for	 improved	
ecological	 inferences	for	both	occupancy	and	relative	activity	using	community	
ARU	data.	Our	statistical	framework	helps	address	the	challenges	posed	by	acous-
tic	data,	allowing	ecologists	 to	better	utilize	 this	 technology	to	monitor	wildlife	
communities.
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1  | INTRODUC TION

Surveying	 wildlife	 communities	 provides	 data	 for	 informing	 con-
servation	and	management	decisions	 that	affect	multiple	species.	
Autonomous	 recording	units	 (ARUs)	efficiently	gather	community	
data	by	passively	 recording	 animal	 vocalizations	 (Gibb,	Browning,	
Glover-Kapfer,	&	Jones,	2019),	generally	for	multiple	time	periods	
(‘visits’)	 at	 each	 surveyed	 location	 (‘site’).	 These	 data,	 including	
counts	 of	 call	 recordings	 and	 corresponding	 species	 classifica-
tions,	can	be	used	to	 investigate	various	ecological	questions	and	
are	applicable	for	surveying	multiple	taxa	(e.g.	anurans,	bats,	birds).	
However,	due	to	the	large	volumes	of	data	typically	collected,	most	
studies	 using	 acoustic	 surveys	 require	 classification	 software	 to	
identify	the	species	of	each	call	recording	(Gibb	et	al.,	2019).	This	
automated	process	 includes	species	classification	errors	 that	 lead	
to	both	false-negative	and	false-positive	detections.	For	 instance,	
when	a	species	is	present,	false-negative	detections	can	result	from	
successfully	 recording	 its	calls	but	misclassifying	them	as	alterna-
tive	 species.	 These	 errors	 are	 in	 addition	 to	 false	 negatives	 from	
failing	 to	 record	any	of	 its	 calls.	False-positive	detections	at	 sites	
where	a	species	is	absent	are	often	due	to	misclassifying	recorded	
calls	from	another	species.	Estimating	the	ecological	parameters	of	
interest,	 while	 addressing	 these	 errors	 is	 an	 important	 consider-
ation	when	analysing	ARU	data.

Occupancy	models	(MacKenzie	et	al.,	2002)	are	a	natural	frame-
work	for	analysing	ARU	data	when	visits	are	summarized	to	detec-
tion/non-detection	observations	for	each	species	(e.g.	Banner	et	al.,	
2018;	Rodhouse	 et	 al.,	 2019).	Originally	 developed	 to	 account	 for	
false	 negatives,	 standard	 occupancy	 models	 assume	 that	 all	 false	
positives	 are	 removed	 (MacKenzie	 et	 al.,	 2002).	 Completely	 elim-
inating	 false	 positives	 from	ARU	data	 is	 generally	 cost	 prohibitive	
because	 it	 requires	manually	confirming	at	 least	one	 recording	 for	
every	visit.	False	positives	are	an	important	source	of	errors	in	many	
wildlife	surveys	(Chambert,	Miller,	&	Nichols,	2015;	Guillera-Arroita,	
Lahoz-Monfort,	van	Rooyen,	Weeks,	&	Tingley,	2017;	Miller	et	al.,	
2011)	 and	 can	 negatively	 impact	 inferences	 when	 ignored,	 even	
when	 infrequent	 (Miller	 et	 al.,	 2015).	Consequently,	 expanded	oc-
cupancy	 models	 that	 account	 for	 false	 positives	 were	 developed	
and	have	been	applied	to	ARU	data	(Banner	et	al.,	2018;	Chambert,	
Waddle,	Miller,	Walls,	&	Nichols,	2018).	Other	approaches	for	ARU	
data	 utilize	 the	 degree	 of	 certainty	 generated	 by	 automated	 clas-
sifications	 to	 limit	 false	 positives	 and	 analyse	 the	 resulting	 data	
with	 false-positive	 occupancy	models	 (Balantic	&	Donovan,	 2019)	
or	other	methods	 (Barré	et	al.,	2019).	However,	existing	statistical	
models	for	ARU	data	are	unable	to	attribute	erroneous	detections	to	
the	presence	of	another	species	while	also	analysing	the	counts	of	
call	recordings	from	each	visit	to	a	site.

False-positive	 occupancy	 models,	 including	 those	 applied	 to	
ARU	data,	typically	estimate	parameters	for	one	species	(or	species	
group)	 and	 attribute	 erroneous	 detections	 to	 an	 omnibus	 source	
(Balantic	 &	Donovan,	 2019;	 Banner	 et	 al.,	 2018;	 Chambert	 et	 al.,	
2015;	Chambert,	Waddle,	et	al.,	2018;	Miller	et	al.,	2011).	However,	
Chambert,	 Campbell	 Grant,	 et	 al.	 (2018)	 showed	 single-species	
models	 are	 inadequate	when	 false	 positives	 result	 from	misclassi-
fying	a	second	species.	Acoustic	surveys	of	more	than	two	species	
compound	this	issue	because	recorded	calls	may	be	classified	to	one	
of	many	possible	species	with	similar	acoustic	characteristics.	These	
classification	 errors	 mean	 ARU	 data	 inherently	 include	 multiple	
species	and	analyses	should	reflect	this	characteristic	when	model-
ling	false	positives.	Another	characteristic	of	ARU	data	is	detection	
counts	are	available	for	each	visit	to	a	site	and	allow	for	ecological	
inferences	beyond	species	occurrence.	For	instance,	anuran	surveys	
collect	calling	rates	that	are	used	as	an	index	for	abundance	(Royle,	
2004;	Royle	&	Link,	2005)	and	bat	acoustic	surveys	monitor	activ-
ity	using	the	number	of	recorded	call	files	(Johnson,	Gates,	&	Ford,	
2008;	Nocera,	Ford,	Silvis,	&	Dobony,	2019).	Estimates	of	 relative	
activity	are	useful	for	addressing	questions	at	smaller	scales	and	pro-
vide	a	more	sensitive	metric	for	monitoring	populations.	When	false	
positives	occur,	recording	counts	can	also	better	inform	the	proba-
bility	a	site	is	occupied	(Chambert,	Waddle,	et	al.,	2018).

We	 develop	 a	 community	 occupancy	 model	 for	 analysing	 call	
recording	counts	while	explicitly	 incorporating	the	species	classifi-
cation	 probabilities.	 Using	 the	 number	 of	 recorded	 calls	 classified	
to	 each	 species	 and	 the	 probabilities	 of	 classifying	 a	 recording	 to	
each	potential	species,	we	account	for	both	false	negatives	and	false	
positives	resulting	from	the	species	classification	process.	By	mod-
elling	multiple	species	simultaneously,	our	approach	uses	additional	
information	from	ARU	surveys	when	estimating	species-specific	oc-
cupancy	and	relative	activity.	Our	model	extends	false-positive	oc-
cupancy	models	(Chambert,	Campbell	Grant,	et	al.,	2018;	Chambert	
et	al.,	2015;	Chambert,	Waddle,	et	al.,	2018)	to	analyse	call	counts	
instead	of	binary	observations	and	explicitly	incorporates	data	from	
multiple	species.	We	also	use	a	simulation	study	to	compare	differ-
ent	false-positive	occupancy	models	for	an	example	scenario	of	col-
lecting	ARU	data	from	two	species.

We	motivate	our	model	using	multi-species	acoustic	bat	surveys	
and	apply	it	to	data	collected	in	Montana,	USA.	Many	bat	species	face	
multiple	conservation	threats,	including	the	spread	of	white-nose	syn-
drome	(WNS),	wind	energy	development,	and	habitat	change	(O'Shea,	
Cryan,	Hayman,	Plowright,	&	Streicker,	2016).	Acoustic	data	provide	
valuable	 information	 for	 monitoring	 populations	 because	 bats	 are	
nocturnal	and	elusive,	making	 them	difficult	 to	study	using	capture	
techniques	(e.g.	mist	netting).	Bat	conservation	research	has	focused	
on	using	acoustic	data	to	map	species	distributions	(e.g.	Rodhouse	et	
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al.,	2019)	or	model	patterns	in	activity	(e.g.	Nocera	et	al.,	2019).	We	
introduce	 a	 comprehensive	 framework	 for	modelling	 acoustic	 data	
which	accounts	for	species	classification	errors	while	simultaneously	
estimating	species-specific	occupancy	and	relative	activity.

2  | MATERIAL S AND METHODS

2.1 | Bat acoustic data description

First,	we	provide	a	general	description	of	bat	acoustic	data	to	mo-
tivate	our	model	development.	Stationary	acoustic	detectors	 for	
bats	consist	of	ultrasonic	microphones	elevated	from	the	ground	
using	poles.	Detectors	are	deployed	at	suitable	locations	(e.g.	see	
Maxell,	2015)	and	record	bat	echolocation	calls	as	individuals	navi-
gate	throughout	the	area.	After	detectors	are	retrieved,	acoustic	
files	 are	 processed	 by	 software	 to	 remove	 non-bat	 recordings	
(Parsons	&	Szewczak,	2009).	This	 initial	 filtering	process	 reliably	
discards,	 for	 the	most	 part,	 all	 files	without	 bat	 calls	 (Banner	 et	
al.,	2018;	Reichert	et	al.,	2018).	Then	software	classifies	each	call	
file	to	one	bat	species,	if	possible	(see	Banner	et	al.,	2018).	These	
automated	 species	 classifications	 include	 errors	 that	 we	 aim	 to	
model.	 For	 example,	 consider	 the	 scenario	 where	 ARU	 surveys	
are	 conducted	within	 the	 ranges	of	 two	bat	 species	with	 similar	
echolocation	call	characteristics.	An	observed	count	of	recordings	
classified	as	species	1	can	include	a	combination	of	correctly	clas-
sified	call	 files	and	 incorrectly	classified	call	 files	 from	species	2	
(Figure	1).	In	this	scenario,	false-positive	detections	for	species	1	
are	only	possible	at	sites	where	species	2	 is	present.	That	 is,	the	
only	source	of	false	positives	is	incorrectly	classified	call	files	from	
the	 other	 species.	 False-negative	 detections	 of	 species	 1	 occur	
when	no	calls	from	species	1	are	recorded	or	when	every	recorded	
call	file	is	misclassified	as	species	2.	This	example	shows	how	mis-
classifying	observations	results	in	false	negatives	for	one	species	
becoming	the	false	positives	for	another.

The	 hidden	 cost	 of	 bat	 acoustic	 surveys	 is	 that	 experts	 visu-
ally	 examine	 characteristics	 of	 the	 sonograms	 (images	 depicting	
attributes	 of	 sound)	 to	 assess	whether	 the	 classification	 software	
assigned	 the	correct	 species.	These	manual	 species	 identifications	
are	 made	 by	 individuals	 with	 extensive	 training	 and	 considered	

error-free	(e.g.	Gibb	et	al.,	2019).	Manual	identifications	are	used	to	
determine	the	error	rates	for	various	automated	classification	pro-
grams.	When	estimating	occupancy,	one	approach	 is	to	confirm	at	
least	one	detection	of	the	species	per	visit	and	analyse	these	data	
using	 standard	 single-species	 occupancy	 models	 (e.g.	 Banner	 et	
al.,	 2018).	Alternatively,	 a	 combination	of	manually	 confirmed	and	
unconfirmed	 calls	 can	 be	 analysed	 with	 false-positive	 occupancy	
models	 (Chambert	 et	 al.,	 2015),	 requiring	 manual	 confirmation	 of	
fewer	 calls	 (Banner	 et	 al.,	 2018).	Modelling	 species-specific	 activ-
ity	 rates	 requires	human	verification	of	 all	 recordings,	 reflecting	a	
costly	and	often	unrealistic	expectation.	We	develop	an	approach	
that	harnesses	acoustic	data	from	multiple	species	to	simultaneously	
estimate	occupancy	and	relative	activity	while	modelling	the	species	
classification	probabilities.	This	reduces	the	amount	of	manual	con-
firmation	needed.	Our	approach	is	applicable	to	multi-species	data-
sets	when	the	counts	of	call	recordings	include	species	classification	
errors.

2.2 | General model framework

Let	i={1, … , n}	index	sites,	 j={1, … , J}	index	visits	within	each	site,	
and k={1, … ,K}	index	possible	species	surveyed	during	a	study.	For	
site	 i,	species	k	 is	present	(1)	or	not	(0)	with	probability	�ik and we 
model	this	latent	occupancy	state	as	follows:

We	 assume	 the	 occupancy	 states	 for	 each	 species	 are	 indepen-
dent,	but	this	could	be	modified	to	allow	for	species	interactions.	
Site-level	covariates	modelling	the	probabilities	of	occupancy	for	
each	species	can	be	incorporated	using	a	generalized	linear	model	
framework	with	g(�ik)=Xi�k	where	g()	denotes	an	appropriate	link	
function	(e.g.	logit,	probit).	We	have	represented	a	row-vector	of	
covariates	for	site	 i as Xi	and	a	vector	of	coefficients	for	species	
k as �k.

For	sites	occupied	by	a	species,	consider	the	number	of	detec-
tions	on	each	visit	a	Poisson	distributed	random	variable.	Given	site	
i	is	occupied	by	species	k,	we	model	the	detection	count	for	visit	j as

(1)Zik∼Bernoulli(�ik).

(2)[Yijk|Zik=1]∼Poisson(�ijk),

F I G U R E  1  Diagram	depicting	call	
detection	and	automated	species	
classification	for	two	species.	Dashed	
and	solid	lines	indicate	incorrect	and	
correct	classifications,	respectively.	With	
automated	classification,	the	observed	call	
file	counts	for	species	1	can	include	call	
files	originating	from	both	species
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where	�ijk	 is	 the	expected	number	of	detections	per	visit.	 In	 this	
formulation,	false	negatives	can	result	from	the	species	going	un-
detected	during	visits	to	occupied	sites	as	a	result	of	Yijk=0	from	
the	 associated	 Poisson	 distribution.	 Covariates	 can	 be	 included	
to	model	the	detection	rate	 in	a	generalized	 linear	model	frame-
work	where	log (�ijk)=Vij�k.	Let	Vij	denote	a	row-vector	combining	
site-level	and	visit-level	covariates,	�k	denote	the	vector	of	asso-
ciated	 coefficients	 for	 species	 k,	 and	 log()	 represent	 the	 natural	
logarithm	link	function.	So	far,	we	have	described	detections	for	a	
visit	without	considering	the	species	classification	probabilities.	If	
the	species	associated	with	each	detection	is	known	without	error,	
the	detection	counts	for	each	species	(Yijk)	are	directly	observable	
with	Equations	1	and	2	fully	describing	the	observed	data.	In	re-
ality,	however,	 these	counts	are	not	directly	observable	because	
individual	detections	may	be	incorrectly	classified	(Figure	1).

Let	�kk′	be	the	probability	that	a	single	detection	of	species	k is 
classified	 as	 species	k′	 (e.g.	 Figure	 1	 shows	 an	 example	with	K=2 
species).	This	includes	the	probability	of	a	correct	species	classifica-
tion	when	k� =k.	Across	all	possible	species	that	could	be	classified	
(k� ={1, … ,K}),	these	probabilities	sum	to	one.	For	detections	of	spe-
cies k,	let	�k= [𝜃k1, … , 𝜃kK]

⊤	be	a	vector	containing	the	probabilities	
of	classifying	a	detection	as	each	possible	species.	The	entire	con-
fusion	matrix,	�,	is	defined	using	the	probability	vectors	from	every	
species	so	that

with	rows	corresponding	to	the	actual	recorded	species	and	col-
umns	indicating	the	species	assigned	from	the	classification	algo-
rithm.	The	diagonal	elements	of	�	correspond	to	the	probabilities	
of	a	correct	species	classification.	Given	the	number	of	detections	
for	species	k,	yijk,	 the	number	classified	to	each	species	for	site	 i 
and	visit	 j	 is	 a	multinomial	 random	variable	with	probabilities	�k

.	That	is,

where	Cijk	is	the	K-length	vector	containing	the	number	of	detections	
from	species	k	classified	to	each	possible	species.

Let	Cijkk′	denote	the	components	of	Cijk	and	represent	the	number	
of	detections	from	species	k	classified	as	species	k′	for	visit	j	to	site	
i.	Again,	because	the	true	species	identities	of	individual	detections	
are	unknown,	these	counts	are	unobservable.	Instead,	the	observed	
data	consist	of	the	total	number	of	detections	classified	as	species	k′

,	which	we	denote	as

for	 site	 i	 and	visit	 j.	The	detections	 included	 in	 this	 sum	are	am-
biguous	because	 they	potentially	 include	detections	 from	any	of	

the	K	possible	species.	This	component	of	the	model	appropriately	
adjusts	the	estimates	of	occupancy	and	relative	activity	to	account	
for	 the	 uncertainty	 in	 the	 species	 classifications.	 The	 represen-
tation	 in	Equations	1–4	most	directly	describes	each	component	
of	 this	model,	 but	 an	 alternative	 representation	 (see	 Supporting	
Information	 S1)	 is	 useful	 computationally	 and	 for	 comparisons	
with	other	models.

As	 with	 other	 false-positive	 occupancy	 models,	 this	 model	 is	
only	 identifiable	 with	 additional	 information	 about	 the	 classifica-
tion	 process	 (Chambert	 et	 al.,	 2015;	Guillera-Arroita	 et	 al.,	 2017).	
Specifically,	 information	 is	 needed	 to	 estimate	 the	 classification	
probabilities	 (�kk′)	 separately	 from	the	detection	rates	 (�ijk).This	can	
include	strong	prior	information	(using	Bayesian	methods),	auxiliary	
data	 in	 the	 form	 of	 automated	 species	 classifications	 for	 call	 re-
cordings	of	known	species,	or	using	error-free	methods	to	confirm	
the	species	classifications	for	a	subset	of	the	observed	data.	These	
options	are	analogous	to	those	used	with	other	false-positive	occu-
pancy	models	(Chambert	et	al.,	2015;	Guillera-Arroita	et	al.,	2017).	
For	our	approach,	auxiliary	data	inform	the	classification	probabili-
ties	through	a	multinomial	probability	model.	The	species	classifica-
tion	probabilities	can	be	estimated	using	recordings	collected	in	the	
field	if	an	error-free	classification	method	is	available.	Consider	the	
case	where	a	subset	of	the	sites	(‘confirmed	sites’)	have	all	recordings	
from	every	visit	 identified	using	 the	error-free	method.	Data	 from	
confirmed	sites	are	incorporated	into	an	analysis	with	Equations	1–3	
because	 the	 actual	 species	 for	 each	detection	 are	 known	 (Cijk ob-
servable).	This	model	structure	could	be	modified	if	only	a	portion	of	
visits	to	a	site	are	confirmed	(similar	to	Banner	et	al.,	2018).

2.3 | Comparisons to other false‐positive 
occupancy models

Our	model	 generalizes	 other	 false-positive	 occupancy	models	 by	
analysing	detection	counts	from	multiple	species	while	modelling	
the	 species	 classification	 probabilities.	 In	 a	 two	 species	 scenario	
(K =	2),	our	model	is	related	to	other	false-positive	occupancy	mod-
els	(Chambert,	Campbell	Grant,	et	al.,	2018;	Chambert	et	al.,	2015;	
Chambert,	Waddle,	et	al.,	2018)	after	slight	modifications.	Consider	
the	two-species	scenario	where	the	primary	interest	is	making	in-
ferences	 for	 a	 focal	 species.	 The	 second	 species	 still	 needs	 con-
sideration	 because	 its	 call	 files	 can	 be	misclassified	 as	 the	 focal	
species,	leading	to	false	positives.	Similarly,	false	negatives	can	re-
sult	when	call	files	from	the	focal	species	are	erroneously	classified	
as	 the	second	species.	For	our	general	model,	 the	observed	data	
include	count	detections	for	both	species	(Supporting	Information	
S2.1).	 Alternative	 models	 analyse	 detections	 summarized	 to	 bi-
nary	 indicators	 (i.e.	 let	Dij⋅k� = I(Cij⋅k� >0))	and/or	only	data	from	the	
focal	 species	 (Figure	 2).	 Specifically,	 we	 consider	 the	 following	
alternative	 false-positive	models:	 two-species	with	 binary	 detec-
tions	 (Supporting	 Information	 S2.2;	 Chambert,	 Campbell	 Grant,	
et	 al.,	 2018),	 single-species	 with	 count	 detections	 (Supporting	
Information	S2.3;	Chambert,	Waddle,	et	al.,	2018),	or	single-species	
with	binary	detections	(Supporting	Information	S2.4;	Chambert	et	
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al.,	2015).	Both	single-species	models	implicitly	assume	false-posi-
tive	detections	are	possible	at	every	site	 (corresponding	to	�2=1 
in	our	example	scenario;	Figure	2).	The	assumption	that	false-posi-
tives	 result	 from	 an	omnibus	 source	 is	 reasonable	 in	 some	 cases	
(see	Chambert	et	al.,	2015;	Chambert,	Waddle,	et	al.,	2018),	but	not	
for	 bat	 acoustic	 data.	Additionally,	 analysing	 binary	 observations	
instead	of	detection	counts	ignores	available	data.

2.4 | Simulation study

We	simulated	data	for	the	two-species	scenario	(K	=	2)	to	assess	es-
timates	of	occupancy	and	relative	activity	using	different	false-posi-
tive	occupancy	models.	We	simulated	datasets	assuming	our	general	
model	(Section	2.2	and	Supporting	Information	S2.1)	with	scenarios	
for	 different	 data-generating	 parameter	 values.	 Across	 all	 scenar-
ios,	 we	 assumed	 species	 1	 had	 data-generating	 parameter	 values	
�1=0.3,	 �1=1,	 and	�1= [0.8, 0.2].	 The	 data-generating	 parameter	
values	for	species	2	varied	across	scenarios	and	included	all	combi-
nations	of	�2={0.25, 0.5, 0.75, 1} and �2={0.5, 1, 2, 4}.	We	specified	
�2= [0.35, 0.65]	for	every	scenario,	meaning	detections	from	species	
2	were	misclassified	as	species	1	with	probability	0.35.	We	simulated	
250	datasets	 consisting	of	N	 =	200	 sites	with	 J	 =	4	visits	 to	each	
for	every	scenario.	To	inform	the	species	classification	probabilities,	
each	dataset	had	 two	confirmed	visits	 from	50	sites	 that	 included	
unambiguous	detection	counts	for	both	species.	Every	dataset	was	
analysed	 with	 the	 data-generating	 model	 (our	 approach)	 and	 the	
three	 alternative	models	 (Section	 2.3	 and	 Supporting	 Information	
S2).	For	the	single-species	models,	we	considered	species	1	the	focal	
species	and	consequently	only	analysed	detections	classified	as	spe-
cies	1.	These	included	the	correctly	classified	detections	of	species	1	
and	misclassified	detections	of	species	2.	In	the	models	using	binary	
observations,	detection	counts	were	summarized	to	 indicator	vari-
ables	(Supporting	Information	S2).

We	 focus	 on	 the	 estimates	 of	 occupancy	 and	 relative	 activity	
for	species	1	when	summarizing	the	simulation	results.	For	models	

using	 binary	 observations,	 the	 relative	 activity	 rate	 is	 not	 directly	
estimated.	This	parameter	can	be	derived	using	these	models	based	
on	the	probability	of	observing	a	count	greater	than	zero	from	the	
Poisson	 distribution	 (Supporting	 Information	 S2).	 Additionally,	 the	
single-species	models	are	unable	to	separately	estimate	the	relative	
activity	 rate	 (�1)	 from	 the	 probability	 of	 correct	 classification	 (�11)	
and	activity	estimates	from	these	models	correspond	to	the	product	
of	 these	parameters	 (Supporting	 Information	S2).	For	every	model	
and	scenario,	we	plot	the	average	posterior	means	and	average	95%	
posterior	intervals	(PIs)	associated	with	occupancy	(�1)	and	relative	
activity	(�1)	for	species	1.	The	average	95%	PIs	consist	of	the	aver-
age	2.5%	and	97.5%	posterior	 quantiles	 across	 all	 simulated	data-
sets.	Coverage	of	the	95%	PIs	quantifies	how	often	these	intervals	
included	the	data-generating	values	(�1=0.3,	�1=1).

Models	were	fit	using	Bayesian	methods	with	Uniform(0,	1)	prior	
distributions	 for	 all	 probability	 parameters.	 In	 the	 count	 models,	
Gamma(2,	0.25)	prior	distributions	were	used	for	rate	parameters	(�).	
The	parameterizations	of	these	models	result	in	different	prior	distri-
butions,	but	all	distributions	we	used	are	sufficiently	vague	that	they	
have	 little	 impact	 on	 the	 resulting	 posterior	 inferences.	 Data	 were	
generated	 in	r	 (version	3.5.1;	R	Core	Team,	2018)	and	models	were	
fit	with	stan	 (Carpenter	et	al.,	2017)	using	 the	rstan	package	 (ver-
sion	2.18.2;	Stan	Development	Team,	2018).	The	results	from	a	fitted	
model	were	excluded	 if	 it	had	algorithm	warnings	 (divergent	 transi-
tions	or	reached	the	maximum	tree	depth),	failed	to	converge,	or	had	a	
small	effective	sample	size	for	any	parameter.	Each	model	was	fit	with	
four	independent	chains	of	800	total	iterations	(the	first	half	of	each	
chain	was	discarded	as	burn-in).	We	used	the	ggplot2	package	(ver-
sion	3.1.0;	Wickham,	2016)	to	create	figures.	Code	used	to	conduct	
these	simulations	is	provided	in	Supporting	Information	Data	S1.

2.5 | Application to bat data

We	demonstrate	our	model	using	bat	acoustic	data	collected	by	the	
Montana	Natural	Heritage	Program	and	their	partners	in	May	2014	

F I G U R E  2  When	ARU	surveys	
conflate	two	species,	our	model	(two-
species,	count	detections)	is	related	to	
other	false-positive	occupancy	models	
(Chambert,	Campbell	Grant,	et	al.,	2018;	
Chambert	et	al.,	2015;	Chambert,	Waddle,	
et	al.,	2018).	These	alternative	approaches	
rely	on	simplifying	assumptions	to	analyse	
binary	observations	or	only	data	for	a	
focal	species
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(Maxell,	2015).	We	provide	information	on	the	survey	protocols	here,	
but	additional	details	are	available	in	Maxell	(2015).	Acoustic	detec-
tors	(Song	Meter	SM2BAT	+	ultrasonic	records,	Wildlife	Acoustics,	
Inc;	 http://www.wildl	ifeac	ousti	cs.com)	 were	 deployed	 to	 identify	
bat	 species	 and	monitor	 activity	 at	 40	 sites	 throughout	Montana.	
Site	locations	were	based	on	local	objectives	and	not	a	probabilistic	
sampling	design.	These	sites	were	part	of	a	long-term	acoustic	moni-
toring	effort	across	Montana,	but	our	example	analysis	focused	on	
a	subset	of	the	available	data.	Within	this	time	period	(May	2014),	
we	selected	only	six	nights.	Most	sites	had	a	detector	deployed	for	
all	six	nights,	but	some	sites	had	data	for	fewer	nights.	We	selected	
nights	from	throughout	the	month	to	reduce	potential	autocorrela-
tion	among	consecutive	nights.	For	this	analysis,	we	considered	call	
files	summarized	for	a	single	night	as	one	visit	to	a	site.

All	recorded	bat	call	files	were	classified	using	Sonobat	(version	
4,	 https	://sonob	at.com).	 We	 analysed	 data	 for	 seven	 species:	 big	
brown	bat	Eptesicus fuscus	(EPFU),	silver-haired	bat	Lasionycteris noc-
tivagans	(LANO),	hoary	bat	Lasiurus cinereus	(LACI),	California	myotis	
Myotis californicus	 (MYCA),	western	small-footed	myotis	Myotis cil-
iolabrum	 (MYCI),	 long-eared	myotis	Myotis evotis	 (MYEV)	and	 little	
brown	bat	Myotis lucifugus	(MYLU).	We	included	an	‘other’	category	
for	additional	species	occurring	in	Montana	that	are	difficult	to	de-
tect	acoustically	and/or	not	widespread.	We	did	not	believe	 there	
was	enough	data	to	reliably	estimate	parameters	for	each	species	in	
the	‘other’	group.	We	informed	the	automated	species	classification	
probabilities	 using	 auxiliary	data	 from	manual	 identifications	 for	 a	
portion	of	bat	calls	recorded	during	the	long-term	acoustic	monitor-
ing	across	Montana	from	2011	to	2017.	The	criteria	for	definitively	
determining	species	in	call	files	can	be	found	in	Bachen	et	al.	(2018).	
For	bat	acoustic	data,	one	challenge	with	 informing	 the	classifica-
tion	probabilities	 is	 that	most	 recorded	call	 files	 cannot	be	defini-
tively	 identified	manually.	Consequently,	while	 the	manual	species	
identifications	 are	 considered	 error-free,	 some	 detections	 remain	
ambiguous	after	manual	examination.	Using	these	auxiliary	data	as-
sumes	that	the	automated	species	classification	probabilities	for	call	
files	capable	of	being	manually	confirmed	do	not	differ	from	those	
that	 cannot	 receive	manual	 confirmation.	The	 same	assumption	 is	
required	 to	use	manually	confirmed	calls	 from	a	subset	of	 the	ob-
served	data	and	our	model	can	be	modified	when	detections	cannot	
be	confirmed	(Supporting	Information	S3).

We	 included	site-level	and	visit-level	covariates	 to	explain	het-
erogeneity	in	the	occupancy	probabilities	and	activity	rates	for	each	
species.	Using	the	logit	link,	we	modelled	the	occupancy	probabili-
ties	with	site	elevation	and	an	indicator	for	whether	the	location	was	
near	 a	 lentic	 (stagnant)	water	 source	or	not.	We	used	 the	 log	 link	
to	associate	activity	rates	for	each	species	with	the	same	site-level	
covariates	 in	addition	 to	air	 temperature,	wind	speed,	and	relative	
humidity	averages	each	night	(obtained	from	MesoWest,	see	Maxell,	
2015).	All	covariates	were	centred	and	standardized	before	inclusion	
in	the	analysis.	We	suspected	the	nightly	call	counts	would	be	more	
variable	 than	expected	 for	 the	Poisson	distribution,	even	after	ac-
counting	for	heterogeneity	with	the	available	covariates.	To	account	
for	potential	overdispersion,	we	added	an	additional	error	 term	to	

the	estimated	nightly	activity	rate	for	each	species.	Specifically,	we	
let	 log (�ijk)=Vij�k+�ijk	 with	 �ijk∼Normal(0, �2

k
).	 The	 negative	 bino-

mial	distribution	also	allows	for	overdispersion	in	detection	counts	
(e.g.	 Chambert,	 Waddle,	 et	 al.,	 2018),	 but	 would	 preclude	 some	
computational	benefits	of	the	Poisson	distribution	(see	Supporting	
Information	S1).

For	 each	 covariate,	 the	 corresponding	 coefficients	were	mod-
elled	 with	 a	 hierarchical	 structure	 across	 species	 (e.g.	 Dorazio	 &	
Royle,	2005).	For	instance,	the	occupancy	intercepts	(�0k)	were	given	
a	normal	prior	distribution	(�0k∼Normal(��0

, �2
�0
)),	allowing	informa-

tion	to	be	borrowed	across	species.	We	assumed	Normal(0,	9)	and	
Gamma(2,	1)	hyper-prior	distributions	on	these	means	and	standard	
deviations,	 respectively.	 We	 used	 Half-Normal(0,	 9)	 prior	 distri-
butions	 for	 the	 overdispersion	 standard	 deviations	 (�k).We	 placed	
weakly	 informative	 Dirichlet	 prior	 distributions	 on	 the	 vectors	 of	
species	 classification	 probabilities	 (�k).	 In	 this	 case,	 we	 specified	
�k∼Dirichlet(�k)	where	each	�k is a K-length	vector	with	the	kth	el-
ement	equal	to	twenty	and	remaining	elements	equal	to	two.	These	
prior	distributions	place	more	prior	density	on	probabilities	associ-
ated	with	 correct	 species	 classifications,	 reflecting	 an	 assumption	
that	the	software	will	most	 likely	classify	call	 files	correctly.	Using	
Stan	(Carpenter	et	al.,	2017)	and	the	rstan	package	(version	2.18.2;	
Stan	Development	Team,	2018),	we	fit	this	model	with	four	chains	of	
1,000	iterations	and	discarded	the	first	half	of	each	chain	as	burn-in.

3  | RESULTS

3.1 | Simulation study

Across	all	simulated	scenarios,	both	two-species	models	resulted	
in	unbiased	posterior	means	and	95%	PIs	with	high	coverage	for	
�1	 (Figure	3a;	squares	and	triangles	for	counts	and	binary	obser-
vations,	 respectively).	Results	were	similar	 for	 these	models,	but	
the	average	95%	PIs	were	5%–14%	wider	using	binary	detections	
compared	to	using	counts	(Supporting	Information	S4).	For	all	sce-
narios	where	data	were	generated	with	𝜓2<1,	both	single-species	
models	resulted	in	biased	posterior	means	and	95%	PIs	with	lower	
coverage	for	�1	(Figure	3a;	circles	and	diamonds	for	counts	and	bi-
nary	observations,	respectively).	For	these	models,	bias	increased	
and	coverage	decreased	as	data	were	generated	with	larger	detec-
tion	rates	for	species	2	(�2).	Similar	patterns	were	seen	for	estimat-
ing	�1	–	single-species	models	were	biased	and	95%	PIs	had	 low	
coverage	(Figure	3b).	Note	that	the	single-species	models	can	only	
estimate	the	product	of	�1 and �11	(see	Supporting	Information	S2).	
In	our	 simulations,	 this	product	was	0.8,	but	 the	average	PIs	 for	
the	single-species	models	increasingly	deviated	from	this	value	as	
�2	 increased.	 Both	 the	 two-species	models	 resulted	 in	 unbiased	
posterior	means	 for	�1	 but	 the	 average	 95%	PIs	were	 28%–41%	
wider	when	analysing	binary	observations	 instead	of	 call	 counts	
(Supporting	Information	S4).

Of	the	scenarios	explored,	the	single-species	models	had	the	
poorest	 performance	 when	 species	 2	 was	 expected	 to	 occupy	
half	of	the	sites	(�2=0.5).	When	species	2	occurred	at	every	site,	
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satisfying	 the	 assumption	 implicit	 in	 the	 single-species	 mod-
els,	 inferences	 about	 occupancy	 for	 species	 1	 were	 improved.	
Specifically,	 bias	 of	 the	 posterior	 means	 was	 reduced	 (although	
still	 evident	 for	 the	single-species,	binary	detections	model)	 and	
the	 95%	PIs	 had	 high	 coverage	 for	 both	 occupancy	 and	 relative	
activity	(Figure	3).	Across	all	models,	there	was	more	uncertainty	
for	�1 and �1 as �2 increased.

3.2 | Bat data example

The	estimated	probabilities	of	occupancy	varied	across	the	eight	bat	
species	explored	in	this	analysis	(Figure	4).	Some	bat	species	(e.g.	big	
brown	bat	–	EPFU)	were	estimated	to	be	present	at	most	sites,	whereas	
others	(e.g.	California	myotis	–	MYCA)	were	more	rare.	These	patterns	
are	consistent	with	what	is	known	about	the	distributions	of	these	spe-
cies	in	Montana	(Maxell,	2015).	Across	all	species,	the	probabilities	of	
occupancy	were	positively	 associated	with	 lentic	water	 sources	and	
negatively	associated	with	higher	elevations,	but	the	95%	PIs	for	these	
coefficients	generally	included	zero	(Figure	4).	All	species-specific	es-
timates	of	relative	activity	were	positively	associated	with	lentic	water	
sources	and	warmer	nights	 (Figure	5),	 similar	 to	 findings	 from	other	
studies	 (e.g.	Adams	&	Thibault,	2006;	Parsons,	Jones,	&	Greenaway,	

2003).	For	the	other	covariates,	the	estimated	relationships	with	rela-
tive	activity	were	more	variable	across	species.	There	was	evidence	
of	overdispersion	 in	 the	nightly	call	counts	 for	each	species	and	the	
posterior	distributions	for	the	corresponding	standard	deviations	(�k)	
were	generally	near	2.	For	all	species,	the	probabilities	of	correct	classi-
fication	were	high	(Figure	6),	but	some	species	were	more	easily	classi-
fied	than	others.	For	instance,	call	files	from	MYLU	were	only	correctly	
classified	around	half	the	time	and	frequently	misclassified	as	species	
in	the	‘other’	category.

4  | DISCUSSION

We	developed	a	 statistical	 framework	 for	analysing	ARU	data	 to	
estimate	 occupancy	 and	 relative	 activity	 for	multiple	 species	 si-
multaneously.	 Our	 approach	 addresses	 some	 of	 the	 challenges	
posed	by	multi-species	ARU	data,	including	incorporating	the	spe-
cies	classification	probabilities	and	utilizing	the	available	counts	of	
call	recordings.	Alternative	models	fail	to	capture	these	character-
istics	 and,	 consequently,	 analyses	 can	 lead	 to	 biased	 and	 impre-
cise	inferences.	In	our	simulation	study,	for	instance,	two-species	
scenarios	 resulted	 in	biased	estimates	of	 occupancy	 and	 relative	

F I G U R E  3  From	the	simulation	
study,	species	1	average	95%	PIs	for	(a)	
occupancy	(�1)	and	(b)	rate	of	relative	
activity	(�1)	from	four	models.	The	
two-species,	count	detections	model	is	
described	in	the	main	text.	Other	models	
were	previously	developed	–	single-
species,	count	detections:	Chambert,	
Waddle,	et	al.	(2018);	two-species,	
binary	detections:	Chambert,	Campbell	
Grant,	et	al.	(2018);	and	single-species,	
binary	detections:	Chambert	et	al.	
(2015).	Scenarios	differed	based	on	the	
data-generating	values	of	occupancy	
probabilities	(�2={0.25, 0.5, 0.75, 1})	and	
activity	rates	(�2={0.5, 1, 2, 4})	for	species	
2.	Lines	span	the	average	95%	PIs	and	
points	indicate	the	average	posterior	
means.	Colours	indicate	the	proportion	of	
fitted	models	where	the	95%	PI	included	
the	data-generating	values	for	�1=0.3 
and �1=1
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activity	when	 analysing	 observations	 for	 only	 one	 species.	 Even	
when	 including	 false	 positives,	 single-species	models	 had	 biased	
estimates	because	of	unmodelled	heterogeneity	in	the	probability	
(or	rate)	of	false	positives.	Unexplained	variability	in	false	positives	
can	bias	occupancy	estimates	in	other	scenarios	as	well	(Louvrier,	
Chambert,	 Marboutin,	 &	 Gimenez,	 2018).	 Although	 various	 ap-
proaches	 exist	 for	 incorporating	 heterogeneity	 in	 false-positive	
detection	probabilities,	our	model	 is	advantageous	when	errone-
ous	detections	are	specifically	due	to	assigning	the	wrong	species	
to	an	observation	(e.g.	recorded	call)	because	it	connects	the	het-
erogeneity	in	false	positives	to	the	occurrence	of	other	species	at	
a	site.	Modelling	this	connection	through	the	species	classification	
probabilities	is	also	important	for	describing	the	false-negative	de-
tections	that	result	from	misclassifying	observations.	Additionally,	
simulations	demonstrated	how	utilizing	 counts	of	 call	 recordings	
increases	 precision	 when	 estimating	 relative	 activity	 compared	
to	 analysing	 binary	 observations.	 Our	 model	 provides	 a	 better	
description	of	ARU	data	in	order	to	allow	for	improved	ecological	
inferences.

Applying	our	model	to	bat	acoustic	data	from	Montana	allowed	
for	 species-specific	 estimates	 of	 occupancy	 and	 relative	 activity.	
Our	 analysis	 incorporated	 environmental	 predictors	 necessary	 for	
mapping	species	distributions	and	demonstrated	that	realistic	spe-
cies	assemblages	(K	>	2)	can	be	modelled	simultaneously.	Estimating	
occupancy	and	relative	activity	provides	useful	inferences	for	both	
regional	species	distribution	patterns	and	local	population	changes.	

Previous	work	has	demonstrated	using	bat	acoustic	data	for	predict-
ing	species	occurrence	over	large	spatial	extents	to	monitor	potential	
declines	(e.g.	Rodhouse	et	al.,	2019).	Alternatively,	estimating	rela-
tive	activity	helps	address	questions	at	smaller	scales,	such	as	how	
bat	populations	are	affected	by	disease	(Nocera	et	al.,	2019),	habitat	
alteration	(Johnson	et	al.,	2008),	or	artificial	light	(Straka,	Wolf,	Gras,	
Buchholz,	&	Voigt,	2019).	 In	both	cases,	species-specific	estimates	
are	important	to	account	for	species-specific	responses	(e.g.	Nocera	
et	al.,	2019).	Within	a	single	framework,	our	approach	provides	in-
ferences	for	both	occupancy	and	relative	activity	while	accounting	
for	errors	in	automated	species	classifications.	By	directly	modelling	
the	species	classification	probabilities,	we	can	utilize	the	automated	
classifications	and	reduce	the	extensive	effort	typically	required	to	
manually	confirm	species	identifications	in	bat	acoustic	data.

An	important	consideration	for	our	model	is	how	to	inform	the	
species	classification	probabilities.	The	needed	information	is	similar	
to	that	for	other	false-positive	occupancy	models	(Chambert	et	al.,	
2015;	Guillera-Arroita	et	al.,	2017)	or	abundance	models	accounting	
for	species	classification	errors	 (Conn	et	al.,	2013).	Using	an	error-
free	method	to	classify	a	portion	of	the	call	recordings	is	beneficial	
because	 it	 reduces	uncertainty	 in	occupancy	 states	by	 confirming	
species	 presence	 at	 some	 sites.	 For	 bats,	manually	 classifying	 call	
files	 is	 not	 only	 time-consuming	 and	 costly,	 but	 some	 recordings	
cannot	be	confirmed	and	their	species	classifications	remain	ambig-
uous.	 In	 this	 case,	 the	 confirmed	 call	 files	 need	 to	be	 representa-
tive	of	the	automated	classification	process	to	reliably	inform	these	

F I G U R E  4  From	our	analysis	of	
the	Montana	bat	data,	the	occupancy	
coefficient	posterior	distributions	for	each	
species.	Points	indicate	posterior	means.	
Black	lines	show	95%	PIs	and	thicker	lines	
show	50%	PIs
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probabilities.	 Alternatively,	 the	 species	 classification	 probabilities	
can	be	informed	using	auxiliary	data	where	the	automated	process	
classifies	 recordings	 of	 known	 species.	 These	 recordings	must	 be	
representative	of	those	collected	under	field	conditions	to	estimate	
the	species	classification	probabilities.	For	bat	acoustics,	 these	as-
sumptions	deserve	more	attention	in	order	to	collect	better	data	for	
modelling	the	species	classification	probabilities.

In	our	example,	we	assumed	constant	species	classification	prob-
abilities,	 but	 our	 approach	 could	 also	 be	 extended	 to	 incorporate	
covariates	(similar	to	Conn	et	al.,	2013).	For	instance,	call	character-
istics	obtained	by	automated	classifiers	(e.g.	call	duration,	maximum	
frequency)	 could	better	 isolate	potential	 species.	 This	 information	
influences	 the	degree	of	 certainty	associated	with	each	classifica-
tion	which	has	been	used	in	other	approaches	(Balantic	&	Donovan,	
2019;	Barré	et	al.,	2019).	General	recording	quality	also	 influences	
classification	probabilities	and	could	be	modelled	with	environmen-
tal	conditions	during	detector	deployments.	Any	potential	variability	
in	species	classification	probabilities	would	also	need	to	be	consid-
ered	when	collecting	auxiliary	data	or	confirming	species	classifica-
tions	to	ensure	these	data	could	estimate	these	relationships.	Future	
work	 could	 develop	 extensions	 to	 account	 for	 any	 call	 recordings	
that	cannot	be	classified	automatically	 (Conn	et	al.,	2013).	Beyond	

F I G U R E  5  From	our	analysis	of	
the	Montana	bat	data,	the	posterior	
distributions	of	coefficients	for	the	
relative	activity	rates	of	each	species.	
Points	indicate	posterior	means.	Black	
lines	show	95%	PIs	and	thicker	lines	show	
50%	PIs
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F I G U R E  6  Posterior	means	for	the	classification	probabilities	
of	call	files	from	each	species.	Call	files	from	a	certain	species	
are	shown	in	each	column	with	the	different	colours	indicating	
the	proportion	of	calls	expected	to	be	classified	as	each	potential	
species.	Black	outlines	indicate	correct	classifications
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acoustic	data,	our	model	could	be	applied	to	other	survey	methods	
(e.g.	cameras)	that	collect	counts	of	detections	where	species	classi-
fication	errors	are	possible.

Acoustic	technology	is	valuable	for	large-scale	monitoring	efforts	
because	it	efficiently	surveys	communities	for	a	variety	of	taxa	(Gibb	
et	 al.,	 2019).	 Collecting	 ARU	 data	 is	 also	 beneficial	 because	 it	 can	
be	used	to	estimate	relative	activity	rates	 in	addition	to	occupancy.	
However,	fully	utilizing	ARU	data	requires	modelling	the	uncertainty	
in	species	classifications	and	obtaining	additional	 information	about	
species	classification	probabilities.	With	this	 information,	our	model	
provides	a	way	to	efficiently	estimate	occupancy	and	relative	activity	
with	multi-species	ARU	data.	Our	statistical	framework	helps	address	
the	challenges	posed	by	acoustic	data,	allowing	ecologists	to	better	
harness	this	technology	when	monitoring	wildlife	communities.
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