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Abstract
1.	 Surveying wildlife communities provides data for informing conservation and man-
agement decisions that affect multiple species. Autonomous recording units (ARUs) 
can efficiently gather community data for a variety of taxa, but generally require 
software algorithms to classify each recorded call to a species. Species classification 
errors are possible during this process and result in both false‐negative and false‐
positive detections. Available approaches for analysing ARU data do not model the 
species classification probabilities, meaning erroneous detections are attributed to 
an omnibus source instead of the presence of another species. Additionally, counts 
of call recordings for each species are often summarized to binary detection data 
for analyses. Expanding statistical models to capture these nuances of ARU data 
would allow for improved inferences about occupancy and relative activity.

2.	 Motivated by bat acoustic surveys, we developed a model to analyse counts of call 
recordings from multiple species simultaneously while accounting for species clas-
sification errors. Our model expands on previously developed false‐positive occu-
pancy models to better describe acoustic data. We used simulations to compare 
our model to other false‐positive occupancy models for an example scenario with 
ARU data from two species. We also analyse acoustic data for eight bat species in 
Montana using our model.

3.	 In simulations, single‐species models resulted in biased estimates of occupancy 
and relative activity because they failed to associate false positives with the pres-
ence of the second species. Models analysing binary observations ignored avail-
able information on relative activity and led to less precise estimates. Applying our 
model to bat acoustic data from Montana allowed for species‐specific estimates 
of occupancy and relative activity. This analysis illustrates the flexibility in our 
model framework while also highlighting the assumptions and data requirements 
for implementation. Specifically, additional information on the species classifica-
tion probabilities is needed and we discuss considerations for reliably estimating 
these parameters.

4.	 Directly modelling the species classification probabilities allows for improved 
ecological inferences for both occupancy and relative activity using community 
ARU data. Our statistical framework helps address the challenges posed by acous-
tic data, allowing ecologists to better utilize this technology to monitor wildlife 
communities.
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1  | INTRODUC TION

Surveying wildlife communities provides data for informing con-
servation and management decisions that affect multiple species. 
Autonomous recording units (ARUs) efficiently gather community 
data by passively recording animal vocalizations (Gibb, Browning, 
Glover‐Kapfer, & Jones, 2019), generally for multiple time periods 
(‘visits’) at each surveyed location (‘site’). These data, including 
counts of call recordings and corresponding species classifica-
tions, can be used to investigate various ecological questions and 
are applicable for surveying multiple taxa (e.g. anurans, bats, birds). 
However, due to the large volumes of data typically collected, most 
studies using acoustic surveys require classification software to 
identify the species of each call recording (Gibb et al., 2019). This 
automated process includes species classification errors that lead 
to both false‐negative and false‐positive detections. For instance, 
when a species is present, false‐negative detections can result from 
successfully recording its calls but misclassifying them as alterna-
tive species. These errors are in addition to false negatives from 
failing to record any of its calls. False‐positive detections at sites 
where a species is absent are often due to misclassifying recorded 
calls from another species. Estimating the ecological parameters of 
interest, while addressing these errors is an important consider-
ation when analysing ARU data.

Occupancy models (MacKenzie et al., 2002) are a natural frame-
work for analysing ARU data when visits are summarized to detec-
tion/non‐detection observations for each species (e.g. Banner et al., 
2018; Rodhouse et al., 2019). Originally developed to account for 
false negatives, standard occupancy models assume that all false 
positives are removed (MacKenzie et al., 2002). Completely elim-
inating false positives from ARU data is generally cost prohibitive 
because it requires manually confirming at least one recording for 
every visit. False positives are an important source of errors in many 
wildlife surveys (Chambert, Miller, & Nichols, 2015; Guillera‐Arroita, 
Lahoz‐Monfort, van Rooyen, Weeks, & Tingley, 2017; Miller et al., 
2011) and can negatively impact inferences when ignored, even 
when infrequent (Miller et al., 2015). Consequently, expanded oc-
cupancy models that account for false positives were developed 
and have been applied to ARU data (Banner et al., 2018; Chambert, 
Waddle, Miller, Walls, & Nichols, 2018). Other approaches for ARU 
data utilize the degree of certainty generated by automated clas-
sifications to limit false positives and analyse the resulting data 
with false‐positive occupancy models (Balantic & Donovan, 2019) 
or other methods (Barré et al., 2019). However, existing statistical 
models for ARU data are unable to attribute erroneous detections to 
the presence of another species while also analysing the counts of 
call recordings from each visit to a site.

False‐positive occupancy models, including those applied to 
ARU data, typically estimate parameters for one species (or species 
group) and attribute erroneous detections to an omnibus source 
(Balantic & Donovan, 2019; Banner et al., 2018; Chambert et al., 
2015; Chambert, Waddle, et al., 2018; Miller et al., 2011). However, 
Chambert, Campbell Grant, et al. (2018) showed single‐species 
models are inadequate when false positives result from misclassi-
fying a second species. Acoustic surveys of more than two species 
compound this issue because recorded calls may be classified to one 
of many possible species with similar acoustic characteristics. These 
classification errors mean ARU data inherently include multiple 
species and analyses should reflect this characteristic when model-
ling false positives. Another characteristic of ARU data is detection 
counts are available for each visit to a site and allow for ecological 
inferences beyond species occurrence. For instance, anuran surveys 
collect calling rates that are used as an index for abundance (Royle, 
2004; Royle & Link, 2005) and bat acoustic surveys monitor activ-
ity using the number of recorded call files (Johnson, Gates, & Ford, 
2008; Nocera, Ford, Silvis, & Dobony, 2019). Estimates of relative 
activity are useful for addressing questions at smaller scales and pro-
vide a more sensitive metric for monitoring populations. When false 
positives occur, recording counts can also better inform the proba-
bility a site is occupied (Chambert, Waddle, et al., 2018).

We develop a community occupancy model for analysing call 
recording counts while explicitly incorporating the species classifi-
cation probabilities. Using the number of recorded calls classified 
to each species and the probabilities of classifying a recording to 
each potential species, we account for both false negatives and false 
positives resulting from the species classification process. By mod-
elling multiple species simultaneously, our approach uses additional 
information from ARU surveys when estimating species‐specific oc-
cupancy and relative activity. Our model extends false‐positive oc-
cupancy models (Chambert, Campbell Grant, et al., 2018; Chambert 
et al., 2015; Chambert, Waddle, et al., 2018) to analyse call counts 
instead of binary observations and explicitly incorporates data from 
multiple species. We also use a simulation study to compare differ-
ent false‐positive occupancy models for an example scenario of col-
lecting ARU data from two species.

We motivate our model using multi‐species acoustic bat surveys 
and apply it to data collected in Montana, USA. Many bat species face 
multiple conservation threats, including the spread of white‐nose syn-
drome (WNS), wind energy development, and habitat change (O'Shea, 
Cryan, Hayman, Plowright, & Streicker, 2016). Acoustic data provide 
valuable information for monitoring populations because bats are 
nocturnal and elusive, making them difficult to study using capture 
techniques (e.g. mist netting). Bat conservation research has focused 
on using acoustic data to map species distributions (e.g. Rodhouse et 
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al., 2019) or model patterns in activity (e.g. Nocera et al., 2019). We 
introduce a comprehensive framework for modelling acoustic data 
which accounts for species classification errors while simultaneously 
estimating species‐specific occupancy and relative activity.

2  | MATERIAL S AND METHODS

2.1 | Bat acoustic data description

First, we provide a general description of bat acoustic data to mo-
tivate our model development. Stationary acoustic detectors for 
bats consist of ultrasonic microphones elevated from the ground 
using poles. Detectors are deployed at suitable locations (e.g. see 
Maxell, 2015) and record bat echolocation calls as individuals navi-
gate throughout the area. After detectors are retrieved, acoustic 
files are processed by software to remove non‐bat recordings 
(Parsons & Szewczak, 2009). This initial filtering process reliably 
discards, for the most part, all files without bat calls (Banner et 
al., 2018; Reichert et al., 2018). Then software classifies each call 
file to one bat species, if possible (see Banner et al., 2018). These 
automated species classifications include errors that we aim to 
model. For example, consider the scenario where ARU surveys 
are conducted within the ranges of two bat species with similar 
echolocation call characteristics. An observed count of recordings 
classified as species 1 can include a combination of correctly clas-
sified call files and incorrectly classified call files from species 2 
(Figure 1). In this scenario, false‐positive detections for species 1 
are only possible at sites where species 2 is present. That is, the 
only source of false positives is incorrectly classified call files from 
the other species. False‐negative detections of species 1 occur 
when no calls from species 1 are recorded or when every recorded 
call file is misclassified as species 2. This example shows how mis-
classifying observations results in false negatives for one species 
becoming the false positives for another.

The hidden cost of bat acoustic surveys is that experts visu-
ally examine characteristics of the sonograms (images depicting 
attributes of sound) to assess whether the classification software 
assigned the correct species. These manual species identifications 
are made by individuals with extensive training and considered 

error‐free (e.g. Gibb et al., 2019). Manual identifications are used to 
determine the error rates for various automated classification pro-
grams. When estimating occupancy, one approach is to confirm at 
least one detection of the species per visit and analyse these data 
using standard single‐species occupancy models (e.g. Banner et 
al., 2018). Alternatively, a combination of manually confirmed and 
unconfirmed calls can be analysed with false‐positive occupancy 
models (Chambert et al., 2015), requiring manual confirmation of 
fewer calls (Banner et al., 2018). Modelling species‐specific activ-
ity rates requires human verification of all recordings, reflecting a 
costly and often unrealistic expectation. We develop an approach 
that harnesses acoustic data from multiple species to simultaneously 
estimate occupancy and relative activity while modelling the species 
classification probabilities. This reduces the amount of manual con-
firmation needed. Our approach is applicable to multi‐species data-
sets when the counts of call recordings include species classification 
errors.

2.2 | General model framework

Let i={1, … , n} index sites, j={1, … , J} index visits within each site, 
and k={1, … ,K} index possible species surveyed during a study. For 
site i, species k is present (1) or not (0) with probability �ik and we 
model this latent occupancy state as follows:

We assume the occupancy states for each species are indepen-
dent, but this could be modified to allow for species interactions. 
Site‐level covariates modelling the probabilities of occupancy for 
each species can be incorporated using a generalized linear model 
framework with g(�ik)=Xi�k where g() denotes an appropriate link 
function (e.g. logit, probit). We have represented a row‐vector of 
covariates for site i as Xi and a vector of coefficients for species 
k as �k.

For sites occupied by a species, consider the number of detec-
tions on each visit a Poisson distributed random variable. Given site 
i is occupied by species k, we model the detection count for visit j as

(1)Zik∼Bernoulli(�ik).

(2)[Yijk|Zik=1]∼Poisson(�ijk),

F I G U R E  1  Diagram depicting call 
detection and automated species 
classification for two species. Dashed 
and solid lines indicate incorrect and 
correct classifications, respectively. With 
automated classification, the observed call 
file counts for species 1 can include call 
files originating from both species
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where �ijk is the expected number of detections per visit. In this 
formulation, false negatives can result from the species going un-
detected during visits to occupied sites as a result of Yijk=0 from 
the associated Poisson distribution. Covariates can be included 
to model the detection rate in a generalized linear model frame-
work where log (�ijk)=Vij�k. Let Vij denote a row‐vector combining 
site‐level and visit‐level covariates, �k denote the vector of asso-
ciated coefficients for species k, and log() represent the natural 
logarithm link function. So far, we have described detections for a 
visit without considering the species classification probabilities. If 
the species associated with each detection is known without error, 
the detection counts for each species (Yijk) are directly observable 
with Equations 1 and 2 fully describing the observed data. In re-
ality, however, these counts are not directly observable because 
individual detections may be incorrectly classified (Figure 1).

Let �kk′ be the probability that a single detection of species k is 
classified as species k′ (e.g. Figure 1 shows an example with K=2 
species). This includes the probability of a correct species classifica-
tion when k� =k. Across all possible species that could be classified 
(k� ={1, … ,K}), these probabilities sum to one. For detections of spe-
cies k, let �k= [𝜃k1, … , 𝜃kK]

⊤ be a vector containing the probabilities 
of classifying a detection as each possible species. The entire con-
fusion matrix, �, is defined using the probability vectors from every 
species so that

with rows corresponding to the actual recorded species and col-
umns indicating the species assigned from the classification algo-
rithm. The diagonal elements of � correspond to the probabilities 
of a correct species classification. Given the number of detections 
for species k, yijk, the number classified to each species for site i 
and visit j is a multinomial random variable with probabilities �k

. That is,

where Cijk is the K‐length vector containing the number of detections 
from species k classified to each possible species.

Let Cijkk′ denote the components of Cijk and represent the number 
of detections from species k classified as species k′ for visit j to site 
i. Again, because the true species identities of individual detections 
are unknown, these counts are unobservable. Instead, the observed 
data consist of the total number of detections classified as species k′

, which we denote as

for site i and visit j. The detections included in this sum are am-
biguous because they potentially include detections from any of 

the K possible species. This component of the model appropriately 
adjusts the estimates of occupancy and relative activity to account 
for the uncertainty in the species classifications. The represen-
tation in Equations 1–4 most directly describes each component 
of this model, but an alternative representation (see Supporting 
Information S1) is useful computationally and for comparisons 
with other models.

As with other false‐positive occupancy models, this model is 
only identifiable with additional information about the classifica-
tion process (Chambert et al., 2015; Guillera‐Arroita et al., 2017). 
Specifically, information is needed to estimate the classification 
probabilities (�kk′) separately from the detection rates (�ijk).This can 
include strong prior information (using Bayesian methods), auxiliary 
data in the form of automated species classifications for call re-
cordings of known species, or using error‐free methods to confirm 
the species classifications for a subset of the observed data. These 
options are analogous to those used with other false‐positive occu-
pancy models (Chambert et al., 2015; Guillera‐Arroita et al., 2017). 
For our approach, auxiliary data inform the classification probabili-
ties through a multinomial probability model. The species classifica-
tion probabilities can be estimated using recordings collected in the 
field if an error‐free classification method is available. Consider the 
case where a subset of the sites (‘confirmed sites’) have all recordings 
from every visit identified using the error‐free method. Data from 
confirmed sites are incorporated into an analysis with Equations 1–3 
because the actual species for each detection are known (Cijk ob-
servable). This model structure could be modified if only a portion of 
visits to a site are confirmed (similar to Banner et al., 2018).

2.3 | Comparisons to other false‐positive 
occupancy models

Our model generalizes other false‐positive occupancy models by 
analysing detection counts from multiple species while modelling 
the species classification probabilities. In a two species scenario 
(K = 2), our model is related to other false‐positive occupancy mod-
els (Chambert, Campbell Grant, et al., 2018; Chambert et al., 2015; 
Chambert, Waddle, et al., 2018) after slight modifications. Consider 
the two‐species scenario where the primary interest is making in-
ferences for a focal species. The second species still needs con-
sideration because its call files can be misclassified as the focal 
species, leading to false positives. Similarly, false negatives can re-
sult when call files from the focal species are erroneously classified 
as the second species. For our general model, the observed data 
include count detections for both species (Supporting Information 
S2.1). Alternative models analyse detections summarized to bi-
nary indicators (i.e. let Dij⋅k� = I(Cij⋅k� >0)) and/or only data from the 
focal species (Figure 2). Specifically, we consider the following 
alternative false‐positive models: two‐species with binary detec-
tions (Supporting Information S2.2; Chambert, Campbell Grant, 
et al., 2018), single‐species with count detections (Supporting 
Information S2.3; Chambert, Waddle, et al., 2018), or single‐species 
with binary detections (Supporting Information S2.4; Chambert et 
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al., 2015). Both single‐species models implicitly assume false‐posi-
tive detections are possible at every site (corresponding to �2=1 
in our example scenario; Figure 2). The assumption that false‐posi-
tives result from an omnibus source is reasonable in some cases 
(see Chambert et al., 2015; Chambert, Waddle, et al., 2018), but not 
for bat acoustic data. Additionally, analysing binary observations 
instead of detection counts ignores available data.

2.4 | Simulation study

We simulated data for the two‐species scenario (K = 2) to assess es-
timates of occupancy and relative activity using different false‐posi-
tive occupancy models. We simulated datasets assuming our general 
model (Section 2.2 and Supporting Information S2.1) with scenarios 
for different data‐generating parameter values. Across all scenar-
ios, we assumed species 1 had data‐generating parameter values 
�1=0.3, �1=1, and �1= [0.8, 0.2]. The data‐generating parameter 
values for species 2 varied across scenarios and included all combi-
nations of �2={0.25, 0.5, 0.75, 1} and �2={0.5, 1, 2, 4}. We specified 
�2= [0.35, 0.65] for every scenario, meaning detections from species 
2 were misclassified as species 1 with probability 0.35. We simulated 
250 datasets consisting of N  = 200 sites with J  = 4 visits to each 
for every scenario. To inform the species classification probabilities, 
each dataset had two confirmed visits from 50 sites that included 
unambiguous detection counts for both species. Every dataset was 
analysed with the data‐generating model (our approach) and the 
three alternative models (Section 2.3 and Supporting Information 
S2). For the single‐species models, we considered species 1 the focal 
species and consequently only analysed detections classified as spe-
cies 1. These included the correctly classified detections of species 1 
and misclassified detections of species 2. In the models using binary 
observations, detection counts were summarized to indicator vari-
ables (Supporting Information S2).

We focus on the estimates of occupancy and relative activity 
for species 1 when summarizing the simulation results. For models 

using binary observations, the relative activity rate is not directly 
estimated. This parameter can be derived using these models based 
on the probability of observing a count greater than zero from the 
Poisson distribution (Supporting Information S2). Additionally, the 
single‐species models are unable to separately estimate the relative 
activity rate (�1) from the probability of correct classification (�11) 
and activity estimates from these models correspond to the product 
of these parameters (Supporting Information S2). For every model 
and scenario, we plot the average posterior means and average 95% 
posterior intervals (PIs) associated with occupancy (�1) and relative 
activity (�1) for species 1. The average 95% PIs consist of the aver-
age 2.5% and 97.5% posterior quantiles across all simulated data-
sets. Coverage of the 95% PIs quantifies how often these intervals 
included the data‐generating values (�1=0.3, �1=1).

Models were fit using Bayesian methods with Uniform(0, 1) prior 
distributions for all probability parameters. In the count models, 
Gamma(2, 0.25) prior distributions were used for rate parameters (�). 
The parameterizations of these models result in different prior distri-
butions, but all distributions we used are sufficiently vague that they 
have little impact on the resulting posterior inferences. Data were 
generated in r (version 3.5.1; R Core Team, 2018) and models were 
fit with stan (Carpenter et al., 2017) using the rstan package (ver-
sion 2.18.2; Stan Development Team, 2018). The results from a fitted 
model were excluded if it had algorithm warnings (divergent transi-
tions or reached the maximum tree depth), failed to converge, or had a 
small effective sample size for any parameter. Each model was fit with 
four independent chains of 800 total iterations (the first half of each 
chain was discarded as burn‐in). We used the ggplot2 package (ver-
sion 3.1.0; Wickham, 2016) to create figures. Code used to conduct 
these simulations is provided in Supporting Information Data S1.

2.5 | Application to bat data

We demonstrate our model using bat acoustic data collected by the 
Montana Natural Heritage Program and their partners in May 2014 

F I G U R E  2  When ARU surveys 
conflate two species, our model (two‐
species, count detections) is related to 
other false‐positive occupancy models 
(Chambert, Campbell Grant, et al., 2018; 
Chambert et al., 2015; Chambert, Waddle, 
et al., 2018). These alternative approaches 
rely on simplifying assumptions to analyse 
binary observations or only data for a 
focal species
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(Maxell, 2015). We provide information on the survey protocols here, 
but additional details are available in Maxell (2015). Acoustic detec-
tors (Song Meter SM2BAT + ultrasonic records, Wildlife Acoustics, 
Inc; http://www.wildl​ifeac​ousti​cs.com) were deployed to identify 
bat species and monitor activity at 40 sites throughout Montana. 
Site locations were based on local objectives and not a probabilistic 
sampling design. These sites were part of a long‐term acoustic moni-
toring effort across Montana, but our example analysis focused on 
a subset of the available data. Within this time period (May 2014), 
we selected only six nights. Most sites had a detector deployed for 
all six nights, but some sites had data for fewer nights. We selected 
nights from throughout the month to reduce potential autocorrela-
tion among consecutive nights. For this analysis, we considered call 
files summarized for a single night as one visit to a site.

All recorded bat call files were classified using Sonobat (version 
4, https​://sonob​at.com). We analysed data for seven species: big 
brown bat Eptesicus fuscus (EPFU), silver‐haired bat Lasionycteris noc-
tivagans (LANO), hoary bat Lasiurus cinereus (LACI), California myotis 
Myotis californicus (MYCA), western small‐footed myotis Myotis cil-
iolabrum (MYCI), long‐eared myotis Myotis evotis (MYEV) and little 
brown bat Myotis lucifugus (MYLU). We included an ‘other’ category 
for additional species occurring in Montana that are difficult to de-
tect acoustically and/or not widespread. We did not believe there 
was enough data to reliably estimate parameters for each species in 
the ‘other’ group. We informed the automated species classification 
probabilities using auxiliary data from manual identifications for a 
portion of bat calls recorded during the long‐term acoustic monitor-
ing across Montana from 2011 to 2017. The criteria for definitively 
determining species in call files can be found in Bachen et al. (2018). 
For bat acoustic data, one challenge with informing the classifica-
tion probabilities is that most recorded call files cannot be defini-
tively identified manually. Consequently, while the manual species 
identifications are considered error‐free, some detections remain 
ambiguous after manual examination. Using these auxiliary data as-
sumes that the automated species classification probabilities for call 
files capable of being manually confirmed do not differ from those 
that cannot receive manual confirmation. The same assumption is 
required to use manually confirmed calls from a subset of the ob-
served data and our model can be modified when detections cannot 
be confirmed (Supporting Information S3).

We included site‐level and visit‐level covariates to explain het-
erogeneity in the occupancy probabilities and activity rates for each 
species. Using the logit link, we modelled the occupancy probabili-
ties with site elevation and an indicator for whether the location was 
near a lentic (stagnant) water source or not. We used the log link 
to associate activity rates for each species with the same site‐level 
covariates in addition to air temperature, wind speed, and relative 
humidity averages each night (obtained from MesoWest, see Maxell, 
2015). All covariates were centred and standardized before inclusion 
in the analysis. We suspected the nightly call counts would be more 
variable than expected for the Poisson distribution, even after ac-
counting for heterogeneity with the available covariates. To account 
for potential overdispersion, we added an additional error term to 

the estimated nightly activity rate for each species. Specifically, we 
let log (�ijk)=Vij�k+�ijk with �ijk∼Normal(0, �2

k
). The negative bino-

mial distribution also allows for overdispersion in detection counts 
(e.g. Chambert, Waddle, et al., 2018), but would preclude some 
computational benefits of the Poisson distribution (see Supporting 
Information S1).

For each covariate, the corresponding coefficients were mod-
elled with a hierarchical structure across species (e.g. Dorazio & 
Royle, 2005). For instance, the occupancy intercepts (�0k) were given 
a normal prior distribution (�0k∼Normal(��0

, �2
�0
)), allowing informa-

tion to be borrowed across species. We assumed Normal(0, 9) and 
Gamma(2, 1) hyper‐prior distributions on these means and standard 
deviations, respectively. We used Half‐Normal(0, 9) prior distri-
butions for the overdispersion standard deviations (�k).We placed 
weakly informative Dirichlet prior distributions on the vectors of 
species classification probabilities (�k). In this case, we specified 
�k∼Dirichlet(�k) where each �k is a K‐length vector with the kth el-
ement equal to twenty and remaining elements equal to two. These 
prior distributions place more prior density on probabilities associ-
ated with correct species classifications, reflecting an assumption 
that the software will most likely classify call files correctly. Using 
Stan (Carpenter et al., 2017) and the rstan package (version 2.18.2; 
Stan Development Team, 2018), we fit this model with four chains of 
1,000 iterations and discarded the first half of each chain as burn‐in.

3  | RESULTS

3.1 | Simulation study

Across all simulated scenarios, both two‐species models resulted 
in unbiased posterior means and 95% PIs with high coverage for 
�1 (Figure 3a; squares and triangles for counts and binary obser-
vations, respectively). Results were similar for these models, but 
the average 95% PIs were 5%–14% wider using binary detections 
compared to using counts (Supporting Information S4). For all sce-
narios where data were generated with 𝜓2<1, both single‐species 
models resulted in biased posterior means and 95% PIs with lower 
coverage for �1 (Figure 3a; circles and diamonds for counts and bi-
nary observations, respectively). For these models, bias increased 
and coverage decreased as data were generated with larger detec-
tion rates for species 2 (�2). Similar patterns were seen for estimat-
ing �1 – single‐species models were biased and 95% PIs had low 
coverage (Figure 3b). Note that the single‐species models can only 
estimate the product of �1 and �11 (see Supporting Information S2). 
In our simulations, this product was 0.8, but the average PIs for 
the single‐species models increasingly deviated from this value as 
�2 increased. Both the two‐species models resulted in unbiased 
posterior means for �1 but the average 95% PIs were 28%–41% 
wider when analysing binary observations instead of call counts 
(Supporting Information S4).

Of the scenarios explored, the single‐species models had the 
poorest performance when species 2 was expected to occupy 
half of the sites (�2=0.5). When species 2 occurred at every site, 
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satisfying the assumption implicit in the single‐species mod-
els, inferences about occupancy for species 1 were improved. 
Specifically, bias of the posterior means was reduced (although 
still evident for the single‐species, binary detections model) and 
the 95% PIs had high coverage for both occupancy and relative 
activity (Figure 3). Across all models, there was more uncertainty 
for �1 and �1 as �2 increased.

3.2 | Bat data example

The estimated probabilities of occupancy varied across the eight bat 
species explored in this analysis (Figure 4). Some bat species (e.g. big 
brown bat – EPFU) were estimated to be present at most sites, whereas 
others (e.g. California myotis – MYCA) were more rare. These patterns 
are consistent with what is known about the distributions of these spe-
cies in Montana (Maxell, 2015). Across all species, the probabilities of 
occupancy were positively associated with lentic water sources and 
negatively associated with higher elevations, but the 95% PIs for these 
coefficients generally included zero (Figure 4). All species‐specific es-
timates of relative activity were positively associated with lentic water 
sources and warmer nights (Figure 5), similar to findings from other 
studies (e.g. Adams & Thibault, 2006; Parsons, Jones, & Greenaway, 

2003). For the other covariates, the estimated relationships with rela-
tive activity were more variable across species. There was evidence 
of overdispersion in the nightly call counts for each species and the 
posterior distributions for the corresponding standard deviations (�k) 
were generally near 2. For all species, the probabilities of correct classi-
fication were high (Figure 6), but some species were more easily classi-
fied than others. For instance, call files from MYLU were only correctly 
classified around half the time and frequently misclassified as species 
in the ‘other’ category.

4  | DISCUSSION

We developed a statistical framework for analysing ARU data to 
estimate occupancy and relative activity for multiple species si-
multaneously. Our approach addresses some of the challenges 
posed by multi‐species ARU data, including incorporating the spe-
cies classification probabilities and utilizing the available counts of 
call recordings. Alternative models fail to capture these character-
istics and, consequently, analyses can lead to biased and impre-
cise inferences. In our simulation study, for instance, two‐species 
scenarios resulted in biased estimates of occupancy and relative 

F I G U R E  3  From the simulation 
study, species 1 average 95% PIs for (a) 
occupancy (�1) and (b) rate of relative 
activity (�1) from four models. The 
two‐species, count detections model is 
described in the main text. Other models 
were previously developed – single‐
species, count detections: Chambert, 
Waddle, et al. (2018); two‐species, 
binary detections: Chambert, Campbell 
Grant, et al. (2018); and single‐species, 
binary detections: Chambert et al. 
(2015). Scenarios differed based on the 
data‐generating values of occupancy 
probabilities (�2={0.25, 0.5, 0.75, 1}) and 
activity rates (�2={0.5, 1, 2, 4}) for species 
2. Lines span the average 95% PIs and 
points indicate the average posterior 
means. Colours indicate the proportion of 
fitted models where the 95% PI included 
the data‐generating values for �1=0.3 
and �1=1
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activity when analysing observations for only one species. Even 
when including false positives, single‐species models had biased 
estimates because of unmodelled heterogeneity in the probability 
(or rate) of false positives. Unexplained variability in false positives 
can bias occupancy estimates in other scenarios as well (Louvrier, 
Chambert, Marboutin, & Gimenez, 2018). Although various ap-
proaches exist for incorporating heterogeneity in false‐positive 
detection probabilities, our model is advantageous when errone-
ous detections are specifically due to assigning the wrong species 
to an observation (e.g. recorded call) because it connects the het-
erogeneity in false positives to the occurrence of other species at 
a site. Modelling this connection through the species classification 
probabilities is also important for describing the false‐negative de-
tections that result from misclassifying observations. Additionally, 
simulations demonstrated how utilizing counts of call recordings 
increases precision when estimating relative activity compared 
to analysing binary observations. Our model provides a better 
description of ARU data in order to allow for improved ecological 
inferences.

Applying our model to bat acoustic data from Montana allowed 
for species‐specific estimates of occupancy and relative activity. 
Our analysis incorporated environmental predictors necessary for 
mapping species distributions and demonstrated that realistic spe-
cies assemblages (K > 2) can be modelled simultaneously. Estimating 
occupancy and relative activity provides useful inferences for both 
regional species distribution patterns and local population changes. 

Previous work has demonstrated using bat acoustic data for predict-
ing species occurrence over large spatial extents to monitor potential 
declines (e.g. Rodhouse et al., 2019). Alternatively, estimating rela-
tive activity helps address questions at smaller scales, such as how 
bat populations are affected by disease (Nocera et al., 2019), habitat 
alteration (Johnson et al., 2008), or artificial light (Straka, Wolf, Gras, 
Buchholz, & Voigt, 2019). In both cases, species‐specific estimates 
are important to account for species‐specific responses (e.g. Nocera 
et al., 2019). Within a single framework, our approach provides in-
ferences for both occupancy and relative activity while accounting 
for errors in automated species classifications. By directly modelling 
the species classification probabilities, we can utilize the automated 
classifications and reduce the extensive effort typically required to 
manually confirm species identifications in bat acoustic data.

An important consideration for our model is how to inform the 
species classification probabilities. The needed information is similar 
to that for other false‐positive occupancy models (Chambert et al., 
2015; Guillera‐Arroita et al., 2017) or abundance models accounting 
for species classification errors (Conn et al., 2013). Using an error‐
free method to classify a portion of the call recordings is beneficial 
because it reduces uncertainty in occupancy states by confirming 
species presence at some sites. For bats, manually classifying call 
files is not only time‐consuming and costly, but some recordings 
cannot be confirmed and their species classifications remain ambig-
uous. In this case, the confirmed call files need to be representa-
tive of the automated classification process to reliably inform these 

F I G U R E  4  From our analysis of 
the Montana bat data, the occupancy 
coefficient posterior distributions for each 
species. Points indicate posterior means. 
Black lines show 95% PIs and thicker lines 
show 50% PIs
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probabilities. Alternatively, the species classification probabilities 
can be informed using auxiliary data where the automated process 
classifies recordings of known species. These recordings must be 
representative of those collected under field conditions to estimate 
the species classification probabilities. For bat acoustics, these as-
sumptions deserve more attention in order to collect better data for 
modelling the species classification probabilities.

In our example, we assumed constant species classification prob-
abilities, but our approach could also be extended to incorporate 
covariates (similar to Conn et al., 2013). For instance, call character-
istics obtained by automated classifiers (e.g. call duration, maximum 
frequency) could better isolate potential species. This information 
influences the degree of certainty associated with each classifica-
tion which has been used in other approaches (Balantic & Donovan, 
2019; Barré et al., 2019). General recording quality also influences 
classification probabilities and could be modelled with environmen-
tal conditions during detector deployments. Any potential variability 
in species classification probabilities would also need to be consid-
ered when collecting auxiliary data or confirming species classifica-
tions to ensure these data could estimate these relationships. Future 
work could develop extensions to account for any call recordings 
that cannot be classified automatically (Conn et al., 2013). Beyond 

F I G U R E  5  From our analysis of 
the Montana bat data, the posterior 
distributions of coefficients for the 
relative activity rates of each species. 
Points indicate posterior means. Black 
lines show 95% PIs and thicker lines show 
50% PIs
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F I G U R E  6  Posterior means for the classification probabilities 
of call files from each species. Call files from a certain species 
are shown in each column with the different colours indicating 
the proportion of calls expected to be classified as each potential 
species. Black outlines indicate correct classifications
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acoustic data, our model could be applied to other survey methods 
(e.g. cameras) that collect counts of detections where species classi-
fication errors are possible.

Acoustic technology is valuable for large‐scale monitoring efforts 
because it efficiently surveys communities for a variety of taxa (Gibb 
et al., 2019). Collecting ARU data is also beneficial because it can 
be used to estimate relative activity rates in addition to occupancy. 
However, fully utilizing ARU data requires modelling the uncertainty 
in species classifications and obtaining additional information about 
species classification probabilities. With this information, our model 
provides a way to efficiently estimate occupancy and relative activity 
with multi‐species ARU data. Our statistical framework helps address 
the challenges posed by acoustic data, allowing ecologists to better 
harness this technology when monitoring wildlife communities.
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