Great Falls APWA Hosts 18th Annual Snow Rodeo

“This is our 18th year hosting the Equipment Training and Snow Rodeo here in Great Falls,” said Marty Basta, Operations Manager, City of Great Falls. “With the training being provided by Montana LTAP on the first day and the level of competition rising each year for the rodeo on the second day, this event keeps drawing old and new competitors alike,” commented Basta. He also mentioned that the rodeo would not be possible without the help from city and county employees, MDT and T&E Equipment. “It’s definitely a team effort all the way around,” Basta said.

Montana LTAP Director Steve Jenkins got the first day of training started off with weed mowing safety, followed by his winter survival module.

Continued on Page 2 . . .

Marty Basta, City of Great Falls

Backhoe Competition
The morning concluded with a panel presentation on Garbage Truck Driving Safety. Ross Bartell, City of Great Falls; Steve Johnson, City of Bozeman; and Ken Behling, City of Billings, led the discussion panel on various safety aspects when driving large trucks.

The afternoon session focused on staking a roadway curve with Jenkins offering classroom instruction on mathematics followed by a hands-on surveying and staking a curve outside the classroom. Jim Turnbow, City of Great Falls Street Superintendent also presented the hand method of surveying a curve. Participants also had an opportunity to try out various equipment provided by T&E.
Snow Rodeo (cont’d from Page 2)

Who broke the bowling ball?

Waiting their turn

Watching intensely

Look over there!

T&E: Kraig Pester, Doug Shipp, Tom Gossack
2007 Snow Rodeo Winners

There were sixteen counties represented at this year’s Snow Rodeo and Equipment Training, along with four cities and MDT. Due to time constraints, only 65 competitors were allowed to sign up for competition. There were 71 who attended training on the first day. The equipment winners, shown in the photo below, are listed on the left. The winners with the diagnostic tests and written scores added in are listed on the right.

Snow Plow Winners:
1st - Jim Bedwell, Hill County
2nd - Rich West, Lewis & Clark County
3rd - Dave Trusty, MDT
1st Timer: Jim Bedwell, Hill County

Loader Winners:
1st - Dale Carlstad, Liberty County
2nd - William Wertz, Broadwater County
3rd - Matt Heckel, City of Bozeman
1st Timer: Dale Carlstad, Liberty County

Backhoe Winners:
1st - Troy Amunrud, Park County
2nd - Travis Leslie, Lewis & Clark County
3rd - Lloyd Omdahl, Toole County
1st Timer: Troy Amunrud, Park County

Motorgrader Winners:
1st - Larry Chapman, Lewis & Clark County
2nd - Gene Olson, Jefferson County
3rd - Fred Feller, Jefferson County
1st Timer: Larry Chapman, Lewis & Clark County

All-Around Champion
Tom Loggins, Butte-Silver Bow
Snow Plow Winners:
1st - Jim Bedwell, Hill County
2nd - Rich West, Lewis & Clark County
3rd - Dave Trusty, MDT
1st Timer: Jim Bedwell, Hill County

Loader Winners:
1st - Matt Heckel, City of Bozeman
2nd - Clay Caudle, Lewis & Clark County
3rd - Rocky Teeters, City of Missoula
1st Timer: Rocky Teeters, City of Missoula

Backhoe Winners:
1st - Tom Loggins, Butte-Silver Bow
2nd - Ed Tinker, Lewis & Clark County
3rd - Larry Ruhd, City of Bozeman
1st Timer: Tom Loggins, Butte-Silver Bow

Motorgrader Winners:
1st - Larry Chapman, Lewis & Clark County
2nd - Fred Feller, Jefferson County
3rd - Gene Olson, Jefferson County
1st Timer: Fred Feller, Jefferson County

All Around Champion
Larry Chapman, Lewis & Clark County

While at the Snow Rodeo, MT LTAP Director Steve Jenkins was handed this “wisdom from an operator.” Enjoy:

100% Me
I’m 20% video games
8% good
30% screwing around
and 20% brotherhood.

I’m 2% pizza
5% boxer
10% fall
and 2% soccer.

I’m 2% basketball
1% clean
0% work
and all protein.

Ulan Omdahl, Grade 3
Shelby Elementary School, MT

Various Snow Rodeo Winners
Safety Tips for October 10, 2007
Put the Brakes on! As drivers and pedestrians, we all want to reach our destinations safely. Here are some tips from the US DOT Federal Motor Carrier Safety Administration campaign, “Share the Road Safely” on doing exactly that.

Car Drivers
• Cutting in front can cut your life short! Avoid cutting in front of other vehicles as you may create an emergency braking situation for others around you, especially in heavy traffic.
• Buckle your seat belt! ALWAYS!
• Watch your blind spots and the “No Zones” around trucks and buses.
• Inattentive drivers. While driving, please focus only on the road. If you need to attend to another matter while driving (cell phones, kids, application of cosmetics, etc.) safely pull over in a parking lot or rest stop.
• Avoid aggressive drivers and driving aggressively. Speeding, running red lights and stop signs, making frequent lane changes and tailgating can create dangerous and potentially fatal situations on the road.
• Avoid squeeze play. Be careful of trucks and buses making wide right turns. If you try to get in between the truck and the curb, you could be caught in a squeeze and suffer a serious accident.
• Never drink and drive!

Motorcycle Drivers
• Watch the “No-Zones”. Never hang out in a truck’s blind spot or “No-Zone”.
• Always wear a helmet!
• Drive to survive! Motorcycles are the smallest vehicles on the road and offer no protection in a crash. Be cautious, pay attention to the signals and brakes of other vehicles, especially trucks!
• Check yourself and your bike. Conduct a safety inspection of your motorcycle before each ride and be sure to wear the proper protective gear.
• Watch your speed!

Truck and Bus Drivers
• Take care of yourself! The most important part of a moving truck or bus is the driver. Get plenty of rest before getting behind the wheel, eat well and stay fit!
• Always maintain your vehicle
• Be aware of your “No-Zone”! The “No-Zone” represents the danger areas, or blind spots, around trucks and buses where crashes are more likely to occur. Be vigilant in watching out for vehicles in the “No-Zone”.
• Slow down in work zones!
• Always keep your distance - leave enough space between you and the vehicle in front of you.
• Fasten your seat belt. Buckle up for safety and control.
• Always drive defensively and AVOID aggressive drivers!
• Work to help yourselves. Help stranded motorists, notify traffic safety agencies of crashes, unsafe road conditions and other situations that can lead to crashes.

Pedestrians
• Watch your walkways. Walk on sidewalks and in crosswalks whenever possible. Pay attention to walk signals and keep a safe distance when standing on corners.
• Know your “No Zones”. Be aware of blind spots around trucks, buses and cars when walking near and around them.
• Stopping Distances. Use caution when crossing intersections and streets. You may think vehicles will stop for you, but they may not see you or even be able to stop. Never take a chance with a truck, even if the driver sees you, they may not be able to stop. Truck brakes and gears are notorious for sticking.
• Make Yourself Visible. Wear bright or reflective clothing.
• Watch our for wide loads. Trucks with wide loads may have very limited visibility as well as difficulty maneuvering.

Bicyclists
• Wear your helmet!
• Bikers Beware. Always be aware of the traffic around you. Never assume that all drivers see you. Ride defensively.
• Check your brakes and be prepared to stop.
• Ride on the right side, with the flow of traffic.
• Beware of the “No-Zone”. Never sneak in between a truck or bus and the curb, or you could get crushed. Be aware that large trucks have blind spots in the front, back and on the sides, which make it difficult for the driver to see around them.

This information was obtained from “Put the Brakes on Fatalities Day”
The Transportation and Development Institute of ASCE
1801 Alexander Bell Dr., Reston, VA 20191/www.tanddi.org. For more info, go to: http://www.brakesonfatalities.org/
A False Sense of Security: The Misconceptions About Alcohol’s Effects on Driving

Imagine yourself at a bar enjoying happy hour with your coworkers. You are talking, laughing, snacking on free food, and having a couple of drinks. Two glasses of wine, or two beers, and an hour and a half later, you decide to head home for the evening. It is now 6:00 pm and you have been at work since 8:00 am. You say goodbye to your coworkers, get into your car, and drive home. No one questions your level of intoxication because you have only had two drinks.

This situation occurs on a daily basis all across the United States. Every day, thousands of people in the Wilmington area, and throughout the country, visit bars in the evening. Many of you reading this article have been in similar situations. Do you ever consider the danger of just a few drinks? Most people do not. There is a false sense of security with regards to the drinking laws in the United States. While most states have a legal limit of 0.08 percent blood alcohol content (BAC), people can experience adverse effects at levels as low as 0.02 percent.

Now, imagine the following: while backing out of your parking space, you fail to see an approaching vehicle and it crashes into your car. You immediately start to panic. What if you crashed into that car because of the drinks you had at the bar? Are the police going to find out, and will you lose your license? You aren’t showing signs of drunkenness such as slurred speech or difficulty standing, but you know that the police will smell alcohol on your breath. The officer asks if you have been drinking, and you tell the truth. The officer runs a breathalyzer test and you pass with a BAC of 0.04 percent, half of the legal limit. You receive no penalty and are allowed to leave.

What you don’t know is that your peripheral vision was reduced and your reaction time was slowed because of your alcohol level. Your ability to conduct a complex driving maneuver such as backing out of a parking space was impaired. Even after drinking only two glasses of wine, or two cans of beer, you have impaired your ability to drive. You get on the internet and do some research of your own, finding out that many studies report that even moderate drinking, two drinks a day for men and one drink a day for women, can impair driving functions (Hingson et al., 1999). The degree of these impairments varies depending on a person’s health, stomach contents, fatigue, age, and weight, among many other factors. The key to evaluating the effects of low doses of alcohol is to understand how it works in your body.

Alcohol and You

All alcoholic beverages contain ethyl alcohol, in various concentrations, depending on the type of drink. When an alcoholic beverage is consumed, the liquid travels down the esophagus, through the stomach, and into the small intestine. Alcohol does not require preliminary digestion or breakdown to be absorbed. Instead, alcohol enters the bloodstream by simple diffusion from the gastrointestinal tract. The most efficient region for alcohol absorption in the gastrointestinal tract is the upper portion of the small intestine, which absorbs about 80% of the alcohol consumed. The other 20% of the alcohol is absorbed by the stomach (NIH, 2003).

The bloodstream is responsible for the rapid transport of alcohol throughout the body. Alcohol is absorbed into the bloodstream so quickly that it can be found in tissue organs and bodily secretions only moments after it has been ingested. As blood is pumped throughout the body, alcohol is absorbed by the body tissues. Because alcohol is water soluble, it is absorbed into the body tissues in proportion to the water content of the tissues. Once absorption is complete, equilibrium occurs so that blood at all points in the body contains approximately the same alcohol concentration. Generally, after the consumption of one standard drink, the alcohol content in a drinker’s blood peaks within 30 to 45 minutes (NIAAA, 1997).

Alcohol and Driving

There are numerous ways that alcohol impairs driving performance, and there are many different levels of intoxication beginning as low as 0.02 percent. Figure 1 shows the BACs at which different driving functions become impaired.

![Figure 1 BAC and Impairment (MADD, 2007).](image)

Some indicators of alcohol-impaired driving are weaving, swerving, drifting, following too closely, and breaking erratically. Individuals under the influence of alcohol also tend to turn with a wide radius, straddle the center of a lane marker, drive more than 10 mph below the speed limit, drive with their tires on the center lane marker, signal inconsistently with their driving actions, respond slowly to traffic signals, and stop inappropriately or without cause. Other characteristics of alcohol-impaired driving include driving on non-designated roads, turning abruptly or illegally, accelerating or decelerating rapidly,
Alcohol’s Effects on Driving (Cont’d from Page 6)

and driving with the car’s headlights off. Two of the most dangerous alcohol-impaired driving behaviors are driving into opposing or crossing traffic, and almost striking an object or other vehicle.

Alcohol has been found to affect a person’s reaction time, even at low levels. Alcohol does not alter a person’s response to a single stimulus. Instead, the change in reaction time occurs during divided attention tasks, such as driving, where multiple stimuli are present simultaneously. Moskowitz and Burns (1971) conducted controlled studies that demonstrated the disruption of reaction time by alcohol at low dose levels (equivalent to one or two drinks). Studies of divided attention have demonstrated that alcohol use, even at low to moderate levels (below 0.1 mg %), may contribute to the high percentage of driving accidents (Jung, 1994). This effect was believed to be indirect, influencing information processing in the central nervous system and brain rather than directly through toxic effects on motor coordination or gross muscle movement.

Starting at BACs of 0.05, drivers experience impairment in eye movement, glare resistance, visual perception, reaction time, certain types of steering tasks, and information processing; all extremely important functions used while driving (Hingson, 1999). The reaction time - the time which elapses between the sensory stimuli, such as seeing another car, and when we move our arms to steer the car - is normally about one-fifth of a second. Alcohol slows this reaction time to be two, three, four, or even five-fifths of a second. At 60 mph, a car travels 18 feet in one-fifth of a second. So, instead of 18 feet, the car may travel 36, 54, 72, or even 90 feet before the driver takes any action (Burgess, 1973).

Drivers with BACs of 0.02 to 0.04 are 1.4 times more likely to be involved in a single-vehicle fatal crash than drivers that have consumed no alcohol. Drivers with BACs of 0.05 to 0.09 are 11.1 times more likely to be involved in a single-vehicle fatal crash than drivers that have had no alcohol. For drivers under the age of 21, the risk of being involved in a single-vehicle fatal crash increases exponentially with every 0.02 percent increase in BAC.

A study conducted in Canada by the Centre of Forensic Sciences tested professional race car drivers at levels from 0.04 to 0.15 percent BAC. The most important finding was that drivers failed to sense the attitude, or position, of the car. Also, the driving response to stimuli was usually late and exaggerated. Changes in the drivers’ ability were observed at BAC as low as 0.04 percent (Burgess, 1973). Langer et al., conducted a series of experiments to examine the effects of conversation and low doses of alcohol on a driver’s peripheral vision (2001). They concluded that drivers experience significant decreases in their ability to respond to peripheral stimuli at BACs as low as 0.04 percent. Moskowitz et al., conducted a study in 2000 to determine the extent of impairments at BACs ranging from 0.02 to 0.10 percent. A total of 168 participants were divided into gender, age, and drinking practices groups, and subjected to a series of driving tests conducted on a driving simulator. The results showed that major driving-related skills were impaired at BACs as low as 0.02 percent. In this study, there were no measurable differences in the effects of alcohol between age, gender, and drinking practices groups.

What Now?

It is a general consensus that drivers can experience the effects of alcohol at doses as low as 0.02 percent, with more significant impairments starting at BACs of 0.04. It is interesting, however, that the BAC limit in most states is 0.08, which is two times that which has been determined to cause significant driving impairments. The public needs to be more aware of this problem. Educational programs about alcohol consumption and impairment must be developed in order to stress the fact that drivers do not need a BAC of 0.08 to pose a threat to themselves and others.

In addition to educational efforts, a reduction in the legal BAC must be considered. Hingson et al., reports that research has confirmed the effectiveness of lowering the legal BAC limit from 0.10 to 0.08 percent. However, further reduction is still needed. Some states, such as Maine, have enacted zero-tolerance policies in which BAC limits are reduced to 0.05 percent for drivers with a DWI (Hingson, 1999). Why restrict this reduction to people convicted of DWIs? Statistics show that the majority of alcohol-related crashes are caused by first-time offenders (MADD, 2007). An effort should be made to examine the issues surrounding the effects of low doses of alcohol on driver reaction time in order to support a movement to reduce the legal limit to 0.05 percent. Combining this with the educational program and enforcement will ensure a further reduction in alcohol-related crashes and fatalities.
Annual Calendar 2007

<table>
<thead>
<tr>
<th>Month</th>
<th>April 2007</th>
<th>May 2007</th>
<th>June 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W Th F S</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31</td>
</tr>
</tbody>
</table>

April 2007
- S M T W Th F S
- 1 2 3 4 5 6 7
- 8 9 10 11 12 13 14
- 15 16 17 18 19 20 21
- 22 23 24 25 26 27 28
- 29 30

May 2007
- 1 2 3 4 5
- 6 7 8 9 10 11 12
- 13 14 15 16 17 18 19
- 20 21 22 23 24 25 26
- 27 28 29 30 31

June 2007
- 1 2 3 4 5 6 7 8
- 9 10 11 12 13 14 15
- 16 17 18 19 20 21 22
- 23 24 25 26 27 28 29
- 30

January 2007
<table>
<thead>
<tr>
<th>S M T W Th F S</th>
<th>1 2 3 4 5 6</th>
<th>7 8 9 10 11 12 13</th>
<th>14 15 16 17 18 19 20</th>
<th>21 22 23 24 25 26 27</th>
<th>28 29 30 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2007</td>
<td>1 2 3 4 5 6</td>
<td>7 8 9 10 11 12 13</td>
<td>14 15 16 17 18 19 20</td>
<td>21 22 23 24 25 26 27</td>
<td>28 29 30 31</td>
</tr>
<tr>
<td>March 2007</td>
<td>1 2 3 4 5 6</td>
<td>7 8 9 10 11 12 13</td>
<td>14 15 16 17 18 19 20</td>
<td>21 22 23 24 25 26 27</td>
<td>28 29 30 31</td>
</tr>
</tbody>
</table>

Training on Request:
- Work Zone Design
- Gravel Roads & Maintenance

July 2007
<table>
<thead>
<tr>
<th>S M T W Th F S</th>
<th>1 2 3 4 5 6 7</th>
<th>8 9 10 11 12 13 14</th>
<th>15 16 17 18 19 20 21</th>
<th>22 23 24 25 26 27 28</th>
<th>29 30 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2007</td>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13 14</td>
<td>15 16 17 18 19 20 21</td>
<td>22 23 24 25 26 27 28</td>
<td>29 30 31</td>
</tr>
<tr>
<td>September 2007</td>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13 14</td>
<td>15 16 17 18 19 20 21</td>
<td>22 23 24 25 26 27 28</td>
<td>29 30</td>
</tr>
</tbody>
</table>

Training on Request:
- Summer Survival;
- Forklift; Mowing

October 2007
<table>
<thead>
<tr>
<th>S M T W Th F S</th>
<th>1 2 3 4 5 6 7</th>
<th>8 9 10 11 12 13 14</th>
<th>15 16 17 18 19 20 21</th>
<th>22 23 24 25 26 27 28</th>
<th>29 30 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2007</td>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13 14</td>
<td>15 16 17 18 19 20 21</td>
<td>22 23 24 25 26 27 28</td>
<td>29 30 31</td>
</tr>
<tr>
<td>December 2007</td>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13 14</td>
<td>15 16 17 18 19 20 21</td>
<td>22 23 24 25 26 27 28</td>
<td>29 30 31</td>
</tr>
</tbody>
</table>

Training on Request:
- Winter Travel-Survival
- Winter Maintenance
- Leadership

Some dates & locations subject to change. Call LTAP, 1-800-541-6671 or 406-994-6100 to confirm.
League of Cities & Towns Annual Conference
October 3 - October 5, 2007
76th Annual League Conference is being held at:
Best Western GranTree Inn
1325 N. 7th Avenue
Bozeman, Montana
(406) 587-5261
For more information about the conference:
Montana League of Cities and Towns
208 N. Montana Avenue - Suite 201
Helena, Montana 59601
406 442-8768 E-mail: mlct@mt.net

MACRS Fall District Meetings
- Glendive October 10, 2007
- Billings October 11, 2007
- Twin Bridges October 16, 2007
- Missoula October 17, 2007
- Conrad October 18, 2007

Gravel Road Equipment Training:
8:00 - 10:00 am Classroom Instruction
10:00 am - Noon Field Work - At Road Site
 Noon Lunch
1:00 - 4:00 pm Field Work - At Road Site

Contact Montana LTAP at 1-800-541-6671, regarding registrations or inquiries. Brochures were mailed August 21 with registration forms. Montana LTAP will be happy to fax the brochure or go out on www.coe.montana.edu/ltap and click on Training and then on “brochure” under the MACRS Workforce Development announcement.

MACo Loss Control Conference - January 14-16, 2008
GranTree Inn, Bozeman, Montana

Monday:
Emelia McEwen, MACo Risk Manager January 14, 2008

Tuesday:
Steven V. Jenkins, MT LTAP Director January 15, 2008
Topics: Proper Sign Placement & Sign Vandalism
 Work Zone Technician
 Rural Safety Reviews

Wednesday:
Law Enforcement Topics January 16, 2008

Contact MACo at 406-444-4360, e-mail: maco@maco.cog.mt.us or visit their website at http://maco.cog.mt.us/. More information will be coming in December from Montana LTAP.
AASHTO Annual Meeting to Explore Bridge Issues, Global Warming

Actions by state and federal officials to address the needs of the nation’s bridges and approaches to help curb global warming will be among topics discussed by state transportation department directors at the AASHTO Annual Meeting, September 27–October 1 at the Midwest Airlines Center in Milwaukee, Wisconsin.

“This is an excellent opportunity for the chief executive officers of the state transportation departments to share the latest information regarding bridge and infrastructure issues, including possible financing, and to continue their work on the long-term vision for our surface transportation system,” said John Horsley, Executive Director of AASHTO.

One speaker at the Sunday Plenary Session will be Bill Nye, “The Science Guy,” who will speak on global warming. The meeting also will feature a trade fair, the inauguration of AASHTO’s new president for the year 2008, and a ceremony honoring AASHTO award-winners. AASHTO’s Executive Committee and Board of Directors will hold sessions. Conference sessions include energy issues for state transportation departments; new trends in financing; taking action to combat traffic congestion; growth and development of intercity passenger rail; and impacts of climate change on transportation infrastructure. During the Saturday session of the Annual Meeting Trade Fair, teams of students from across Wisconsin will compete in an engineering design challenge, for prizes. The competition—which will include a team of adult professional engineers competing just for fun—is part of AASHTO’s TRAC program, which provides curriculum to middle schools and high schools that gives students background in the principles of engineering. For more information on the AASHTO Annual Meeting, or to register, see the website: http://www.dot.wisconsin.gov/business/engrserv/aahto-index.htm.

AASHTO Journal
September 21, 2007

From MACRS President Jim McCarthy

Hello to All,

The summer is coming to a close. After all the long, hot days, the smoke-filled skies and the rush from all the yet-to-be completed projects, it is time to stop for a moment and reflect upon the good things about living in Montana. Also, it is time to look at the needs and goals of our association in the upcoming year.

The Workforce Training sessions were held this spring throughout the state and they were successful with good attendance numbers. The upcoming District meetings this fall will help keep us going in the right direction.

The District Meetings this year will be held in October in Glendive, Billings, Twin Bridges, Missoula, and Conrad. These meetings are key to getting the local county officials, road staff, and other interested parties together to listen to and be part of the discussion concerning their road issues while obtaining valuable information and techniques. These meetings also provide input as to what needs and issues should be slated for the annual 2008 spring conference. Questionnaires from these meetings will be reviewed at the pre-planning meeting in Lewistown, November 13 and 14, so we can develop an interesting and educational conference for Helena next spring. We are also trying to develop a directory with related information of task specific projects and contacts for those tasks. More information will be available at the District Meetings …so plan on attending to hear more!

As President of the Association this year, I look forward to developing some new things for training and educational tools. Hopefully we can put together an interesting and terrific conference in the spring. I would urge all of the officers and the new District Reps to get involved and contact the local and neighboring counties and get them to attend a District meeting, and sign up for the annual conference. The message is clear and the information is invaluable.

If anyone has any suggestions or ideas to promote our organization, or improve our message, please feel free to call me at 406-497-6567 or e-mail me at jmccarthy@bsb.mt.gov.

Thanks for all of your help,

Jim McCarthy
Road Foreman
Butte Silver Bow Department of Public Works
1700 Civic Center Road
Butte, MT 59701

Writing a Winter Maintenance Policy

The Salt Institute’s publications list has interesting information about winter maintenance for road departments such as the article on “Creating a Written Plan and Policy” regarding winter maintenance. They mention how important it is to include all agencies with any type of transportation emergencies be involved with the writing effort.

The article cited two agencies that have policies written:

- •http://www.co.rockland.ny.us/Highway/hwydocs/Snow%20and%20Ice%20Control%20Policy%202002.pdf
- •http://www.twp.cranberry.pa.us/publicworks/SNOWICECONTROL04.pdf

If you would like to read more about this process, go to their article: http://www.saltinstitute.org/publications/shd/shd-summer-2006.pdf or visit their website at http://www.saltinstitute.org/21.html

Courtesy of Salt Institute
Fish Passage in Culverts

Fish passage through culverts is an issue that has been in the forefront in recent years. We all want healthy Montana fisheries, but at the same time we recognize that limited budgets can force some tough decisions when it comes to balancing aquatic habitat with transportation needs. Two MDT research projects have just been completed that shed significant light on this issue. One project was a follow-up to the MDT research project previously conducted in the Seeley Lake area. The Phase II project specifically examined passage as a probabilistic occurrence, and observed the probabilities of fish moving through successive points in a drainage, between culverts and through them.

The project team instrumented a tributary to the Yellowstone River near Gardiner to demonstrate a strong statistical relationship between the probability of fish passing through a culvert and the water velocity in the culvert. This is a significant finding and deviates from previous studies that proposed a simple pass/no pass velocity.

The second project focused on warm water fish species that are found in the settings of Eastern Montana. Prior to this project, there was only a small amount of anecdotal information about the mobility tendencies of prairie fish and their physical capacity to traverse the barriers that can be imposed by a culvert. This project, conducted on tributaries to the Yellowstone River near Glendive, demonstrated that a large number of species were well distributed in reaches with culverts.

For all species but one (Longnose Dace), the culverts in the study were not a significant barrier to upstream fish passage. This can be attributed in part to the fact that the culverts in the study closely mimicked the habitats and low gradient of the streams, by having streambed material and similar stream velocities in the culvert barrel, and small outlet drops compared to culverts often seen in steeper mountainous drainages.

Overall this study reinforces the notion that culverts should mimic the aquatic habitats and hydraulic conditions of streams with a fishery resource, while still meeting the hydraulic, hydrologic, safety, maintenance, and road bearing needs of the system.

In both projects, analyses were undertaken demonstrating the software FishXing, the contemporary tool of choice for many culvert experts, can be a valuable design tool for new culverts. FishXing also tends to do a good job of identifying existing culverts that are passable to many Montana fish species. Findings from both studies indicated that the model does not perform as well at identifying existing culverts that are potential barriers to fish passage, as fish passage was observed at a significant proportion of culverts classified as barriers by the model. So when the model indicates that a culvert is a barrier, more detailed studies of the culvert should be undertaken.

Finally, a recommended design procedure is also presented in these reports, which can be viewed at these links: http://www.mdt.mt.gov/research/projects/env/fish_passage.shtml

For more information, contact Sue Sillick at 406.444.7693 or ssillick@mt.gov.
Welcome to the LTAP Lending Library where publications, videos, and software may be borrowed for two weeks and then returned to the Library. Up to three videotapes may be borrowed from the LTAP Lending Library rent-free for two weeks. Some publications are free or for a nominal charge upon request.

For information or checkout procedures, call Lois Evans or Michele Beck, LTAP 1-800-541-6671

If you have computer access, please e-mail us at: mtltap@coe.montana.edu

You will find the total library publications, software, and videos lists at this web site: www.coe.montana.edu/ltap. You can also keep track of upcoming workshops, our newsletter, and “What’s New” items that change periodically.

Montana LTAP Lending Library

Publications

p-226 Low-Volume Roads 2007, Volume 1, TRB No. 1989
This is the ninth in a collection of peer-reviewed papers regarding low-volume road research. Every four years since 1975, this series of publications has collected the work of authors from six continents and more than 40 countries to share experiences and innovations. The two volumes of this Record contain a keynote paper and 80 technical papers of the highest quality that are pertinent to low-volume road systems. Viewed also at www.trb.org. (359 pages)

p-230 Low-Cost Treatments for Horizontal Curve Safety (FHWA December 2006)
This Guide identified 20 strategies as alternative countermeasures—or treatments—to address the specific safety problem at horizontal curves. (Lists cost and examples.) These strategies share one of two objectives: 1. Reduce the likelihood of a vehicle leaving its lane and either crossing the roadway centerline or leaving the roadway at a horizontal curve. 2. Minimize the damaging consequences of a vehicle leaving the roadway at a horizontal curve. (56 pages)

This guide will assist planners, designers, and traffic engineers in identifying and designing projects to improve safety on congested rural two-lane highways. The guide assumes that widening the road to four lanes is not a practical solution because of financial, environmental, or societal constraints. Geometric, traffic control, and other types of countermeasures are discussed. (164 pages)

This Guide documents the available options for roadway surfacing, and provides a decision-making process to allow consideration of all conventional engineering design factors, such as, structural capacity, performance, durability, safety, life-cycle costs, but will also allow consideration of aesthetics, context compatibility, and environmental impacts. (A CD-ROM titled Roadway Surfacing Option Photo Album accompanies this Guide.) (346 pages)

p-287 Subsurface Imaging of Lava Tubes, Roadway Applications (FHWA September 2005)
This report contains the details of geophysical surveys performed at the Lava Beds National Monument in northern California. The geophysical surveys were performed over several areas with known lava tubes. This report provides the geological site conditions, overview of the geophysical methods, summary of the results, and overall recommendations that should be considered for future void detection. (137 pages)

p-288 INSAR Applications for Highway Transportation Projects (FHWA April 2006)
Satellite Synthetic aperture radar (SAR) technology, in combination with interferometry (InSAR), has the ability to measure topography or ground movement to sub-centimeter accuracy. This project’s objective was to establish and demonstrate reliable, cost effective procedure to measure ground movement using InSAR in support of federal highways projects. Three sites were studied in Washington and Colorado. (100 pages)
Montana LTAP Lending Library

p-373 Chip Seals (TEEX February 2007) This reference manual contains information from Module 2-4, Chips Seals, NHI. It describes recommended design steps and construction procedures associated with constructing good quality chip seal treatments on existing hot-mix asphalt (HMA) pavements. (44 pages)

Guidelines for Using Prime and Tack Coats (FHWA July 2005) The objective of this study was to produce a prime and tack coat guide publication developed on how to use, when to keep, and when to eliminate prime and tack coats. (110 pages)

p-400 Users Manual for LS-DYNA Concrete Material Model 159 (FHWA May 2007) This manual documents the theory of the concrete material model, describes the required input format, and includes example problems for use as a learning tool. (89 pages)

p-401 Evaluation of LS-DYNA Concrete Material Model 159 (FHWA May 2007) This manual documents the evaluation of the concrete material model, including the selection of the concrete model input parameters. (206 pages)

Freeze-Thaw Resistance of Concrete with Marginal Air Content (FHWA December 2006) This study evaluated the freeze-thaw resistance of several "marginal" air void mixes, with two different types of air-entraining admixtures (AEA)—a Vinsol resin and a synthetic admixture. This study used rapid cycles of freezing and thawing in plain water, in the absence of deicing salts. (93 pages)

The Use of Lithium to Prevent or Mitigate Alkali-Silica Reaction in a Concrete Pavements and Structures (FHWA March 2007) This document is intended to provide practitioners with the necessary information and guidance to test, specify, and use lithium compounds in new concrete construction, as well as in repair and service life extension applications. (62 pages)

Corrosion Resistant Alloys for Reinforced Concrete (FHWA July 2007) This investigation was initiated to evaluate the corrosion resistance of various types of corrosion resistant reinforcement, including new products that are becoming available, in bridge structures that are exposed to chlorides. This interim report presents results from the initial 3 years of an overall 5-year program. (132 pages)

Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Components (FHWA July 2007) Eleven systems combining epoxy-coated reinforcement with another corrosion protection system are evaluated using the rapid macrocell, Southern Exposure, cracked beam, and linear polarization resistance tests. The results presented in this report represent the findings obtained during the first half of a 5-year study that includes longer-term ASTM G 109 and field tests. (92 pages)

Shored Mechanically Stabilized Earth (SMSE) Wall Systems Design Guidelines (FHWA February 2006) The purpose of this design guideline is to serve as the FLH standard reference for roadway projects using shored MSE walls. (230 pages)

Durability of Segmental Retaining Wall Blocks: Final Report (FHWA April 2007) This report summarizes the key findings of this project and provides guidance on producing durable SRW (segmental retaining wall) blocks to ensure long-term performance of SRW systems in highway applications. (271 pages)

Traffic Detector handbook: Third Edition Volume I (FHWA October 2006) The objective of this Handbook is to provide a comprehensive resource for selecting, designing, installing and maintaining traffic sensors for signalized intersections and freeways (Volume I). (288 pages)

Traffic Detector Handbook: Third Edition Volume II (FHWA October 2006) The objective of this Handbook is to provide a comprehensive resource for selecting, designing, installing and maintaining traffic sensors for signalized intersections and freeways (Volume II). (394 pages)

TRB held the 9th International Conference on Low-Volume Roads on June 24-27, 2007, in Austin, Texas. The Conference highlighted the latest in international low-volume road topics and innovations in areas such as safety improvements, environmental design, highway and road design best practices, innovative road surface treatments, and more. A video recording of the plenary session, which included the following presentations, is now available.

* The Road Ahead, J. Richard Capka, Federal Highway Administration
* From the Farm to the Market: The Texas FM Story, Michael Behrens, Texas Department of Transportation
* Keynote Address: Planning Roads for Rural Communities, Maryvonne Plessis-Fraissard, World Bank
Montana LTAP Lending Library

Publications (Cont’d)

p-960 Active Traffic Management: The Next Step in Congestion Management (FHWA July 2007)
The purpose of this scanning study was to examine the congestion management programs, policies, and experiences of other countries that are in the planning stages, have been implemented, or are operating on freeway facilities. (73 pages)

p-2395 Audit Stewardship and Oversight of Large and Innovatively Funded Projects in Europe (FHWA March 2007) The scan team observed that the terms of public-private partnership contracts have evolved as the European countries have gained experience in their use, and business models and evaluations have become an integral part of project selection and monitoring. (56 pages)

p-2396 Transportation Invest in Our Future: Revenue Sources to Fund Transportation Needs (AASHTO April 2007) This report addresses questions which frame the background for the revenue options to be considered, and a needs assessment summary; revenue crisis Congress will have to address in 2009; short-term federal revenue options for the Highway Trust fund; short-term federal revenue options outside the Highway Trust fund; state and local government revenue options; and long-term federal revenue options. (52 pages)

p-2397 Transportation Invest in Our Futures: Surface Transportation Policy Recommendations (AASHTO March 2007) This report reviews AASHTO’s surface transportation policy recommendations, highway improvements needed, transit improvements needed, addresses rail needs, transportation safety needs, transportation revenue needs, and recommendations for the federal program. (95 pages)

p-2400 At the Crossroads, Preserving Our Highway Investment (National Center for pavement Preservation 2007) This document was written to stimulate serious discussion about the nation’s highways, including their role, extent, how they are financed, constructed, maintained, and to explore more effective and efficient ways of achieving our transportation objectives. This document should be of greatest interest to policy and decision makers such as elected officials, agency administrators, and senior technical personnel such as engineers and planners who have broad responsibility for making program and project-level decisions. (96 pages)

Injuries also were down in 2006, with injuries to occupants or drivers of passenger cars down by 6.2 percent and injuries sustained in wrecks involving large trucks falling by 15 percent, she said. Peters cautioned that troubling trends continue in motorcycle and alcohol-related crashes. Alcohol-related fatalities rose slightly in 2006 over the previous year, while motorcycle deaths rose by 5.1 percent. Peters said the ninth consecutive year that NHTSA has recorded an increase in motorcycle fatalities. “Proper training, clothing, gear and, above all, helmet use are essential to reversing this deadly trend,” Peters said.

NHTSA Administrator Nicole Nason said drunken-driving enforcement will continue to be a top priority for the department, noting that there was no improvement in 2006 for that category of fatalities compared with 2005. In 2006, 15,121 fatalities involved a driver or motorcycle operator, pedestrian or cyclist who had a .08 or higher blood-alcohol concentration, compared to 15,102 in 2005, she said. “For every alcohol-related fatality, the family left behind is shattered forever,” Nason said.

The 2006 report on highway deaths and injuries can be found at the website http://www-nrd.nhtsa.dot.gov/Pubs/810791.PDF.

From AASHTO Journal, July 27, 2007

Recorded Lowest Highway Fatality Rate Ever
There were 868 fewer deaths on the nation’s highways in 2006 than there were in 2005, leaving 2006 as the year with the lowest highway fatality rate ever recorded and the largest drop in total deaths in 15 years, U.S. Transportation released this week. The U.S. Department of Transportation Secretary Mary E. Peters announced total deaths in 15 years, U.S. Transportation ever recorded and the largest drop in with the lowest highway fatality rate were in 2005, leaving 2006 as the year...
Montana LTAP Lending Library

DVD’s

DVD210 Accelerated Construction of urban Intersections with Portland Cement concrete pavement (University of Washington 2002) This DVD presents the necessity of using concrete on certain urban intersections and the process to determine how and when. (12 minutes)

DVD730 Sand and Salt Spreader Calibration (University of Massachusetts, Amherst 2006) Paul Brown, Director of Snow and Ice Operations at the Massachusetts Highway Department, guides highway employees through a successful spreader calibration and explains the proper techniques and calculations. You must calibrate each spreader according to specifications each winter season or whenever repairs are made. This will reduce waste, increase efficiency and protect the environment through better control of material application. (13 minutes)

DVD821 Step by Step (Coastal 2006) Each year more than 200,000 American workers are injured as the result of slips and falls. This video program alerts your employees to the serious consequences of falls and explains how most falls can be prevented. (17 minutes)

DVD824 Hand Safety, It’s in Your Hands (Coastal 2006) This program takes a look at common workplace hazards your workers face and how to prevent hand injuries that may be caused by them. It covers:
• Wearing the right hand protection
• Using machine guards
• Using the right tool for the task
• Keeping equipment in proper working order
• Taking good care of gloves. (18 minutes)

Software

SW222 Application of Ground Anchors and Soil Nails in Roadway construction (FHWA April 2007) Three training CD’s

SW240 Road Engineering and construction Practices for cold Regions (FHWA April 2007) Two training CD’s

SW350 Good Practices: Incorporating Safety into Resurfacing and Restoration Projects (FHWA December 2006)

SW551 Introduction to Geosynthetics in Transportation (GMA 2007)

SW840 Safe Routes to School Program (3M Traffic Safety Solutions 2006) 3M products and expertise help agencies develop on-target SRTS funding requests for school zone safety-improvement projects.

SW935 Work Zone Training Law Enforcement Course (FHWA 2007) Pocket guide, Instructors guide, participants workbook, ppt training modules, promotional flyer, website links and other essential information.

SW1025 Driver Understanding of Red Retroreflective Raised Pavement Markers (FHWA November 2006)

SW2510 TransWrite (Executive Writing Associates 2005) Writing that works for transportation professionals – DEMO

SW3010 Montana Transportation Officials & Engineers Directory (ARTBA 2007) Excel page with addresses and phone numbers of MDT and Montana-based transportation officials.
The Local Technical Assistance Program Newsletter, LTAP MATTERS, is published quarterly. Funding for this program is provided by the Federal Highway Administration through the Montana Department of Transportation, Montana State University and a portion of Montana’s gas tax revenues.

This newsletter is designed to keep you informed about new publications, techniques, and new training opportunities that may be helpful to you and your community.

Present and past issues are available at www.coe.montana.edu/ltap or by calling 1-800-541-6671.

Editorial Contributions Welcome

LTAP welcomes contributions to LTAP MATTERS. Those wishing to submit relevant material to be published in the next newsletter can submit their ideas and articles to:

Michele Beck
Local Technical Assistance Program
Faculty Court Unit 22
PO Box 173910
Montana State University-Bozeman
Bozeman, MT 59717-3910
(800) 541-6671 or (406) 994-6100
Fax: (406) 994-5333
email: mbeck@coe.montana.edu