Seasonal Availability of Lysine and Tryptophan in a Sanambelean Diet

We rejected our hypothesis. In a minimum cereal diet (using only one: maize, millet, sorghum) a two year old child would not be receiving the estimated recommended amount of lysine and/or tryptophan which are both necessary in avoiding kwashiorkor (Williams 1935). However there are other foods such as peanuts, Bambara ground nuts, grasshoppers, milk, mangoes, okra, and cashews that can be added into the child's diet on a seasonal basis in order to help fill the void and to bring the children closer to the required amounts of lysine and tryptophan.

Recommendations

- Implement high protein snacks such as peanuts and grasshoppers on a daily basis into the children's diet.
- When possible, allow the children to eat more animal protein.
- Add Milk in the diet to provide necessary amino acids as well as other important nutrients.
- Examine ways to better store seasonal items that are high in amino acids so they can be utilized throughout the year.

Acknowledgements

- Dr. Florence Dunkel, Associate Professor of Entomology, Department of Plant Sciences and Plant Pathology, Montana State University - Bozeman.
- Keriba Coulibaly, tenured scientist in Plant Breeding, l'Institut d'Economie Rurale, Sikasso,
- Patricia Mathabe, PhD Student in Bio Chemistry, Montana State University Belco Tamboura, Prof. of Small Interprise, l'Institut Polytechnique Rurale/Formation Recherches Appliqué (IPR/IFPA)

Works Cited

- Coulibaly, K. 2011. Scientist/Agronomist. L'Institut d'Economie Rurale-Sikasso. Personal Communication. Dunkel, Florence PH.D. 2011. Associate Professor of Entomology, Department of Plant Sciences and Pathology,
- El Adeyeye. 2005. Amino acid composition of variegated grasshopper, Zonocerus variegatus. ropical Science. 45:141-3. Fejes, Dana. 2009. "Kwashiorkor, cotton and grasshoppers". PPSP 465R, 2009. Montana State University - Bozeman.
- Food Policy and Food Science Service, Nutrition Division. FAO Corporate Document Repository. 1970. Amino-Acid content of foods and biological data on proteins. FAO Food and Nutrition Series - Collection. 21, 24. Pgs. 254. http://www.fao.org/DOCREP/005/AC854T/AC854T00.HTM Institute of Medicine of the National Academies. 2002/2005. "Dietary Reference Intakes for Energy, Carbohydrate, Fiber,
- Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids". The National Academies Press. Washington, D.C. Pgs. Savory, A. and J. Butterfield. 1999. Holistic management: A new framework for decision making. Island Press.
- Tamboura, Belco. Prof. of Small Interprise, l'Institut Polytechnique Rurale/Formation Recherches Appliqué (IPR/IFPA) Taylor, Heather N. 2010. "Goat herds in the Village of Sanambele". PPSP 465R, 2010. Montana State University –

Williams DC (1935). "Kwashiorkor: a nutritional disease of children associated with a maize diet". Lancet 226:1151-2

¹Rebecca Turley, ²Florence Dunkel, ³Keriba Coulibaly

¹College of Liberal Studies, ²Department of Plant Sciences and Pathology, Montana State University – Bozeman, ³l'Institut d'Economie Rurale, Sikasso, Mali

The Holistic Process

The holistic process is a way of learning in which people from different trends of life come together in order to solve a problem. This method of learning is a combination of traditional ecological knowledge, place-based knowledge and formal education. It is based on an ethnorelative attitude where it is crucial to listen, understand, and accept different cultural boundaries and yet work around them without encroaching on one's beliefs and still finding the desired results.

The first step in forming a holistic relationship is to listen and learn from each other in order to build a rapport full of trust and understanding. Next, key values and goals must be recognized (Savory and Butterfield 1999). Once this fundamental core is established the resource base and tools can be developed along with the way these tools can be implemented in order to produce results. Finally, future resources along with a maintenance and management plan must be developed in order to have long term, lasting results.

Hypothesis Tested:

The amounts of lysine and

tryptophan in a standard

Sanambelean diet meet the

minimal requirements that

are needed by a 2 year old

Methods

- **Peer Reviewed Journal Articles**
- Past PSPP 465R student papers (Fejes 2009, Taylor 2010)
- Spreadsheets combining all the information into an organized format.
- Experiments to determine cereal to water ratio in making tou.

child.

- Interviews with Florence Dunkel (2011) and Malian mentors (Coulibaly 2011, Tamboura 2011)
- The FAO

Maize							
Millet						Harvest	
Sorghum						Harvest	
Grain/Legume							
Rice							
Peanuts							
Cowpeas					Harvest		
Bambara Ground Nut							
Fruit/Nuts							
Mango							
Orange							
Cashew							
Vegetable							
Tomato							
Onion							
Okra							
Animal							
Grasshopper							
Chicken							
Cow (Milk)							
Beef							
Fish							

Seasonal Availability of Sanambele Foods

Lysine / Tryptophan Content of Sanambele Foods

	Total Protoin	Lycino	Tryptophon	Informational Source		
	Total Protein	Lysine	Tryptophan	iniormational Source		
Tou	g/100g	g/100g				
Maize (CC)	9.5	0.254	0.067	http://www.fao.org/DOCREP/005/AC854T/AC854T04.htm		
Millet (CC)	9.7	0.332	0.189	http://www.fao.org/DOCREP/005/AC854T/AC854T04.htm		
Sorghum (CC)	10.1	0.204	0.123	http://www.fao.org/DOCREP/005/AC854T/AC854T06.htm		
Grain/Legume						
Rice brown or husked (CC) 7.5		0.299	0.098	http://www.fao.org/DOCREP/005/AC854T/AC854T05.htm		
Peanuts						
Cowpeas	23.4	1.599	0.254	http://www.fao.org/DOCREP/005/AC854T/AC854T12.htm		
Bambara Ground Nut (CC)		1.141	0.192	http://www.fao.org/DOCREP/005/AC854T/AC854T11.htm		
Fruit/Nuts						
Mango	0.6	0.065	0.012	http://www.fao.org/DOCREP/005/AC854T/AC854T41.htm		
Orange 0.8		0.043	0.006	http://www.fao.org/DOCREP/005/AC854T/AC854T41.htm		
Cashew (M) 17.4		0.942	0.378	http://www.fao.org/DOCREP/005/AC854T/AC854T18.htm		
Veg						
Tomato	1.1	0.032	0	http://www.fao.org/DOCREP/005/AC854T/AC854T38.htm		
Onion	1.4	0.063	0.02	http://www.fao.org/DOCREP/005/AC854T/AC854T35.htm		
Okra	4.4	0.217	0	http://www.fao.org/DOCREP/005/AC854T/AC854T35.htm		
Animal (not including offals)						
Grasshopper	7.6	0.484	3.75	El Adeyeye, 2005 p. 142		
Chicken edible flesh	20	1.59	0.205	http://www.fao.org/DOCREP/005/AC854T/AC854T43.htm		
Cow (Milk untreated)	3.5	0.268 0.048		http://www.fao.org/DOCREP/005/AC854T/AC854T51.htm		
Beef edible flesh (CC)	17.7	1.573	0.198	http://www.fao.org/DOCREP/005/AC854T/AC854T43.htm		
E. 1	10.0	1 712	0.244			

Estimated Daily Amino Acid Requirements for Children (2-8 years)							
	Estimated Average Daily Requirements for Children						
	Ages 1-3 years	Ages 4-8 years					
Amino Acids	mg/kg/day	mg/kg/day					
Tryptophan	6	5					
Threonine	24	19					
Isoleucine	22	18					
Leucine	48	40					
Lysine	45	37					
Methionine	22	18					
Phenylalanine	41	33					
Tyrosine	41	33					
Valine	28	23					
Histidine	16	13					

Discussion/Results

The results of my research shows that the main and most common food items in a Sanambelean diet include lysine and tryptophan even if only in small amounts.

The three cereals that are available all year and are the main ingredients in tou were examined further and measured after having been cooked. This was done in order to better assess the lysine and tryptophan amounts after some of the nutritional value may have been lost in the cooking process.

Maize, millet, and sorghum each lacked in either lysine or tryptophan or both and did not meet the estimated average daily requirements.

% of Estimated Average Daily Requirements							
Tou	lysine	tryptophan					
maize	29.6%	58.3%					
millet	33.8%	144.0%					
sorghum	25.7%	116.0%					

