
This article was downloaded by: [Montana State University Bozeman]
On: 07 February 2013, At: 08:55
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
UK

Thinking & Reasoning
Publication details, including instructions for authors
and subscription information:
http://www.tandfonline.com/loi/ptar20

The effect of expertise on
collaborative problem solving
Timothy J. Nokes-Malach a , Michelle L. Meade b &
Daniel G. Morrow c
a Department of Psychology, Learning Research
and Development Center, University of Pittsburgh,
Pittsburgh, PA, USA
b Department of Psychology, Montana State University,
Bozeman, MT, USA
c Department of Educational Psychology, Beckman
Institute for Advanced Science and Technology,
University of Illinois, Urbana-Champaign, IL, USA
Version of record first published: 21 Feb 2012.

To cite this article: Timothy J. Nokes-Malach , Michelle L. Meade & Daniel G. Morrow
(2012): The effect of expertise on collaborative problem solving, Thinking & Reasoning,
18:1, 32-58

To link to this article:  http://dx.doi.org/10.1080/13546783.2011.642206

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-
and-conditions

This article may be used for research, teaching, and private study purposes.
Any substantial or systematic reproduction, redistribution, reselling, loan, sub-
licensing, systematic supply, or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any
representation that the contents will be complete or accurate or up to
date. The accuracy of any instructions, formulae, and drug doses should be
independently verified with primary sources. The publisher shall not be liable

http://www.tandfonline.com/loi/ptar20
http://dx.doi.org/10.1080/13546783.2011.642206
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


for any loss, actions, claims, proceedings, demand, or costs or damages
whatsoever or howsoever caused arising directly or indirectly in connection
with or arising out of the use of this material.

D
ow

nl
oa

de
d 

by
 [

M
on

ta
na

 S
ta

te
 U

ni
ve

rs
ity

 B
oz

em
an

] 
at

 0
8:

55
 0

7 
Fe

br
ua

ry
 2

01
3 



The effect of expertise on collaborative problem solving

Timothy J. Nokes-Malach
1
, Michelle L. Meade

2
,

and Daniel G. Morrow
3

1Department of Psychology, Learning Research and Development Center,
University of Pittsburgh, Pittsburgh, PA, USA
2Department of Psychology, Montana State University, Bozeman,
MT, USA
3Department of Educational Psychology, Beckman Institute for Advanced
Science and Technology, University of Illinois, Urbana-Champaign, IL, USA

Why do some groups succeed where others fail? We hypothesise that
collaborative success is achieved when the relationship between the dyad’s
prior expertise and the complexity of the task creates a situation that affords
constructive and interactive processes between group members. We call this
state the zone of proximal facilitation in which the dyad’s prior knowledge and
experience enables them to benefit from both knowledge-based problem-
solving processes (e.g., elaboration, explanation, and error correction)
and collaborative skills (e.g., creating common ground, maintaining joint
attention to the task). To test this hypothesis we conducted an experiment in
which participants with different levels of aviation expertise, experts (flight
instructors), novices (student pilots), and non-pilots, read flight problem
scenarios of varying complexity and had to identify the problem and generate
a solution with either another participant of the same level of expertise or
alone. The non-pilots showed collaborative inhibition on problem identifica-
tion in which dyads performed worse than their predicted potential for both
simple and complex scenarios, whereas the novices and experts did not. On
solution generation the non-pilot and novice dyads performed at their
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predicted potential with no collaborative inhibition on either simple or
complex scenarios. In contrast, expert dyads showed collaborative gains,
with dyads performing above their predicted potential, but only for the
complex scenarios. On simple scenarios the expert dyads showed collaborative
inhibition and performed worse than their predicted potential. We discuss the
implications of these results for theories of collaborative problem solving.

Keywords: Collaborative inhibition; Collaborative success; Decision-making;
Expertise; Problem-solving.

Why do some groups exhibit exceptional performance whereas others fail?
This question has been the topic of much debate in both practical and
scientific discourses over the last century (Anacona & Bresman, 2007;
Barron, 2003; Sawyer, 2007; Steiner, 1972). Examples of collaborative
success can be found in most human endeavours, including science (e.g.,
Watson and Crick’s discovery of the structure of DNA), business (e.g.,
Sergey Brin and Larry Page’s creation of Google), and the arts (e.g., Joel
and Ethan Coen’s critically acclaimed films). Often these successes have
been attributed to the collaborative interaction of the individuals involved.
The resulting collaborative product is typically considered more than the
sum of the individual contributions. In contrast, much laboratory research
has shown that individuals in collaborative situations often fail to perform
as well as individuals working alone, a finding commonly referred to as
collaborative inhibition (Basden, Basden, Bryner, & Thomas, 1997) or
process loss (Steiner, 1966, 1972). These findings show that, although the
dyads and groups often perform better than the average individual (group-
level advantages), they also typically perform worse than nominal groups
(the sum of the individual contributions).

How do we reconcile the examples of collaborative success found outside
the laboratory with the collaborative inhibition findings from psychology
experiments? One critical factor that appears to differentiate these popular
examples from the laboratory findings is the relationship between the
participants’ prior knowledge and experience in the domain and its
relevance to the target task. Much of the laboratory work has investigated
collaborative problem solving with non-experts (most often, undergraduate
psychology students solving novel tasks). This experimental situation lies
in stark contrast to the anecdotal examples mentioned above, where
collaborative success is accomplished by experts—people with extensive
training/experience in the domain when performing domain-relevant
tasks. This contrast raises an important question: How does the relationship
between prior knowledge and skills in the domain impact collaborative success?

To examine this question we conducted an experiment in which
participants with different levels of aviation expertise, experts (flight
instructors), novices (student pilots), and non-pilots, solved domain-relevant
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problems of varying complexity with either another participant of the same
level of expertise or alone. We hypothesised that participants with more
knowledge and experience in a domain would show more collaborative
success than those with less experience. Furthermore, we postulated that a
set of task conditions must be satisfied to enable collaborative success.
Specifically, the task must be of sufficient difficulty,1 so that participants
have to interact to solve the problem. If the task can be solved easily by any
of the individual members of the group, then collaborative success will not
be observed. The task must also not be so complex as to be outside the
dyad’s ability to make progress towards a solution. In this paper we test
the hypothesis that collaborative success depends on the relation between
the dyad’s prior knowledge and experience (learner factors) and the
structure/complexity of the target task (situative factors).

The primary focus of our work is to better understand the factors that
impact both collaborative success and failure. An understanding of these
factors has both practical implications for improving collaboration in
education and industry settings, and theoretical implications for integrating
cognitive and social theories of collaboration. Practically speaking, knowing
what elements improve collaborative success enables one to scaffold, foster,
and create environments that afford those elements. Similarly, knowing what
factors contribute to collaborative failure enables one to minimise, mitigate,
and avoid those elements. Theoretically, we are interested in the intersection
between cognitive, social, and distributed theories of cognition and draw
upon them to explain collaborative success and failures in problem solving.

In the next two sections we review prior work on collaborative success
and failure in the laboratory and discuss the implications of expertise for
collaboration. We then describe our experiment testing the effect of expertise
on collaboration, followed by a discussion of the results with implications
for theories of collaborative problem solving.

PRIOR RESEARCH ON COLLABORATIVE SUCCESS
AND FAILURE

Collaborative problem solving refers to situations in which two or more
participants solve a problem together while working towards the same goal.
The impact of collaboration on problem solving can be measured at both
the group and individual level (i.e., by treating each level as a different unit
of analysis; Okada & Simon, 1997). Research has shown that, at the group

1 We define difficulty in terms of the distance between one’s prior knowledge and experience

and the target task. We adopt Chen and Klahr’s (2008) theoretical framework for defining three

relevant dimensions of transfer including: contextual similarity, task similarity, and temporal

interval. Sufficient difficulty is beyond near transfer on each of these dimensions.
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level of analysis, groups can perform better than the average individual
(for reviews see Hastie, 1983; Hill, 1982; Kerr & Tindale, 2004). These
advantages are often explained in terms of groups being more likely than
individuals to recognise and reject incorrect solutions, recognise and accept
correct solutions, and engage in more effective problem-solving strategies.
However, the cognitive mechanisms and the types of interactive processes
underlying these advantages are poorly understood.

Research comparing participants at the individual level has revealed a
different pattern of results showing that individuals working in groups
perform worse than individuals working alone (e.g., Bouchard & Hare,
1970; Weldon & Bellinger, 1997). This process loss has been attributed to
a number of cognitive and social factors including: cognitive load
(Dillenbourg, 1999), lack of coordination (Steiner, 1972), disruption and
production blocking of individual contributions (Diehl & Stroebe, 1987),
diffusion of responsibility (Latane, Williams, & Harkins, 1979), and fear of
evaluation (Mullen, 1983, 1987), among others. Many attempts have been
made to identify the factors that mediate or eliminate process loss and even
achieve collaborative gains.

A few examples of collaborative gains exist in the literature. Research on
group induction has shown that participants working together in a group
can perform better than the best individuals working alone (Laughlin,
Bonner, & Miner, 2002; Laughlin, Zander, Kneivel, & Tan, 2003). In these
studies groups showed better performance than the best individuals when
solving letters-to-numbers problems where the goal is to induce a set of rules
for coding 10 letters to 10 numbers. Groups discovered the rules in fewer
trials using more effective strategies than individuals working alone. It was
hypothesised that participants working in groups performed better because
the following four pre-conditions were met: (1) all participants had the basic
knowledge required to solve the problems (in this case arithmetic, algebra,
and logic), (2) some subset of participants could generate the solution,
(3) the participants who did not generate the solution could recognise and
understand it when it was proposed by other group members, and (4) that
these members could also demonstrate the effectiveness of the proposed
solution (Laughlin et al., 2003).

Similarly, Okada and Simon’s (1997) research on scientific discovery has
shown that participants working in dyads were more likely than nominal
groups (pooled performance of participants working alone) to discover
biological mechanisms of molecular genetics by conducting experiments in a
computer simulated micro-world. Analysis of process outcomes showed that
the dyads were more likely than the participants working alone to generate
explanations. However, these explanations only improved the dyads’
performance if they also conducted critical experiments that provided
evidence that enabled them to induce the mechanism. These results were
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interpreted as consistent with the learning advantage students experience
when explaining new text or examples (Chi, Bassok, Lewis, Reimann, &
Glaser, 1989; Chi, de Leeuw, Chiu, & LaVancher, 1994).

Another set of studies that showed collaborative gains were investiga-
tions of students’ generation of abstract representations when solving novel
problems (Schwartz, 1995; Shirouzu, Miyake, & Masukawa, 2002).
Schwartz (1995) had middle school students work in dyads or alone while
solving a variety of different problem-solving tasks (e.g., a gears problem, a
biological transmissions problem, and a visualisation of organisms and
habitats problem). Each problem embodied three task demands that were
hypothesised to facilitate collaborative success in generating abstract
problem representations including: (1) requiring multiple perspectives,
(2) mutual knowledge, i.e., that the task required constructing common
ground, and (3) task-relevant information structures. Participants in dyads
generated four times as many abstractions as individuals and twice as many
abstractions as their predicted potential for the gear problems. This result
was replicated in the second and third experiment with participants in dyads
generating more abstract visualisations than their predicted potential for the
biological transmissions and habitats problems.

This result was explained as an outcome of the task demands in which
participants needed to create a common ground in order to work on the
problem. The development of common ground was facilitated by
participants’ attempts to reconcile their multiple perspectives of the
underlying problem structure that in turn facilitated the construction of
an abstract representation of the problem. This result is consistent with
research showing that the development of common ground and joint
management of attention is critical to collaborative success (Barron, 2003;
Clark, 1996; Clark & Wilkes-Gibbs, 1986). A similar set of results was found
by Shirouzu et al. (2002) showing that dyads were more likely than nominal
pairs to generate an abstract representation in two types of paper-folding
(origami) tasks. The authors explained the collaborative advantage as due to
dyads generating multiple solution strategies (with differing degrees of
abstraction), which were then reflected upon and further abstracted.

A study by Wiley and Jolly (2003) found similar results showing
collaboration benefits when participants in a dyad had different types of
prior knowledge as compared to when they had the same type of prior
knowledge. They examined performance on a creative problem-solving task
in which prior knowledge of baseball would lead participants to fixate on an
incorrect solution (Wiley, 1998). They found that dyads that consisted of
one participant with much baseball knowledge and one participant with
little baseball knowledge (mixed-knowledge dyads) showed larger colla-
borative gains than dyads in which both participants had either high or low
baseball knowledge. This result is intriguing and may be due in part to
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mixed dyads having an opportunity to interact and reconcile their different
response biases based on their prior knowledge, with the low-knowledge
participants helping the high-knowledge participants break their fixation.

In sum, the work reviewed here hypothesised that particular task features
facilitated the construction of common ground and cognitive processes that
supported successful collaboration. Schwartz (1995) hypothesised that three
task features were critical for collaborative abstraction, including multiple
perspectives, developing common ground, and embedded structural
features. In the work on group induction participants were hypothesised
to share basic knowledge of the target domain and to be able to recognise,
demonstrate, and evaluate correct solutions (Laughlin et al., 2003). The
Wiley and Jolly (2003) work showed that the particular combination of the
individual’s relevant (or irrelevant) prior knowledge plays an integral role in
facilitating (or inhibiting) collaborative success on a specific task. In the
current work we build on this research to test the idea that collaborative
success depends critically on the relation between the participants’ prior
domain knowledge, collaborative skill, and the task affordances. To test this
hypothesis we examine the impact of expertise on collaboration.

IMPLICATIONS OF EXPERTISE FOR COLLABORATION

Expertise is likely to promote successful collaboration for several reasons.
Experts are hypothesised to have overlapping knowledge of their domain
(Coughlin & Patel, 1987). We define knowledge broadly to include both
declarative and procedural knowledge components. Consistent with other
perspectives in cognitive science we define declarative knowledge as
‘‘knowing that’’ or having knowledge about the world (e.g., facts, strategies,
and principles) and procedural knowledge as ‘‘knowing how’’ or having
knowledge that supports performing actions in the world (Anderson &
Lebiere, 1998; Koedinger, Corbett, Perfetti, & the PSLC, 2010). Procedural
knowledge is hypothesised to be goal specific and tailored for use in very
specific contexts (Anderson & Lebiere, 1998; Singley & Anderson, 1989).

These fundamental concepts and procedures provide a coherent body of
knowledge from which experts can reason. This is consistent with Laughlin
et al.’s (2003) pre-condition for collaborative success stipulating that
participants should share the same basic knowledge underlying the task.
Declarative knowledge (i.e., facts, principles, and common examples) can
enable participants to detect and correct errors (Schriver, Morrow, Wickens,
& Talleur, 2008) as well as recognise, explain, and evaluate possible
solutions. Prior work on error correction has shown that this is a critical
mechanism of successful individual (Nokes, 2009; Ohlsson, 1996) as well as
group problem solving (Laughlin et al., 2003). Prior research has also
shown that participants’ ability to generate explanations is correlated
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with problem-solving success in collaborative settings (Webb, Troper, &
Fall, 1995).

Expert knowledge is also likely to be organised in similar ways, perhaps as
hierarchical schemas (Chi, Feltovich, & Glaser, 1981; Nokes, Schunn, &
Chi, 2010). Problem-solving schemas are knowledge structures that consist of
prototypical aspects of the problem type including declarative information
about the features, facts, principles, and strategies associated with the
problem. Schemas may also include procedural operators for how to solve
a problem type. Prior research has shown that experts from the same
domain who engage in similar goal-directed activities tend to organise their
knowledge in similar ways as measured by categorisation tasks (Lynch,
Coley, & Medin, 2000).

The similarity in knowledge organisation between experts in a given
domain should facilitate collaborative success for two reasons. First, it
should facilitate rapid problem identification. Experts have been shown to
spend more time on features designated as critical to the problem (Morrow
et al., 2009; Shanteau, 1992) and to rapidly encode features of problems
based on goal-relevant representations. This suggests that two experts are
likely to encode problems in similar ways and should be able to quickly
identify the most useful problem representation. Second, similar knowledge
structures should promote collaborative success by increasing the possibility
of elaboration during collaborative tasks. If domain knowledge is similarly
organised between collaborators, it may be the case that information
produced by one expert may effectively cue another expert to produce
additional information on the topic (cf. Andersson & Ronnberg, 1995).
Experts should possess overlapping, similar knowledge, so the potential for
cross cueing and elaboration is high.

Social communicative factors as well as domain knowledge are likely to
support collaboration (Clark, 1996; Rummel & Spada, 2005). To the extent
that collaborative work is integral to the domain of expertise, collaborative
skills such as sharing information and constructing a common ground will
be an important facet of that expertise. In the current work we investigate
expert pilots, who are trained to work with crew members and to effectively
communicate important information to the Air Traffic Controllers using
specific collaborative strategies (Morrow, Rodvold, & Lee, 1994).

To summarise, experts’ knowledge allows them to contribute more than
non-experts and increase the chance of quick problem detection, cross-
cueing, elaboration, explanation, and error correction. However, once
possible solutions/cues/strategies are generated, the extent to which that
information contributes to collaborative success may depend on whether
partners acknowledge the contribution, so that critical information is
maintained in common ground. Therefore collaborative skills related to
joint attention may be necessary for collaborative success (Barron, 2003;
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Clark, 1996). Indeed, prior research examining how to scaffold effective
collaborative communications and facilitate the construction of common
ground has found that providing students with either an example of a
successful collaboration to study or a collaborative script that specifies what
roles participants should take improves collaborative problem solving
performance compared to conditions without scripts or examples (Rummel
& Spada, 2005).

Given the ubiquity of situations in which experts collaborate and the
importance of identifying factors that lead to collaborative success, it is
surprising that relatively few studies have investigated the impact of
expertise on collaborative problem solving. Although there is a vast
literature on team processes and distributed decision making, this work is
typically limited to a special kind of group in which individuals have
different roles and responsibilities associated with a common team task (for
a review see Kozlowski & Ilgen, 2006). There are also observational data on
collaboration among experts with different knowledge (e.g., medical doctors
and computer scientists working on a joint task; Patel, Allen, Arocha, &
Shortliffe, 1998; see also Patel, Cytryn, Shortliffe, & Safran, 2000). However,
neither the team process research nor the observational studies explicitly
address the role of underlying cognitive mechanisms. In the next section we
describe the theoretical framework for the effect of expertise on problem
solving.

COLLABORATIVE SUCCESS: ZONE OF PROXIMAL
FACILITATION

The current work builds on work in the tradition of social learning theorists
such as Vygotsky (1978), Palinscar and Brown (1984), Greeno (1998), and
Rogoff (1998) by examining what factors contribute to successful problem
solving and learning in collaborative settings. Key to Vygotsky’s seminal
work was the observation that the child–adult relation creates a zone of
proximal development or ZPD. The ZPD is determined by the difference in
the ability of the child to accomplish a task with the help of a more competent
individual (parent or peer) and the ability to accomplish the task by him
or herself. Vygotsky hypothesised that entering the ZPD was a critical pre-
condition for learning and performance. The ZPD concept critically focuses
on the relation between the prior knowledge of the individual, the prior
knowledge of the more competent other, and the task content.

A study conducted by VanLehn et al. (2008) provides a recent
examination of how the ZPD concept plays out in the domain of learning
from computer tutors. Across seven experiments VanLehn and colleagues
examined how different amounts of preparation in physics interacted with
different types of tutoring and instruction. They found that when novices
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studied material that was written for intermediates they learned more from
more-interactive forms of tutorial dialogue than from less-interactive forms.
In contrast, when their prior experience matched the complexity of the
materials (novices studying materials intended for novices), they learned
similar amounts from more- and less-interactive dialogues. These results
suggest that interaction facilitates learning when there is sufficient distance
from one’s prior knowledge and experience on the target task. In the current
work we build on the ZPD concept to examine how expertise affects
successful collaboration when participants solve domain-relevant problems
of varying complexity.

We are interested in the interaction between the dyad’s past experience
(i.e., each individual’s prior knowledge and collaborative skill) and the
structure and complexity of the target task. We hypothesise that the relation
between learner factors (prior knowledge and skills) and situative factors
(environment and task) is critical to collaborative success. Adapting
Vygotsky’s notion of zone of proximal development, we hypothesise that
individuals working towards the same goals create a zone of collaborative
facilitation depending on the parameters of the group’s prior knowledge/
skills and the characteristics and structure of the target task.

Predictions

We hypothesise that two factors are necessary for collaborative success.
First, participants must have some prior knowledge or skills in the target
domain. In addition, experience collaborating with others in the domain will
further contribute to collaborative success. Second, the task must be of
sufficient ‘‘distance’’ from the dyad’s prior knowledge and experience, such
that it does not simply trigger an automatic response (e.g., fact retrieval and
application), but instead requires deliberate problem solving vis-à-vis
applying domain knowledge and skills to a new, but domain-relevant, task.
If the task is too similar to the dyad’s prior knowledge, they will not show
collaborative success because individual experts can perform at high levels
(e.g., Klein, 1998). If the task requires active problem solving and transfer
of prior knowledge to the current situation, the dyad should show
collaborative success. If the task is too far outside the purview of the
group’s knowledge and skills they will also fail. See Figure 1 for an
illustration of these hypotheses.

We predict that experts collaborating will achieve high-level performance
showing collaborative success on complex tasks. We also predict an
expertise by task complexity interaction. Specifically, we expect that experts
will show collaborative facilitation on complex tasks and will show no
collaborative benefits or even collaborative inhibition on simple tasks.
Experts should show collaborative facilitation on complex tasks because
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neither expert could solve the problem both immediately and accurately
individually, and thus could benefit by interacting and using their
knowledge and skills collaboratively. In contrast, experts may show no
benefits or inhibition on simple tasks because each individual can
presumably solve each task independently, therefore attempting to
collaborate may lead to a focus on non-relevant features or non-productive
additional processing due to implicit task demands for collaboration, i.e.,
coming up with a joint solution. For novices we predict an elimination of
collaborative inhibition for both simple and complex scenarios. These
participants should benefit from having some similar knowledge and skills
to reduce typical collaborative inhibition effects. For non-experts we expect
collaborative inhibition on both simple and complex tasks because these
participants have little domain-relevant knowledge or skills to benefit from
when solving these problems.

These predictions are consistent with Chi’s (2009) active-constructive-
interactive framework which postulates that dyads who show collaborative
success will also engage in more constructive and interactive behaviours
than those who do not. Chi (2009) defines constructive behaviours as those
that produce new outputs (e.g., explaining or elaborating) and interactive
behaviours as those that require dialogue or discussion (e.g., revising errors
from feedback from a partner). For each type of behaviour, Chi postulates
a set of corresponding cognitive processes. For example, constructive
behaviours facilitate generative processes (e.g., inferring new knowledge),
and interactive behaviours facilitate jointly generative processes (e.g.,
processes that incorporate a partner’s contributions).

Figure 1. Illustration of the zone of proximal facilitation.
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METHOD

Participants

Participants included the same 32 expert pilots, 32 novice pilots, and 32
non-pilots who participated in the memory study reported by Meade,
Nokes, and Morrow (2009). For each level of expertise 16 participants were
randomly assigned to work individually and 16 were assigned to work in
pairs, creating eight dyads for each condition. However, one expert dyad
was dropped from the analysis because they neglected to follow the
collaboration instructions during the problem-solving phase of the
experiment (i.e., they did not verbally collaborate at all for one of the test
problems and for the remaining problems had very few utterances, with the
large majority of those coming from a single participant). This left seven
expert dyads for this condition.

Expert pilots were flight instructors at the Institute of Aviation at the
University of Illinois Urbana-Champaign, novice pilots were undergradu-
ate, entry-level aviation students, and non-pilots were undergraduate UIUC
students with no prior aviation experience. As reported by Meade et al.,
2009, and evident in Table 1, expert pilots had significantly more flight
hours and higher scores on the piloting skills questionnaire (which measured
knowledge of aviation concepts relevant to the problem-solving task) than
did novice pilots and non-pilots (ts4 3.6, ps5 .05), and novices had more
flight hours and higher scores on the piloting skills questionnaire than did
non-pilots (ts4 2.1, ps5 .05).

TABLE 1
Demographics showing aviation experience, age, education, and scores on

standardised ability measures

Non-pilots Novices Experts

Flight hours 0 (0) 45.6 (122.28) 884.8 (1243.90)

Piloting skills* 8.5 (2.36) 11.6 (2.68) 15.5 (4.95)

Age 21.1 (1.78) 19.0 (1.51) 23.5 (5.31)

Education 15.4 (1.90) 12.8 (1.14) 15.4 (1.82)

Shipley** 30.2 (4.32) 29.6 (4.17) 31.1 (4.0)

Digit comparison*** 77.7 (12.28) 70.4 (12.60) 72.2 (8.94)

Pattern comparison*** 61.7 (12.87) 61.9 (7.83) 60.9 (6.73)

*From Morrow, D. G., Menard, W. E., Stine-Morrow, E. A. L., Teller, T., & Bryant, D.

(2001). The influence of task factors and expertise on age differences in pilot communication.

Psychology and Aging, 16, 31–46.

**Shipley, W. C. (1946). Institute of living scale. Los Angeles Western Psychological Services.

***Salthouse, T. A., & Babcock, R. (1991). Decomposing adult age differences in working

memory. Developmental Psychology, 27, 763–776.
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Expert pilots (M¼ 23.5 years) were also older than novice pilots
(M¼ 19.0 years) and non-pilots (M¼ 21.1 years), ts4 2.35, ps4 .05; and
expert pilots and non-pilots both had more education (M¼ 15.4 years for
both groups) than did novices (M¼ 12.8 years), ts4 6.6, ps5 .05. Finally,
expert and novice pilots both performed worse than non-pilots on the Digit
Comparison task (measure of speed of mental processing; Salthouse &
Babcock, 1991), ts4 2.0, ps5 .05, but there was no difference between
groups for scores on the Shipley Vocabulary task (a measure of verbal
ability; Shipley, 1946) or the Pattern Comparison task (measure of speed of
mental processing; Salthouse & Babcock, 1991), Fs 51.0. The pattern of
findings suggests that the expert group had more knowledge and experience
relevant to the problem-solving task than the novice group, which in turn
had more knowledge and experience than the non-pilot group. However, the
more expert groups did not have an advantage in domain-general cognitive
abilities relevant to problem solving.

Design

The experiment consisted of a 36 26 2 mixed design. Expertise level
(expert pilots, novice pilots, or non-pilots) and collaboration level
(individual or dyad) were manipulated between participants; problem
complexity (simple or complex) was manipulated within participants. The
primary dependent variables were the number of problems correctly
identified and the number of problems correctly solved. Separating problem
identification from solution generation is consistent with multi-stage
problem solving theories that postulate a search through both a hypothesis
generation space as well as a hypothesis testing space (Klahr & Dunbar,
1988; Klahr, Fay, & Dunbar, 1993). A successful solution in the current task
is the product of a number of interdependent problem-solving processes that
involves successfully identifying the primary problem in the scenario as well
as generating an appropriate solution for that problem. This distinction is
also consistent with the research in expertise distinguishing between the
skills and knowledge required for problem identification and those required
for reasoning (for a review see Chi, 2006).

Materials

Problem-solving scenarios previously shown to elicit differences in novice
and expert memory and decision making were selected from Morrow et al.
(2009). All scenarios described a flight situation in which a problem arises
and each scenario had a simple and a complex version (see Table 2 for an
example scenario). For each scenario critical set-up information was
provided regarding the type of plane, the airports (departure, destination,
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alternate, runway information), and the features of the current situation
(e.g., position, altitude, temperature, wind, time of day, etc.).

The participants’ task was to identify the problem, generate possible
solutions, and then choose the best one. Each scenario had a primary
problem as well as one or more secondary, or minor problems. For example,
the primary problem in the simple scenario in Table 2 is that the first

TABLE 2
Simple and complex versions of a scenario

Set-up (same for simple and complex)

DEPARTURE AIRPORT: Charlotte-Douglas INTL

DESTINATION AIRPORT: Raleigh-Durham INTL

CURRENT POSITION: Inside final approach fix Runway 5R

AIRCRAFT ALTITUDE: About 1435’ above field elevation

TIME OF DAY: 4 PM EST

ALTITUDE TEMPERATURE: 42 degrees F

WIND CONDITIONS: 030 degrees 5 kts

DESTINATION AIRPORT CONDS: 400’ ovcst 1 mi vis

DESTINATION RUNWAY: 5R is 7000’ with standard ILS; Dry

ALTERNATE: (landing) Washington National

AIRCRAFT: Wing-mounted, twin-engine, turbo jet; ILS, autopilot with approach coupler

Simple Complex

You are being vectored for an approach to

Runway 5R. First Officer is pilot flying.

You are handling communications,

monitoring, and giving altitude calls.

First Officer has mentioned he really

wants to get home to Washington. It is

his wife’s birthday and he has promised

her a nice dinner out. Tower advises that

visibility has increased to 7 miles with

passing of the thunderstorm. First Officer

also said that with this weather he

would have asked for runway 5L

because it is 10000’ long and has ILS

DME. You chose 5R since it is a shorter

taxi to your terminal. Just then, you

encounter wake turbulence from a

heavy jet that is on vectors to 5L, which

causes autopilot to trip. Localiser is

intercepted by First Officer. Autopilot

will not re-engage. First Officer’s glide

slope needle shows IN-OP flag. You

lower flaps to approach setting and check

electronic circuit breaker panel.

You are being vectored for an approach to

Runway 5R. First Officer is pilot flying.

You are handling communications,

monitoring, and giving altitude calls.

First Officer has mentioned he really

wants to get home to Washington. It is

his wife’s birthday and he has promised

her a nice dinner out. Tower advises that

they can see visibility decreasing with a

thunderstorm approaching from the north

end of the airport. First Officer also said

that with this weather he would have

asked for runway 5L because it is 10000’

long and has ILS DME. You chose 5R

since it is a shorter taxi to your terminal.

Just then, you encounter wake turbulence

from a heavy jet that is on vectors to 5L,

which causes autopilot to trip. Localiser

is intercepted by First Officer. Autopilot

will not re-engage. First officer’s glide

slope needle shows IN-OP flag.

Attempting to set approach flaps you get

asymmetrical flap warning.
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officer’s glide slope is inoperable. The secondary problems for that version
of the scenario included autopilot failure, weather, and the runway length.
In contrast, the primary problem in the complex version was asymmetrical
flaps. The secondary problems were the same as the simple scenario plus
glide scope inoperability and controllability of the plane. The complex
scenarios had more secondary problems than the simple scenarios. Because
many of the scenarios explicitly described the problems in the text, such as
the last sentence of the complex scenario in Table 2 ‘‘asymmetrical flap
warning’’, we expected even the non-experts to be able to identify some
problems based on the cues given in the scenario. However, we did not
expect them to have a deep understanding as to why these were problems
or how to correct them. Furthermore, collaboration in determining the
problem may lead non-experts to second guess their initial thoughts and
lead to poor performance on problem identification.

Each scenario had one correct solution as determined by a consensus of
expert commercial airline pilots (see Morrow et al., 2009 for details). Most
solutions fell into one of three categories: emergency landing, trouble
shooting the plane, or to continue the flight plan as intended. For the
emergency landing solutions participants would have to describe how and
where it was to be done. For example, in the simple version of the scenario
in Table 2 the solution is for the captain to take control and fly the
approach, and in the complex version it is to ‘‘go around’’ and troubleshoot
the plane. The problems described in the complex versions were rated by
commercial airline pilots as being more multifaceted and having less-
obvious solutions than the problems outlined in the simple versions, and
therefore requiring more integration of and inference from domain
knowledge (see Morrow et al., 2009 for details). Because the categories of
the scenario solutions are consistent with non-expert naı̈ve prior knowledge
about what to do in a flight emergency (e.g., make an ‘‘emergency landing’’
or ‘‘troubleshoot’’ the plane) we expected non-experts would be able to
make some limited progress in generating solutions for these scenarios.

Each scenario was accompanied by a problem solution sheet, where the
participant or dyad recorded their answers to three questions: (1) What is
the problem? (2) What are your options? and (3) What is the best option and
why? Each question was open-ended and it was the participant/dyad’s task
to determine the best solution for each part.

Procedure

Participants first completed a memory task in which they read and recalled
the flight scenarios (reported in Meade et al., 2009) and then completed a
problem-solving task involving these scenarios as follows. First they were
presented with the aviation scenarios a second time and asked to read
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through each one at their own pace and to imagine the flight scenario was
actually occurring. They were informed they would be asked to come up
with solutions to the problems outlined in the scenario. Specifically,
participants were provided with a response sheet that required them to first
identify the problem outlined in the scenario and then discuss possible
options for solving the problem. Finally they were asked to indicate which
of the possible options offered the best solution to the problem.

Participants were instructed to talk aloud throughout this response
period and all sessions were tape-recorded. They completed the response
sheet either alone or in collaboration with another participant of the same
expertise level depending on the condition. Participants in the collaborative
condition were given no specific instructions on how to resolve errors or
negotiate speaking turns. They were allowed 10 minutes to solve each
scenario, although most participants finished in less than the time allotted.
Once participants completed the problem-solving task for a given scenario,
the procedure was repeated until all four scenarios had been presented. Each
participant or dyad was presented two simple and two complex scenarios
and the order was counterbalanced across all participants and conditions.
One additional scenario was presented at the beginning of the session as a
practice trial. Finally, participants completed the standardised measures
reported in Table 1, were debriefed, and compensated at the rate of $8 per
hour. The entire problem-solving session took approximately 50 minutes.

RESULTS

We assess participants’ problem-solving performance by examining their
accuracy in problem identification and solution accuracy. Problem
identification (correct or incorrect) and generating the correct solution
(success or failure) are dichotomous measures, so we use non-parametric
statistics comparing frequencies across the conditions. We also compare
dyad performance to the predicted theoretical dyad performance using
statistical methods based on Lorge and Solomon (1955) and Schwartz
(1995). Alpha was set to .05 for all main effects, interactions, and planned
comparisons (Keppel, 1991). Effect sizes (Cramer’s V and Cohen’s d) were
calculated for main effects, interactions, and planned comparisons. Cohen
(1988; see also Olejnik & Algina, 2000) has suggested that effects be
regarded as small when d5 .20, as medium when .20 5d5 .80 and as large
when d4 .80.

Problem identification

This measure assessed whether participants could successfully determine
what the problem was for each scenario. Participants’ problem identification
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performance was assessed as either correct (the primary problem) or
incorrect (any other problem). Since each individual or dyad solved two
simple and two complex problems we examined the frequency of correctly
identified problems for each scenario. Table 3 presents the number of
individuals or dyads from each condition to correctly identify zero, one, or
two problems for each scenario type. We also report the probability of
correctly identifying a given problem for each condition. Based on the
performance of each individual condition we calculated the theoretical dyad
performance described in detail below. This estimate enables us to compare
the performance of the observed dyads to the predicted potential of the
theoretical dyad.

Observed dyads versus individuals. We begin by comparing dyad
performance to individual performance for each condition. We conducted
separate chi-square analyses to investigate the effect of expertise and
collaboration on identifying problems in both simple and complex
scenarios. For simple scenarios there was a medium effect of expertise,
w2(4, N¼ 71)¼ 9.61, p5 .05, V¼ .26. Follow-up comparisons showed that
experts were better than both the novices and non-pilots in problem
identification, w2(2, N¼ 47)¼ 5.43, p5 .05, V¼ .34 and w2(2, N¼ 47)¼ 8.19,
p5 .05, V¼ .41 respectively, and there was no difference found between

TABLE 3
Problem identification

Scenario type

Simple Complex

Expertise N 0 1 2 Probability 0 1 2 Probability

Non-pilots

Individual 16 0 6 10 .81 0 2 14 .94

Observed dyad 8 1 4 3 .63* 1 2 5 .75*

Theoretical dyad .97 .99

Novice

Individual 16 0 8 8 .75 1 7 8 .72

Observed dyad 8 0 1 7 .94 0 1 7 .94

Theoretical dyad .92 .92

Expert

Individual 16 0 2 14 .94 0 3 13 .91

Observed dyad 7 0 0 7 1 0 1 6 .93

Theoretical dyad .99 .99

Number of individuals and dyads who correctly identified 0, 1, or 2 problems and the estimated

probability of correctly identifying a given problem for individuals, dyads, and theoretical

dyads.
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novices and non-pilots, w2(2, N¼ 48)¼ 1.19, ns. Chi-square analyses also
revealed no overall effect of collaboration when comparing dyads to
individuals for the simple scenarios, w2(2, N¼ 70)¼ 2.91, ns. This shows that
for simple scenarios there was no added benefit to working together when
compared to working individually when identifying the problem.

Unlike the simple scenarios there was no overall effect of expertise for the
complex scenarios, w2(4, N¼ 71)¼ 3.57, ns. Inspection of the frequencies in
Table 3 reveals that all three groups had relatively high performance
in problem identification on complex scenarios. In addition there was no
overall effect of collaboration, w2(2, N¼ 72)¼ .83, ns, showing that there
was no added benefit in problem identification for participants working
together versus working individually on complex scenarios. Next, we
compare the dyad performance in each condition to the predictions of the
theoretical dyad.

Observed dyads versus theoretical dyads. To calculate the predicted
performance of the theoretical dyad we adapted a technique from Lorge and
Solomon (1955) and Schwartz (1995) that calculates the predicted
probability based on combined measures of individual performance. The
theoretical dyad performance is the sum of probabilities that either one of
the individuals or both together could identify the problem. For example,
if the average probability of an individual correctly identifying a given
problem is .20 then the predicted performance of the theoretical dyad is the
sum of the following three possibilities: the probability that individual 1
finds the problem and individual 2 does not (.20 * .80¼ .16), the probability
that individual 1 does not find the problem but individual 2 does (.80 *
.20¼ .16), and the probability that both individuals alone would have found
the problem (.20 * .20¼ .04). These three probabilities are summed to get
the predicted probability of the theoretical dyad (.16þ .16þ .04¼ .36). In
this case the theoretical dyad is expected to identify the problem 36% of the
time. This has been called a ‘‘truth-wins’’ or ‘‘rational’’ probability model
because it assumes that if only one of the two individuals identifies the
problem the other individual will immediately recognise and accept the
other’s response as correct or ‘‘the truth’’. The predicted theoretical dyad
performance for each condition is presented in Table 3.

To test the predicted performance against the observed performance the
theoretical dyad is treated as the population mean and the observed dyad as
a sample and a one-tailed z-test was conducted for each level of expertise
(Schwartz, 1995). The results showed that only the non-pilots had
significantly worse performance than the theoretical dyad predictions
for both simple and complex scenarios (z¼72.71, p5 .05 and z¼74.07,
p5 .05 respectively). The expert and novices showed no differences from the
nominal predicted performance (zs5 1).
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These results are consistent with the interpretation that non-pilots
perform less well when working with another person of the same expertise
level than when working alone. This replicates the classic collaborative
inhibition effect typically found for non-experts. One possible reason for this
effect is that non-pilots working together do not construct an accurate
representation of the problem. Non-pilots are unlikely to differentiate the
important subtle aspects of the problem and, although both partners may be
able to generate a possible problem, they lack the prior domain knowledge
to properly evaluate each other’s proposals and determine which is most
important to the current circumstances. When they work alone they may
simply rely on the most salient surface-level problem that is highlighted in
the scenario. Although this is a plausible explanation we do advise some
caution in interpreting this result, as the non-pilots’ overall performance was
better on the more complex problems than on the simple problems, which is
a counterintuitive finding and is not consistent with our a priori predictions
of problem complexity.

In contrast to the non-pilots, the novices and experts did not show
collaborative inhibition. We hypothesise that this result comes from having
relevant domain knowledge and constructing a shared mental model of the
problem scenario vis-à-vis creating common ground. Although the novices
and experts did not show collaborative inhibition they also did not show
collaborative facilitation for problem identification. This null finding may
reflect a ceiling effect for the experts as both the individual and dyad
conditions had near perfect problem identification performance. Next we
analyse participants’ solutions across the two problem scenarios.

Problem solutions

This measure assessed whether participants could successfully determine the
correct solution for each scenario. A coding rubric based on expert
commercial pilot consensus was used to score participants’ solutions (see
Morrow et al., 2009, for details). Solutions were scored as either correct or
incorrect and no partial credit was given. Since each individual or dyad
solved two simple and two complex scenarios we examined the frequency
of correctly solved problems for each scenario type. Table 4 presents the
number of individuals or dyads from each condition to correctly solve zero
one, or two problems for each scenario type. Similar to problem
identification we report the probability for correctly solving a problem for
individuals, dyads, and the predicted performance of theoretical dyads.

Observed dyads versus individuals. We conducted separate chi-square
analyses to investigate the effect of expertise and collaboration on solving
problems in both simple and complex scenarios. For simple scenarios there
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was a medium effect of expertise, w2(4, N¼ 71)¼ 23.30, p5 .05, V¼ .40.
Follow-up comparisons showed that experts were better than both the
novices and the non-pilots in solution generation, w2(2, N¼ 47)¼ 13.12,
p5 .05, V¼ .53 and w2(2, N¼ 47)¼ 16.70, p5 .05, V¼ .60 respectively,
and there was no difference found between novices and non-pilots,
w2(2, N¼ 48)¼ 1.41, ns. Chi-square analyses also revealed no overall effect
of collaboration when comparing dyads to individuals for the simple
scenarios, w2(2, N¼ 70)¼ 4.49, p¼ .10. This shows that for simple scenarios
there was no added benefit to working together when compared to working
individually when solving the problem. However, we note that this result
should be interpreted with some caution as there is a trend for dyads to
perform better than individuals for both non-pilots and novices, and that
low N may be reducing power to detect statistically significant effects here.

Similar to the simple scenarios there was a medium effect of expertise for
the complex scenarios, w2(4, N¼ 72)¼ 22.11, p5 .05, V¼ .55. Follow-up
comparisons showed that experts solved more problems than the novices,
w2(2, N¼ 48)¼ 5.96, p¼ .05, V¼ .35 and novices solved more problems than
non-pilots, w2(2, N¼ 47)¼ 7.18, p5 .05, V¼ .39. In addition, there was a
large effect of collaboration, w2(2, N¼ 72)¼ 7.99, p5 .05, V¼ .33, showing
that participants working together solved more problems correctly than
those working individually on complex scenarios.

TABLE 4
Problem solving

Scenario type

Simple Complex

Expertise N 0 1 2 Probability 0 1 2 Probability

Non-pilots

Individual 16 10 6 0 .19 12 4 0 .13

Observed dyad 8 2 5 1 .44 4 4 0 .25

Theoretical dyad .34 .24

Novice

Individual 16 7 9 0 .28 0 6 2 .32

Observed dyad 8 1 6 1 .50 1 4 3 .63

Theoretical dyad .48 .53

Expert

Individual 16 1 8 7 .69 3 8 5 .56

Observed dyad 7 0 4 3 .71* 0 1 6 .93*

Theoretical dyad .90 .81

Number of individuals and dyads who solved 0, 1, or 2 problems and the estimated probability

of solving a given problem for individuals, dyads, and theoretical dyads.
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These results show that prior expertise in the domain had a large impact
on successful problem solving. We hypothesise that this advantage was due
to expert domain knowledge and in the dyads’ case, collaborative skill as
well. The collaborative effect is consistent with the hypothesis that
participants engage in more constructive problem-solving activities when
working with a partner than when working alone. Next we compare the
dyad performance in each condition to the predictions of the theoretical
dyad.

Observed dyads versus theoretical dyads. The predicted theoretical dyad
performance is based on the sum of the probabilities that either one or both
of the individuals in a dyad solves the problem. The predicted theoretical
dyad performance for each condition is presented in Table 4. Similar to
problem finding, the theoretical dyad is treated as the population mean and
the observed dyad as a sample, and a one-tailed z-test was conducted for
each condition (Schwartz, 1995). The results showed that the experts
performed significantly less well than the theoretical dyad on simple
scenarios (z¼71.99, p5 .05) whereas they performed significantly better
than the theoretical dyad complex scenarios (z¼ 1.79, p5 .05). This shows
that the experts exhibited collaborative inhibition on simple scenarios and
collaborative facilitation on complex scenarios. The novices and non-pilots
showed no differences from the theoretical dyads predicted performance for
either simple or complex scenarios (zs5 1). This shows no collaborative
inhibition or facilitation for either group.

The expert results are consistent with the interpretation that successful
collaboration is determined by the relation between the groups’ prior
knowledge and experience (learner factors) and the difficulty/affordances
of task (situative factors). The complex scenarios showed collaborative
facilitation because they were the ‘‘optimal’’ distance from the expert
dyad’s prior knowledge. That is, these scenarios were close enough that the
participants could use and build on their prior knowledge and skill in the
domain to generate a solution, but were distant enough that they did not
have a specific solution in memory and could benefit from collaborative
interaction. In contrast, experts showed collaborative inhibition on
simple scenarios, suggesting that these problems led to non-productive
interactions.

The novices showed no evidence of collaborative inhibition, which is
consistent with the hypothesis that they benefited from having some shared
knowledge in the domain and performed up to their predicted potential on
both the simple and complex scenarios. They are hypothesised to have
engaged in some constructive and interactive processes thus eliminating
collaborative inhibition. In contrast to our predictions, the non-pilots
showed no collaborative inhibition on solution generation when compared
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to their predicted potential. Although this group showed collaborative
inhibition effects on problem finding they did not show analogous
decrements on solution generation. This null finding may be partially due
to floor effects, especially on the complex scenarios.

DISCUSSION

We tested a hypothesis of collaborative facilitation that is based on the idea
that successful collaboration depends on creating a sufficient distance
between the dyad’s prior knowledge and skill in the domain and the task
solution. This distance affords interactive and constructive processes and
requires the creation of common ground to successfully solve the problem.
Consistent with prior work, we hypothesised that collaboration requires
sufficient cognitive resources (working memory capacity/attention skills),
and that less-successful groups may suffer disproportionately from the
cognitive cost of working together, thereby overwhelming any possible
benefit of collaboration. We hypothesised that this cost can be reduced by
increasing the dyad’s prior knowledge and collaborative skill in the domain.
We predicted that if the participants had more expertise in the domain, the
cognitive cost might be reduced and provide dyads the opportunity to
engage in constructive and interactive processes.

To test these hypotheses we had expert flight instructors, novice aviation
students, and non-pilots solve simple and complex aviation problem-
solving tasks, either individually or with a partner of the same level of
expertise. The non-pilots were less successful in identifying problems when
working in dyads than when working individually, whereas novices and
experts showed no costs for collaborating. Experts were at ceiling and
showed high performance on problem identification regardless of working
alone or with another partner. The results for the non-pilots replicate the
typical findings in the literature showing collaborative inhibition for non-
experts working on a novel task (e.g., Kerr & Tindale, 2004; Mullen,
Johnson, & Salas, 1991). In contrast, the novices and experts performed at
their predicted potential. The individuals working in dyads were able to
pool their knowledge/skills without showing any decrements from
interacting. These results are consistent with our hypothesis that sharing
knowledge in the domain leads to successful collaboration (no cost) but
having no relevant prior domain knowledge led to unsuccessful collabora-
tions as compared to the predicted performance. But did expertise impact
participants’ ability to successfully solve the problems once they were
identified?

As expected, we found large expertise effects for problem-solving
accuracy with experts performing better than novices and novices
performing better than non-pilots. Furthermore, the experts showed
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collaborative facilitation with the expert dyads performing better than their
predicted potential on the complex scenarios. This result is consistent with
the hypothesis that experts show interactive or synergistic benefits from
working together but only on domain-related tasks that are a challenge. For
simpler tasks that they can presumably solve on their own, they did not
show such benefits. In fact, experts surprisingly showed collaborative
inhibition on the simple scenarios. This result suggests that collaboration on
tasks that experts are presumably competent to solve on their own is at
times detrimental. In contrast the novices showed no sign of collaborative
inhibition on solution generation for either simple or complex scenarios.
This is consistent with the hypothesis that prior knowledge and experience
helped them to avoid ‘‘process loss’’ during collaboration. Having some
relevant knowledge may have helped them offset the detriments typically
observed in non-experts when solving novel problems. Finally, in contrast to
our predictions, the non-experts also showed no collaborative inhibition on
solution generation. We have no explanation for this surprising finding.
However, we do note that solution generation may have suffered from floor
effects, especially on the complex scenarios.

Taken together, the problem-solving results suggest that collaborative
success is a complex interaction of the prior knowledge and experience of
the individuals working together, and the relation of their combined
knowledge to the task (complexity level and task structure). The results
support the hypothesis that individual learner and task structure combine to
create a zone of proximal facilitation in which participants can go beyond
what they could do individually. An important direction for future work is
to further examine the cognitive and social processes underlying this
successful collaboration.

Another important direction for future work would be to examine the
impact of problem-solving resources on collaboration. One limitation of the
current work is that all participants were given problem-solving worksheets
to write down their answers when identifying the scenario problem, options,
and final solution. The purpose of the sheet was to provide a measure of the
different stages of the problem-solving process. However, it is interesting to
consider the potential impact of the presence of the sheet on collaborative
behaviour. The worksheet might have helped participants ‘‘off load’’
information, thus reducing cognitive load, and perhaps helped them keep
better track of information than simply just discussing each scenario and
coming to a verbal answer. This possibility may help to explain the lack of
collaborative inhibition for the non-pilot group on solution generation.
Future work should further examine the impact of various resources on
supporting or inhibiting collaborative performance. Next we consider
the implications of these results for theories of collaborative problem
solving.
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Implications for theory

The proposed hypothesis may help us understand the findings in the
literature showing relatively more collaborative success in some situations
than others. The critical factor in the current framework is the relationship
between the individual’s prior knowledge, their shared knowledge (knowl-
edge overlap and organisation), and its relationship to the target task. In
work that has examined non-experts solving novel tasks, it is likely that the
cognitive costs of collaborating outweigh any possible benefits of working
together (e.g., elaboration and explaining). This is likely due to cognitive
load (Dillenbourg, 1999), coordination processes (Steiner, 1972), retrieval
disruption (Basden et al., 1997), production blocking (Diehl & Stroebe,
1987), and in some situations social factors such as social loafing (Latane
et al., 1979), and self-attention/evaluation (Mullen, 1983, 1987).

In contrast, when participants share much prior knowledge and/or
experience in the domain we see collaborative success, showing that
individuals perform better working with another person of the same level of
expertise than they would working individually when solving a challenging
problem. This result is consistent with the pre-condition hypothesised by
Laughlin et al. (2003) focusing on participants having shared knowledge
for collaborative success. It is also consistent with the implications of the
expertise literature showing that expertise reduces cognitive load and
facilitates rapid, reliable knowledge retrieval even in the face of interruption
(Ericsson & Kintsch, 1995). Experts should also perform better collabora-
tively because they can quickly identify problems and focus on the most
critical features of the task, providing an opportunity for constructive
and interactive processes to create a common ground for a task that is
sufficiently challenging.

This work attempts to bring together multiple perspectives on what
factors contribute to collaborative success by examining both learner factors
(prior knowledge and experience in the domain) and situative factors (task
complexity). Our work builds on the prior work of social theorists such as
Vygotsky (1978), Palinscar and Brown (1984), Greeno (1998), and Rogoff
(1998; Rogoff, Goodman Turkanis, & Bartlett, 2001) who focus on the
dyad-/group-level interactions as critical to understanding successful
learning and performance. These theorists focus on the dyad/group as the
unit of interest and the interactions between partners as critical. Core to this
perspective is that knowledge is always ‘‘in-relation-to’’ other knowledge,
people, objects, and situations.

However, we aim to link this situative perspective to a cognitive view by
examining participants’ prior knowledge (i.e., knowledge decomposition,
Anderson & Lebiere, 1998; Koedinger et al., 2010) and how that knowledge
changes with experience in the domain (Ericsson, Charness, Feltovich, &
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Hoffman, 2006; Nokes et al., 2010). We interpret the results as consistent
with Chi’s (2009) active-constructive-interactive framework. Specifically, we
hypothesise that constructive and interactive processes may be triggered in
different situations depending on the dyad’s prior knowledge and the
characteristics of the target task. Different tasks are likely to afford different
activities depending on one’s prior knowledge, its relation to the other
participant’s knowledge, and its relation to the target task. For example,
although a simple task may trigger interactive processes from novices because
they share some mutual knowledge; for experts it may only trigger individual-
level constructive or active processes or early termination of interactive
processes because the individual experts could solve the problem easily on their
own.

To make progress in understanding collaborative problem solving,
social theories must be anchored to cognitive approaches to get traction on
the underlying knowledge representations and problem-solving mechan-
isms, and cognitive theories must move beyond individual cognitive
analyses and consider interaction patterns as critical, irreducible, and
fundamental to learning and performance of dyads and groups. This view
positions one to understand collaboration as a complex system of
interacting participants. Each participant has a set of internal cognitive
representations and processes at the individual-level of analysis that are
governed by the input from the environment and the other participants
and the structure and complexity of the task. Simultaneously, interactive
behaviours are taking place at the group-level of analysis, which are
governed by complex social processes between participants, such as
developing common ground, and are dependent on the group’s knowledge,
task constraints, and goals. Processes at both levels must be taken into
account to explain the variance contributing to collaborative success.
Future work may take a dynamic systems approach to modelling these
complex interactions by defining the knowledge and learning processes for
each individual as well as a set of interaction rules for each participant
that drive the group-level behaviours.

Manuscript received 30 April 2010
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