PROJECT MANUAL FOR:

MSU New Dining Hall
Final Review
Montana State University

PPA no: A/E #15-0103
Date: January 20, 2017

100% CD Set
Volume 2
Fire Protection, Plumbing, Mechanical, Electrical

GENERAL CONTRACTOR/CONSTRUCTION MGR.
LANGLAS & ASSOCIATES
1019 East Main
Bozeman, MT 59716
(406) 585.3420
www.langlas.com

ARCHITECT
MOSAIC ARCHITECTURE, P.C.
428 N Last Chance Gulch
Helena, Montana 59601
Phone: 406-449-2013
www.mosaicarch.com
TABLE OF CONTENTS

DIVISION 21 – FIRE PROTECTION SYSTEMS

21 1313 FIRE PROTECTION SYSTEMS

DIVISION 22 - PLUMBING

22 0000 GENERAL REQUIREMENTS OF PLUMBING AND HVAC
22 0500 GENERAL PROVISIONS OF PLUMBING AND HVAC
22 0519 METERS AND GAGES FOR PLUMBING PIPING
22 0523 GENERAL-DUTY VALVES FOR PLUMBING PIPING
22 0529 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
22 0548 VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT
22 0553 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
22 0716 PLUMBING EQUIPMENT INSULATION
22 0800 Cx OF PLUMBING
22 1116 DOMESTIC WATER PIPING
22 1119 DOMESTIC WATER PIPING SPECIALTIES
22 1120 WATER METERS
22 1316 SANITARY WASTE AND VENT PIPING
22 1319 SANITARY WASTE PIPING SPECIALTIES
22 1323 SANITARY WASTE INTERCEPTORS
22 1329 SANITARY SEWAGE PUMPS
22 1413 FACILITY STORM DRAINAGE PIPING
22 1423 STORM DRAINAGE PIPING SPECIALTIES
22 1429 SUMP PUMPS
22 3401 STEAM OPERATED WATER HEATERS
22 3402 HEAT PUMP WATER HEATERS
22 4100 PLUMBING FIXTURES

DIVISION 23 - MECHANICAL

23 0519 MAGNETIC FLOW METERS
23 0593 TESTING, ADJUSTING, AND BALANCING FOR HVAC
23 0713 DUCT INSULATION
23 0800 Cx OF HVAC
23 0900 INSTRUMENTATION AND CONTROL FOR HVAC
23 1123 FACILITY NATURAL GAS PIPING
23 1124 NATURAL GAS METERS
23 2113 HYDRONIC PIPING
23 2116 HYDRONIC PIPING SPECIALTIES
23 2123 HYDRONIC PUMPS
23 2216 STEAM AND CONDENSATE HEATING PIPING SPECIALTIES
23 2223 STEAM AND CONDENSATE PUMPS
23 3113 METAL DUCTS
23 3114 TRANSPIRED SOLAR COLLECTORS
23 3300 AIR DUCT ACCESSORIES
23 3424 KITCHEN EXHAUST POWER VENTILATORS
23 3425 MECHANICAL DRYER VENTING SYSTEM
23 3533 LISTED KITCHEN VENTILATION SYSTEM EXHAUST SYSTEM
23 3813 TYPE 1 COMMERCIAL KITCHEN HOODS
23 3814 TYPE II COMMERCIAL KITCHEN HOODS
23 5534 GAS FIRED RADIANT HEATERS
23 5700 HEAT EXCHANGERS FOR HVAC
23 6513 COOLING TOWERS
23 7200 AIR-TO-AIR ENERGY RECOVERY EQUIPMENT
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 7423</td>
<td>MAKEUP-AIR UNITS</td>
</tr>
<tr>
<td>23 8146</td>
<td>WATER-SOURCE UNITARY HEAT PUMPS</td>
</tr>
<tr>
<td>23 8216</td>
<td>HYDRONIC AIR COILS</td>
</tr>
<tr>
<td>23 8230</td>
<td>PROPELLER UNIT HEATERS</td>
</tr>
<tr>
<td>23 8231</td>
<td>HEATERS</td>
</tr>
</tbody>
</table>

DIVISION 26 - ELECTRICAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 0523</td>
<td>CONTROL VOLTAGE ELECTRICAL POWER CABLES</td>
</tr>
<tr>
<td>26 0526</td>
<td>GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 0529</td>
<td>HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 0533</td>
<td>RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 0548</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEM</td>
</tr>
<tr>
<td>26 0800</td>
<td>CX OF ELECTRICAL</td>
</tr>
<tr>
<td>26 0923</td>
<td>LIGHTING CONTROL DEVICES</td>
</tr>
<tr>
<td>26 2200</td>
<td>LOW-VOLTAGE TRANSFORMERS</td>
</tr>
<tr>
<td>26 2416</td>
<td>PANELBOARDS</td>
</tr>
<tr>
<td>26 2726</td>
<td>WIRING DEVICES</td>
</tr>
<tr>
<td>26 2813</td>
<td>FUSES</td>
</tr>
<tr>
<td>26 2816</td>
<td>ENCLOSED SWITCHES AND CIRCUIT BREAKERS</td>
</tr>
<tr>
<td>26 2913</td>
<td>ENCLOSED CONTROLLERS</td>
</tr>
<tr>
<td>26 4313</td>
<td>SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS</td>
</tr>
<tr>
<td>26 5119</td>
<td>LED INTERIOR LIGHTING</td>
</tr>
</tbody>
</table>

DIVISION 27 - COMMUNICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 0528</td>
<td>PATHWAYS FOR COMMUNICATIONS SYSTEM</td>
</tr>
<tr>
<td>27 1100</td>
<td>COMMUNICATIONS EQUIPMENT ROOM FITTINGS</td>
</tr>
<tr>
<td>27 1500</td>
<td>COMMUNICATIONS HORIZONTAL CABLEING</td>
</tr>
</tbody>
</table>

DIVISION 28 – ELECTRONIC SAFETY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 3111</td>
<td>DIGITAL, ADDRESSABLE FIRE ALARM SYSTEM</td>
</tr>
</tbody>
</table>
PART 1 GENERAL

1.1 SCOPE

A. Furnish and install an automatic sprinkler system and manual wet standpipe system to protect all areas of the new MSU Dining Hall building as indicated herein and as shown on the drawings. Connect system to a water supply of sufficient pressure to ensure full and sustained water discharge immediately from sprinkler heads when opened by fire at rated heat temperatures. Water supply shall conform to NFPA water supply requirements with considerations given to the reliability of the public water supply, taking into account probable minimum pressure conditions. The water supply characteristics at the point of the new water service connection to the existing water main are: 82 PSI static, 78 PSI residual with 1510 GPM flowing.

B. All portions of the systems shall be installed in accordance with the drawings, details, and specifications and as required by jurisdictional authorities and codes. The position is taken that the Owner is entitled to a project which meets or exceeds the minimum requirements of nationally recognized fire protection standards. All efforts and installations shall be directed toward this end. Where there is conflict between the contract drawings and/or specifications, and the requirements of the jurisdictional authorities or codes, the conflict shall be brought to the attention of the Engineer at least ten (10) days prior to bidding or be resolved at no cost to the Owner. If the contractor has not identified conflicts to the Engineer, he shall be responsible for complying with the most restrictive (expensive) methods.

C. The intent of these specifications is to describe the complete systems to be installed, including minor details of work or materials not specifically mentioned or shown on the drawings, but necessary for the successful operation and completion of the installation. Contractor shall provide all minor details of work or materials necessary for a complete system even if not specifically mentioned or shown on the drawings. This includes any fittings, offsets, valves, hangers, bracing or piping that may be necessary due to field conditions or coordination with other trades.

D. Work to be performed under this section shall include, but not be limited to the following:
 1. Automatic Wet Pipe fire sprinkler system.
 a. Pipe and fittings.
 b. Hangers and supports.
 c. Earthquake bracing.
 d. Valves.
 e. Alarms.
 f. Flow and Tamper Switches.
 g. Specialties.

E. Furnish and install an automatic fire protection system of type or types required in the following areas:
 1. All areas of the building – Automatic Wet Pipe fire sprinkler system.

1.2 RELATED WORK

A. All work performed under this section of the specifications shall be subject to the requirements of both the General and Special Conditions.

B. Related work specified elsewhere:
 Digital Addressable Fire Alarm System Section 28 3111
C. Examine the above referenced specification parts thoroughly before submitting a proposal for accomplishment of work in this section.

1.3 REGULATORY AGENCIES

A. The term jurisdictional authority used in this section of the specification shall include, as applicable, but not be limited to the following:
 1. City of Bozeman Building Department.
 3. Owner.

B. The design and installation of all systems of fire protection shall conform to all requirements of applicable codes and publications herein defined:
 4. All State and local ordinances
 5. Underwriters’ Laboratories
 6. American Society of Testing Materials
 7. American National Standards Institute
 8. Occupational Safety and Health Administration

1.4 SUBMITTALS

A. General
 1. The successful Contractor shall provide submittal data as required under other portions of this specification.
 2. Work on the project shall not begin until submittals have been accepted by the Authority Having Jurisdiction and the Engineer.

B. Shop Drawings
 1. Submit shop drawings (floor plans - detailed working drawings), showing dimensions, ducts, lights, or other items affecting the fire protection systems will be submitted to jurisdictional agencies for review and approval by the Engineer. All items identified in NFPA #13 for proper working drawings will be complied with. After approvals from jurisdictional agencies have been returned to the Engineer, they will be submitted to the Contractor.
 2. Shop drawings have been prepared in AutoCAD or compatible software.

C. Catalog/Product Information
 1. Product data on all materials intended for use and as indicated on the drawings will be submitted to the jurisdictional agencies for approval. The contractor may substitute equal material in accordance with the specifications as approved by the Engineer.

D. Hydraulic Calculations
 1. Hydraulic calculations will be submitted by the Engineer to the Authority Having Jurisdiction for approval. Calculations have been provided to substantiate the pipe sizes shown on shop drawings.

E. Installer's Qualifications
 1. All systems of fire protection shall be installed by a licensed (for the location of installation) Fire Protection Contractor, fully experienced in fire protection installation as required and specified herein.
 2. All installers shall be competent and shall hold an endorsement by the State of Montana. Prior to beginning work, current Contractor’s and Installer’s license and endorsements shall be on file with the Department of Commerce Professional and Occupational
Licensing Bureau (301 South Park, P.O. Box 200513, Helena, MT 59620-0513

3. Fire Protection Contractors may be required to provide in writing specific information as to successfully completed projects and references to show cause as to why they should be considered acceptable to the Engineer.

F. Close-Out

1. Record Drawings required per paragraph 1.6 and Operation and Maintenance Manuals required per paragraph 1.7, shall be submitted to the Engineer for approval.

1.5 JOB CONDITIONS

A. The Contractor shall investigate the structural, mechanical, electrical, and finished conditions affecting the piping, and shall arrange the equipment accordingly; furnishing required fittings, offsets and accessories. Route fire protection piping to avoid interference with duct work and drain piping. In the event it becomes necessary to make field changes in pipe locations due to building construction, the Contractor shall consult with the Engineer before making any changes. Any such changes required shall be made without added cost to the Owner.

B. The Contractor shall determine, and be responsible for, the proper locations and type of inserts for hangers, chases, sleeves, and other openings in the construction required for fire protection work, and shall obtain this information well in advance of the construction progress to avoid delay of the work.

C. The drawings indicate locations of sprinkler heads, equipment and routing of piping. Contractor is responsible for final locations and routing and shall be responsible for coordinating with other trades on site prior to system installation. Contractor shall review all contract documents including architectural, structural, mechanical, electrical, etc. for actual contract conditions. Contractor shall fabricate piping from field measurements and conditions.

D. All fees and permits specifically required for fire protection work, not obtained by others as specified elsewhere shall be applied for and paid for by this Contractor.

1.6 RECORD DRAWINGS

A. One approved set of drawings shall be maintained on the job at all times.

B. One set of “As-Built” drawings shall be kept on the job at all times. “As-Built” drawings shall be kept current daily. “As-Built” drawings shall be available at all times to Engineer for review and use.

C. One reproducible set of “As-Built” drawings shall be provided to the Engineer upon completion of the work.

1.7 OPERATION AND MAINTENANCE MANUALS

A. Three (3) final sets of operating and maintenance instructions shall be provided to the Owner upon completion. Manuals shall include, as a minimum, the following:

1. “As-Built” Drawings
2. Catalog cut sheets of all materials installed (provided by Engineer)
3. Equipment maintenance manuals
4. Hydraulic Calculations (provided by Engineer)
5. Acceptance Test Certificate
6. Certification of Owner Training
7. Contractor Guarantee and Warranty
8. “As-Built” AutoCAD drawing (.dwg) file or equal on CD (provided by Engineer)

B. One (1) original copy of NFPA #25 (2008) shall be provided to the Owner.
C. Operation and Maintenance Manuals shall be submitted to the Engineer for approval within 14 days after final testing.

1.8 TRAINING
A. The Fire Protection Contractor shall instruct the Owner in the operation of the systems. Instruction shall continue until the Owner is fully satisfied that he understands the operation of his system.

B. Contractor shall obtain Owner's dated signature that all training has been accomplished and is acceptable to the Owner.

1.9 GUARANTEES AND WARRANTIES
A. The Fire Protection Contractor shall guarantee to the Owner in writing, all equipment and workmanship for a period of one (1) year after the fire protection system has been placed in continuous service and has been accepted by all authorities having jurisdiction.

B. The Fire Protection Contractor shall not be held responsible for improper or negligent maintenance by the Owner after operating and maintenance indoctrination has been given the Owner.

PART 2 PRODUCTS

2.1 FIRE SPRINKLER SYSTEM EQUIPMENT
A. Where contract documents indicate specific model number or manufacturer; Contractor may substitute identical equipment approved for fire protection use.

2.2 AUTOMATIC SPRINKLERS
A. All sprinklers shall be of similar design and from a single manufacturer.

B. The operating temperature of sprinklers shall be as required by the specific location of installation in accordance with NFPA #13 requirements.

C. Sprinklers shall conform to the following schedule:
 1. Brass upright or pendent sprinklers may be used in all attic, mechanical, storage or other non-public spaces or areas where piping is exposed.
 2. White recessed pendent sprinklers shall be used in all finished areas, offices, classrooms, etc. Where surface mounted obstructions will not allow for recessed installation, two-piece escutcheons may be used, if approved by the Engineer, to extend sprinklers to a maximum deflector distance as allowed by NFPA or U.L. listing.
 3. White concealed pendent sprinklers shall be installed in finished areas where indicated on the drawings.
 4. White recessed sidewall sprinklers may be used in accordance with listing and jurisdictional requirements where approved by the Engineer.
 5. All sprinklers shall be quick-response glass bulb type.
 6. Chrome recessed dry pendent heads shall be used in all areas subject to freezing when the heads are supplied from a heated area wet system, dry pipe system drops, etc.

D. Manufacturers
 1. Tyco
 2. Victaulic
 3. Viking
 4. Reliable
2.3 PIPE AND FITTINGS
A. Interior piping for automatic sprinkler system shall conform to NFPA #13 and as follows.
B. Sprinkler piping above ground with threaded fittings shall be Schedule 40 black steel pipe.
C. Fittings for threaded and coupled pipe shall consist of cast iron or ductile threaded fittings joined with Teflon tape thread sealing compound or pipe joint compound. Pressure rating of fittings shall be as required for application.
D. Sprinkler piping above ground for sizes 2½” and larger shall be Schedule 10 black steel pipe with grooved fittings.
E. Fittings for grooved end pipe shall consist of Tyco Grinnell Series or equal couplings and fittings in accordance with NFPA #13.
F. Fittings for plain end pipe shall not be used.
G. Flexible piping drops that are U.L. listed or FM approved shall be used where sprinkler heads are installed in suspended acoustical tile ceilings.
H. All drain and fire department connection piping and fittings down-stream of valves shall be galvanized. Malleable iron fittings are acceptable.

2.4 HANGERS AND SUPPORTS
A. Space pipe hangers in accord with the requirements of NFPA #13. Construct hangers, hanger rods, inserts and clamps as approved by the same.
B. Manufacturers:
 1. Tolco
 2. Afcon
 3. Erico
 4. Speedy Product (Super Screws)
 5. Eaton (Tolco)
C. Concrete hanger inserts shall be approved for use in Seismic Design category C or D.

2.5 EARTHQUAKE BRACING
A. Furnish and install all earthquake bracing and restraint as required by International Building Code, NFPA #13 and the authority having jurisdiction.
B. Bracing attachments shall be made to the top chord of open web steel bar joists, steel I-beams or concrete decking.
C. Concrete insert attachments used for seismic bracing shall be approved for use in Seismic Design category C or D.

2.6 VALVES
A. Gate valves shall be approved indicating type as required by NFPA #13 or NFPA #14. Check valves shall be as required by NFPA #13 or NFPA #14. Test and drain valves shall be approved brass globe, angle, or ball valves. Locate sprinkler system isolation valves as shown on the drawings complete with a tamper alarm.
B. Interior
 1. Gate
Make: Nibco
Sizes: 2½” through 4”
Ends: Flanged
Model: F-607-OTS

2. Butterfly
Make: Tyco
Sizes: 2½” through 4”
Ends: Grooved
Model: BFV-1
Note: Butterfly valves may be used in lieu of OS&Y valves at the Contractor's option for 2½” and larger valves.

3. Ball Valve
Make: Tyco
Sizes: ¼” through 2”
Ends: Threaded
Model: F19

4. Check Valve
Make: Tyco
Sizes: 2½” through 4”
Ends: Grooved
Model: CV-1F

5. Drain Valve
Make: Tyco
Sizes: ½” through 2”
Ends: Threaded
Model: F15 and F16

6. Test N Drain Valve
Make: AGF
Sizes: 1” through 2”
Ends: Threaded
Model: 1011, 1000, and 1011T

C. All control valves and drain valves shall be installed within six feet of the floor level for maintenance access.

D. Manufacturers:
1. Tyco
2. Nibco
3. AGF
4. Victaulic
5. Reliable
6. Mueller
7. United Brass

2.7 BACKFLOW PREVENTION DEVICES
A. Install new backflow prevention devices as required by the Water Authority having jurisdiction.

B. Devices shall be UL or FM approved.

C. All reduced pressure backflow prevention devices shall be provided with an air gap drain with splash guard and piped to the exterior or adequate floor drain with galvanized pipe and fittings.

D. Manufacturers:
1. Febco
2. Ames
3. Watts
2.8 FIRE DEPARTMENT CONNECTIONS

A. Furnish and install where shown on plans and approved by authority having jurisdiction fire department connections, complete with clapper, plugs and chains.

B. Finish shall consist of polished brass.

C. Fire department connections shall be set 2'-6" above grade.

D. Fire department connections identification plate shall be indexed "AUTO. SPKR. STANDPIPE". The indexing shall be "cast in" by the manufacturer. Required indexing shall be permanently installed at the connection.

E. Fire department connection shall be complete with interior independent self-closing clappers, plugs, and chain and shall have threads to meet the local fire department requirements. Provide an automatic ball-drip.

F. Manufacturers:
 1. Potter Roemer
 2. Croker
 3. Powhatan
 4. Tyco

2.9 SPECIALTIES

A. Fire Seals
 1. Where piping passes through walls, floors or other building construction which by code requires a fire rating, approved fire rated assemblies shall be used. Proposed protection shall be submitted for approval. Review Architectural plans for locations of fire rated assemblies.

B. Escutcheon Plates
 1. Where exposed piping passes through finish work, chrome plated (or other finish acceptable to the Architect or Engineer) wall plates shall be installed. Split wall plates or escutcheons shall be installed to fit snugly around piping. All wall plates shall be metal.
 2. Solid galvanized wall plates shall be used at both sides of all exterior walls where piping passes through the exterior wall.

C. Valve Identification
 1. All valves within the building shall have permanently marked identification signs provided in accordance with NFPA #13 and NFPA #14 standards. Signs shall be manufactured and not hand written. Signs shall be hung with galvanized or chrome chain.

D. Spare Head Supply
 1. Furnish and install a supply of extra sprinklers (minimum of two) of each type and degree link installed in the project, complete with mountable box. Mount box on wall next to fire sprinkler system riser. Provide wrenches for each type of sprinkler installed in box.

2.10 ELECTRICAL DEVICES

A. All electrical devices shall be coordinated with Electrical (Division 26) and Digital Addressable Fire Alarm system (Section 28 3111) requirements for compatibility of voltages and manufacturer.

B. Flow Switch
 1. Potter VSR-F
 2. Potter VSR-SF
C. Tamper Switch
 1. Potter OSYSU-2
 2. Potter RBVS

D. Audio/Visual Alarm Indicating Appliances
 1. Audio/Visual units shall provide a common enclosure for the fire alarm audible and visual alarm devices. The housing shall be designed to accommodate either horns, bells, or chimes. The unit shall be complete with a tamper resistant, Pyramidal shaped lens with “Fire” lettering visible from a 180° field of view. Integral Xenon strobe shall provide a minimum light output of 4.5 candelas at 24VDC at a 45 flashes per minute rate. Xenon strobos shall provide a 4-wire connection to insure properly supervised in/out system connection. Unit shall be complete with all mounting hardware including backbox.

E. All flow switches and tamper switches shall be installed within six feet of the floor level for maintenance access.

F. Manufacturers:
 1. Potter Signal
 2. System Sensor

PART 3 EXECUTION

3.1 DESIGN CRITERIA
 A. Sprinkler head arrangement, routing of piping and equipment location is indicated on the drawings. The entire fire protection system including minor details of work and/or exact pipe routing may not be shown on the plans. The contractor is to provide a complete fire protection system per NFPA #13 and NFPA #14 as required and provide all necessary material and labor to provide the complete system.

 B. The fire sprinkler contactor shall coordinate on site with other trades for routing of piping within the building.

 C. All piping shall be run concealed wherever possible. Where piping is run exposed, special notation on drawings to that effect shall be evident and conspicuous on the drawings. Any piping determined to be a problem shall be relocated at no cost to the Owner.

 D. System piping has been hydraulically calculated in accordance with NFPA #13 and NFPA #14 to the point of connection verified for flow characteristics.

 E. The shop drawings and hydraulic calculations have been accomplished and stamped by the Engineer and will be submitted to the Authority Having Jurisdiction for approval.

3.2 INSTALLATION
 A. Where details of installation are not given, the installation shall be made using manufacturer's recommended practices or at the direction of the Engineer.

 B. All control valves, drain valves, flow switches, tamper switches and any other equipment required for maintenance and inspection shall be installed within six feet of the floor level for maintenance access.

 C. The contractor shall be responsible for providing all labor and material for a complete system in accordance with these specifications and applicable standards and Codes. Contractor shall provide all material and labor as necessary for any changes that may be necessary due to field conditions from the working system shop drawings provided by the Engineer. All necessary changes shall be made at no additional cost to the Owner.
D. Contractor shall complete the fire protection systems ready for operation, in all respects, as soon as possible. When system is complete and ready for continuous operation, activate the system for its intended use. After system has been activated for continuous use, water charges will be paid by the Owner.

E. This Contractor shall remove from the building, all rubbish and unused materials due to or connected with this installation.

F. The surface of all piping shall be cleaned and left ready for painting. This includes the removal of any stickers or tags on the piping.

3.3 TESTING

A. All testing shall be accomplished in accord with NFPA standards and requirements.

B. This Contractor shall call for inspection and complete Contractor’s Material and Test Certificates signed by the authority having jurisdiction.

C. The entire sprinkler system shall be hydrostatically tested at not less than 200 psig pressure for a period of not less than two (2) hours or 50 psi above static pressure in excess of 150 psi for two (2) hours with no pressure drop in the system.

D. All testing shall be witnessed by a representative of the Engineer or Owner and the authority having jurisdiction.

E. Where jurisdictional authority’s standards are more stringent than the above test, they shall prevail.

F. Furnish copies of Aboveground Test Certificate with close-out documentation.

END OF SECTION
SECTION 220000 GENERAL REQUIREMENTS OF PLUMBING AND HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. The requirements listed in this section are supplemental to the Division 01 General Requirements.

B. It shall be the responsibility of the Plumbing and Mechanical Contractor to examine and refer to all Architectural, Civil, Structural, Electrical, and Landscape and specifications for construction conditions which may affect the scope of Plumbing and HVAC work. Inspect the building site and existing facilities for verification of present conditions. Make proper provisions for these conditions in performance of the work and cost thereof.

C. Plumbing and Mechanical work for this project shall include all items, articles, materials and the associated labor mentioned, schedules or shown in these specifications and in the accompanying drawings.

D. Furnish and install all equipment, materials and any required incidental items required by good practice to complete the systems described herein.

1.2 CODES AND STANDARDS

A. Work shall meet the requirements of the plans and specifications and shall not be less than the minimum requirements of applicable sections of the latest Codes and Standards of the following Organizations:
1. American Gas Association (AGA)
2. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE)
3. American Society of Mechanical Engineers (ASME)
4. Sheet Metal and Air Conditioning Contractors’ National Association Inc. (SMACNA)
5. American Water Works Association (AWWA)
6. National Electrical Code (NEC)
7. National Electrical Manufacturers Association (NEMA)
8. National Fire Protection Association (NFPA)
9. Uniform Plumbing Code (UPC)
10. Occupational Safety & Health Act (OSHA)
11. Plastic Pipe Institute (PPI)
12. International Mechanical Code (IMC)
15. Requirements of the Serving Utility Company
16. Local and State Codes and Ordinances

1.3 FEES AND PERMITS
A. The Plumbing and Mechanical Contractors shall pay all fees and arrange all permits required for work done under their contract and under their supervision by subcontract.

B. All usage contracts between the Owner and the serving utilities company, such as membership and usage charges or fees, etc., for the purpose of obtaining the services for the utility company shall be applied for and paid for by the Owner.

1.4 MATERIALS AND EQUIPMENT

A. Manufacturer’s trade names and catalog numbers listed are intended to indicate the quality of equipment or materials desired. Manufacturers not listed in the specification will be considered substitutions and must have prior approval.

B. See Division 01 for Substitutions Procedures. Requests for substitution are to be submitted sufficiently ahead of the deadline, to give ample time for examination. Prior approval request for substitution must indicate the specific item or items to be furnished in lieu of those scheduled, together with complete technical and comparative data on scheduled items and items proposed for substitution.

C. If the engineer approves any proposed substitution, the approved product will be listed in an addendum. Bidders shall not rely on approval made in any other manner.

D. Mechanical equipment may be installed with manufacturer’s standard finish and color except where specific color, finish or choice is indicated. If the manufacturer has no standard finish, equipment shall have a prime coat and two finish coats of gray enamel.

E. High altitude operation: Capacity of all equipment is to be sized and manufactured to perform at the elevation of the project site. If not specifically indicated in the equipment schedule or in the specifications provide all required accessories and equipment for proper operation at elevation of the project site.

F. This Contractor shall be responsible for materials and equipment installed under this contract. Contractor shall also be responsible for the protection of materials and equipment of others from damage as a result of his work.

G. Manufactured material and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned as directed by manufacturer unless herein specified to the contrary.

H. This Contractor shall make the required arrangement with General Contractor or Construction Manager for the introduction into the building of equipment too large to pass through finished openings.

I. Store materials and equipment indoors at the job site or, if this is not possible, store on raised platforms and protect from the weather by means of waterproof covers. Coverings shall permit circulation of air around the materials to prevent condensation of moisture. Screen or cap openings in equipment to prevent the entry of vermin.

1.5 INTENT OF DRAWINGS
A. The drawings are diagrammatic and do not necessarily show exact location of piping and ductwork unless specifically dimensioned. Riser and other diagrams are schematic and do not necessarily show the physical arrangement of the equipment. They shall not be used for obtaining lineal runs of piping or ductwork, nor shall they be used for shop drawings for piping and ductwork fabrication or ordering. Discrepancies shown on different plans, or between plans and actual field conditions shall be brought to the attention of the Architect/Engineer for resolution.

1.6 COMMISSIONING OF SYSTEMS
A. Mechanical systems where the total mechanical equipment capacity is greater than 480,000 Btu/hr cooling capacity and 600,000 Btu/hr heating capacity shall be commissioned in accordance with the provisions of C408 of the International Energy Conservation Code by a registered professional. The mechanical contractor shall be responsible for all cost associated with commissioning.

1.7 RESPONSIBILITY
A. Plumbing and HVAC work shall conform to requirements of all divisions 22 and 23 specifications.

B. The Plumbing and Mechanical Contractors shall be responsible for the installation of a satisfactory and complete system in accordance with the intent of the drawing and specifications. Provide, at no extra cost, all incidental items, materials, accessories and labor required for completion of the work even though they are not specifically mentioned or indicated on the drawings or in the specifications.

C. The drawings do not attempt to show complete details of the building construction which affect the mechanical and plumbing installation; and reference is therefore required to the Architectural, Civil, Structural, Landscape and Electrical drawings and specifications and to shop drawings of all trades for additional details which affect the installation of the work covered under this Division of the Contract.

D. Location of mechanical and plumbing system components shall be checked for conflicts with openings, structural members and components of other systems having fixed locations. In the event of any conflicts, the Architect/Engineer shall be consulted and their decision shall govern. Necessary changes shall be made at the Contractor’s expense.

E. Determine, and be responsible for, the proper location and character of inserts for hangers, chases, sleeves, and other openings in the construction required for the work, and obtain this information well in advance of the construction progress so work will not be delayed.

F. Final location of inserts, hangers, etc., required for each installation, must be coordinated with facilities required for other installations to prevent interference.
G. Take extreme caution not to install work that connects to equipment until such time as complete Shop Drawings of such equipment have been approved by the Architect/Engineer. Any work installed by the Contractor, prior to approval of Shop Drawings, will be at the Contractor's risk.

H. All modifications and changes required due to installation of substituted equipment shall be made at the contractor’s expense.

I. It shall the responsibility of the installing contractor to coordinate changes to work by other trades that result from the installation of equipment other than the scheduled equipment.

J. If the provided equipment is heavier or larger than the scheduled or specified equipment, it shall be the responsibility of the installing contractor to coordinate the required structural changes and pay for any and all associated cost.

K. If the provided equipment has different motor characteristics or electrical requirements than the scheduled or specified equipment, it shall be the responsibility of the installing contractor to coordinate the required changes and pay for any and all associated cost.

L. If larger or additional electrical conduits are required due to the installation of equipment other than the scheduled or specified equipment it shall be the responsibility of the installing contractor to coordinate the required changes and pay for any and all associated cost.

M. If the provided equipment requires different fluid flow rates than the scheduled or specified equipment, it shall be the responsibility of the installing contractor to coordinate all required changes including but not limited to pumps, piping, valves, etc and pay for any and all associated cost.

N. At all times during the performance of this Contract, properly protect work from damage and protect the Owner's property from injury of loss. Make good any damage, injury or loss, except such as may be directly due to errors in the Bidding Documents or caused by Agents or Employees of the Owner. Adequately protect adjacent property as provided by law and the Bidding Documents. Provide and maintain passageways, guard fences, lights and other facilities for protection required by Public Authority or Local conditions.

O. The Contractor shall be responsible for damages due to the work of their contractors, to the building or its contents, people, etc.

1.8 REVIEW

A. All work and material is subject to review at any time by the Architect/Engineer or his representative. If the Architect/Engineer or his representative finds material that does not conform to these specifications or that is not properly installed or finished, correct the deficiencies in a manner satisfactory to the Architect/Engineer at the Contractor’s expense.

1.9 WORKMANSHIP

A. Work under this contract shall be performed by workmen skilled in the particular trade, including work necessary to properly complete the installation in a workmanlike manner to present a neat and finished appearance.
B. Obtain Architect's/Engineer's approval before performing any cutting on structural members or patching of building surfaces. Any damage to the building or equipment by the Mechanical or Plumbing Contractor shall be the responsibility of the Mechanical or Plumbing Contractor and shall be repaired by skilled craftsmen of the trades involved at the Contractor’s expense.

C. Chases, openings, sleeves, hangers, anchors, recesses, equipment pads, framing for equipment, provided by others only if so noted on the drawings. Otherwise, they will be provided by the Mechanical or Plumbing Contractor for their work.

1.10 COORDINATION

A. This Mechanical and Plumbing Contractors shall plan their work to proceed with a minimum interference with other trades and it shall be their responsibility to inform the General Contractor of all openings required in the building structure for installation of work, and to provide sleeves as required. Dimensions of equipment installed and/or provided by others shall be checked in order that correct clearances and connections may be made.

B. In general, pipelines requiring gravity drainage shall be installed first, followed by ductwork, large piping mains and electrical conduit. The location fire protection piping and heads shall be coordinated with other trades to ensure that installations by other trades do not block heads.

C. Leave sufficient space for the installation of insulation on piping and ductwork as specified. It is not acceptable to compress pipe or duct insulation for any reason.

1.11 CLEANING

A. Keep the job site clean. The Mechanical and Plumbing Contractors shall remove all waste a rubbish associated with their work.

B. Upon completion of work, remove materials, scraps and debris relative to plumbing and mechanical work and leave all spaces including tunnels, crawlspace, pipe or duct chases and ceiling plenums clean and orderly.

C. The Mechanical and Plumbing contractors will be responsible for cleaning the exterior and interior of all equipment prior to star-up. Once all equipment has been cleaned it shall be inspected by the Architect/Engineer prior to start-up.

D. The Mechanical and Plumbing Contractors shall provide dust protection of existing materials and equipment as well a new materials and equipment for the duration of the project. Protect existing materials and equipment from damage for the duration of the project. Clean the exterior and interior of all existing equipment at the completion of the project.

1.12 TEMPORARY FACILITIES

A. Offices

1. The Mechanical and Plumbing Contractor must have the permission of the Owner and General Contractor or Construction Manager to install a temporary office/job trailer on the project site.
2. Contractor shall completely remove his temporary installations when no longer needed and the premises shall be completely clean, disinfected, patched, and refinshed to match adjacent areas.

B. Ladders and Scaffolds
1. The Mechanical and Plumbing Contractors shall provide their own ladders, scaffolds, etc. of substantial construction for access to their work in various portions of the building as may be required. When no longer needed, they shall be removed by the Contractor.

C. Protection Devices
1. The Mechanical and Plumbing Contractors shall provide and maintain his own necessary barricades, fences, signal lights, etc., required by all governing authorities or shown on the drawings. When no longer needed, they shall be removed by the Contractor.

D. TEMPORARY FIRE PROTECTION
1. The Mechanical and Plumbing Contractors shall provide all necessary first aid hand fire extinguishers for Class A, B, C and special hazards as may exist in his own work area only in accordance with good and safe practice and as required by jurisdictional safety authority.

1.13 SUBMITTALS

A. Submittals will be required for each piece of equipment, material or product as noted in the table below.

<table>
<thead>
<tr>
<th>Specification Section</th>
<th>Product Data</th>
<th>Performance Data</th>
<th>Shop Drawing</th>
<th>Delegated Design</th>
<th>Wiring Diagram</th>
<th>Color Chart</th>
<th>Sustainability Compliance</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>220500</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220519</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220523</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220529</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220548</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220553</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220716</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221116</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221119</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221120</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221316</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221319</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221323</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221329</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221413</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide Delegated Design per the requirements of this section.
<table>
<thead>
<tr>
<th>Specification Section</th>
<th>Product Data</th>
<th>Performance Data</th>
<th>Shop Drawing</th>
<th>Delegated Design</th>
<th>Wiring Diagram</th>
<th>Color Chart</th>
<th>Sustainability Compliance</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>221423</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221429</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223401</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223402</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230519</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230593</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230713</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230900</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230901</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231123</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231124</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232113</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232116</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232123</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232213</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232216</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232223</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233113</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233114</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[Provide Delegated Design per the requirements of this section]</td>
<td></td>
</tr>
<tr>
<td>233300</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233346</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233423</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233424</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233425</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233533</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233713</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233813</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233814</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235534</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235700</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236513</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237200</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237423</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238146</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238216</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238230</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238231</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. Submittal Definitions
1. Product Data: Provide manufacturers cut sheets that include general product information including but not limited to: Model Number, physical data, nominal capacities, rough-in requirements.

2. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Shop Drawings may use reproductions of the Contract Documents or use digital data drawing files obtained from the architect or engineer.

3. Performance Data: Provide detailed performance and capacities based on project specific requirements including but not limited to: flow rates, capacities, pressure loss, temperatures, fan curves, pump curves, part load performance, sound data, and electrical characteristics.

4. Delegated Design: Provide detailed drawings prepared and stamped by a registered Professional Engineer that detail pertinent design criterial, the materials and products to be installed and the required installation locations.

5. Wiring Diagram: Provide diagrams that identify and detail required field wiring.

6. Color Chart: Provide a physical color chart of material samples required for selection of equipment colors.

7. Sustainability Compliance: Provide literature that indicated a products compliance with LEED or Green Globes. See Division 01 for additional information and requirements.

C. Submittal Formats:
1. Include the following information with each submittal:
 a. Project Name
 b. Submittal Date
 c. Name of Architect
 d. Name of Engineer
 e. Name of General Contractor or Construction Manager
 f. Name of Sub-Contractor
 g. Name of firm or entity that prepared the submittal
 h. Unique Submittal Number
 i. Type of Submittal
 j. Specification Section
 k. Name or Mark of equipment or material and detail or drawings reference.

2. All Submittal with the exception of color charts or material samples shall be electronically transmitted PDFs.

D. Submittal Requirements
1. Submittals shall be complete, clearly show item used, size, dimensions, capacity, rough in, etc., as required for complete check and installation. Manufacturer’s literature showing more than one item shall be clearly marked as to which item is being furnished or it will be rejected and returned without review.
2. Each submittal shall be thoroughly checked by the Contractor for compliance with the Contract Document requirements, accuracy of dimensions, relationship to the work of other trades, and conformance with sound, safe practices as to erection and installation. Each submittal shall then bear a stamp evidencing such checking and shall show corrections made, if any. Submittals requiring extensive corrections shall be revised before submission. Each submittal not stamped and signed by the Contractor evidencing such checking will be rejected and returned without review.

3. On each submittal, clearly indicate deviations from requirements in the Contract Documents, including minor variations and limitations; include relevant additional information and revisions, other than those requested on previous submittals. Indicate by highlighting on each submittal or noting on attached separate sheet.

4. Review of the shop drawings and literature by the engineer shall not relieve the contractor for responsibility for deviations for the drawings or specifications, nor shall it relieve the contractor from responsibility for errors in the shop drawings or literature. It is the responsibility of the contractor to provide materials and equipment which meet the specifications and job requirements.

1.14 OPERATION AND MAINTENANCE MANUALS

A. Operation and Maintenance Manuals (O&M Manuals) shall contain:
1. Names and contact information for the Project Architect, Project Engineer.
2. Names and contact information for the General Contractor or Construction Manager.
3. Names and contact information for sub-contractors.
4. Installation, maintenance and operating instructions for each piece of equipment.
5. Parts lists
6. Wiring Diagrams
7. Equipment Start-up and inspection certificates
8. Test and Balance Reports
9. Commissioning Reports
10. Copies of Equipment Warranties
11. Copies of Submittals
12. Record Drawings.

B. Prior to substantial completion submit an electronic copy of the O&M manual in PDF format to the Architect, Engineer and Owner for Review and approval. The PDF shall be one file with an index and hyperlinks to each section. Individual bound PDFs without automated navigation will be rejected.

C. Prior to final payment a final electronic copy of the O&M manual on an archival quality DVD as well as two printed copies shall be furnished to the owner. Printed copies shall have commercial quality 8-1/2” x 11” 3-ring binders with tabbed dividers for each section.

1.15 AS-BUILT RECORD DRAWINGS

A. The Contractor shall furnish to the Owner and Architect/Engineer a marked print showing the location of all concealed or underground pipe or conduit runs and other equipment installed
other than as shown on the drawings. Dimension underground lines from established building
lines. Indicate all installed pull boxes in conduit runs.

B. The Contractor shall furnish to the Architect/Engineer a marked print showing the location of
all mechanical equipment, plumbing fixtures, piping, ductwork, diffusers, grilles, etc. The
location of any item which deviates from the bid documents shall be accurately drawn and
dimensioned.

C. All underground piping and ductwork shall be dimensioned from nearest column and/or exterior
walls. The location of all maintenance related items such as duct access doors, fire dampers,
isolation valves, filters, etc., shall be highlighted on as built drawing.

1.16 PLACING SYSTEM INTO OPERATION

A. Prior to starting of equipment the Mechanical of Plumbing Contractor shall thoroughly inspect
the installation and any work completed by other trades and subcontractors to verify compliance
with the contract documents.

B. Start-up of all HVAC equipment shall be completed by factory trained representatives. At the
completion of start-up, the factory representative shall submit to the architect, engineer, and
commissioning agent a start-up report that indicates any problems encountered, potential
problems including installation issues, adjustments made or required to be made to ensure
proper operation. Any installation deficiencies identified shall be corrected at no additional cost
to the owner.

1.17 OWNER TRAINING

A. General
1. The system training is intended to familiarize the Owner’s operating and maintenance
staff with all systems requiring maintenance. Training is to be provided after the systems
are in place and operational, after issues noted during commissioning have been resolved,
and before final acceptance.
2. Provide second set of training sessions for automatic control systems about 6-9 months
after the first sessions.

B. Systems Requiring Training
1. All mechanical, electrical, safety, standby, and automatic control systems in the project,
and other systems specified elsewhere to have training.

C. Attendance:
1. Training is to be provided by contractor’s representatives that are familiar with the
system’s operation and maintenance requirements. Individual training sessions
(modules) are to provided for each type or group of systems, separated roughly by trade
group that will be performing maintenance on the system. The trades groups and systems
typically requiring training are:
 a. HVAC & Refrigeration (Hydronic and or steam heating systems, refrigeration,
 chilled water, packaged cooling systems, fan systems, controls)
 b. Plumbers (Domestic and Sanitary Plumbing, gas-fired heating, miscellaneous
 process piping systems)
D. Schedule:
1. Duplicate training sessions are to be provided for each training module, so that Owner’s operating personnel can be split into two groups during training. Duplicate training sessions to be scheduled on different days. Length of training sessions will be determined by scope of training indicated below, and as coordinated with Owner after draft copy of training documents have been reviewed.

E. Training Documentation:
1. Contractor to submit draft copy of agenda and training documents to Owner for review at least two weeks prior to training date.
2. Provide a copy of the following items for each person that will be attending the training sessions. Coordinate required number with the Owner.
 a. Training agenda.
 b. Summary of new systems and existing systems affected by this project.
 c. Summary of work performed under this project.
 d. Control system drawings and sequences of operation.
 e. List of important maintenance and trouble-shooting operations for all systems.
3. Provide minimum of 2 copies of following items:
 a. Contract documents including all drawings, specifications, addendums, and change orders.

F. Training Sessions:
1. Assemble at location to be determined by the Owner.
2. Distribute training documentation as indicated above.
3. Provide classroom style training if required for orientation, discussion of new systems and existing systems affected by this project, and other issues appropriate for a classroom format.
4. Visit site and review locations, and perform detailed review of operation and maintenance requirements for current systems.

1.18 WARRANTY

A. The Contractor shall guarantee that all materials and labor installed are new and of first quality and that any material or labor found defective shall be replaced without cost to the Owner within one (1) year after substantial completion of the Contract or one (1) full season of heating and cooling operation, whichever is the greater. The guarantee shall list the date of the beginning of the one (1) year period, which shall be the date that the Substantial Completion Certificate is issued.

B. Any damage to the building, caused by defective work or material of the Contractor within the above-mentioned period, shall be satisfactorily repaired without cost to the Owner.

C. The guarantee does not include maintenance of equipment. The Owner shall accept full responsibility for proper operation and maintenance of equipment immediately upon substantial completion and occupancy of the building.

D. Final acceptance by the Owner will not occur until all final operating instructions has been reviewed and accepted by the owner and Owner’s Maintenance Staff have been thoroughly indoctrinated in the operation of all mechanical equipment by the Contractor.
E. No equipment installed as part of this project shall be used for temporary heat during construction.

END OF SECTION 220000
SECTION 220500 - GENERAL PROVISION OF PLUMBING AND HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes the following:
 1. Expansion Fittings and Loops for Piping Systems
 2. Alignment Guides and Anchors
 3. Dielectric Fittings
 4. Pipe Sleeves
 5. Sleeve Seals Systems for Piping
 6. Silicone Sealant
 7. Escutcheons for Piping
 8. Floor Plates

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for Submittal requirements.

B. Delegated Design: Design expansion loops, guides, supports and anchors. The design shall be completed and stamped by a qualified professional engineer. The design shall show the arrangement of components, location of installation, and all materials required.

1.3 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

1.4 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

PART 2 - PRODUCTS

2.1 EXPANSION FITTINGS AND LOOPS FOR PIPING SYSTEMS
A. Rubber Union Connector Expansion Joints

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Mason Industries, Inc.
 b. MetraFlex.
 c. Twin City Hose.

3. Minimum Pressure Rating: 150 psig at 170 deg F, unless otherwise indicated.

4. End Connections for NPS 2 and Smaller: Threaded.

B. Flexible-Hose Packless Expansion Joints:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Mason Industries, Inc.
 b. Metraflex Company (The).
 c. Twin City Hose Inc.

2. Description: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.

3. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.

4. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with solder-joint end connections.
 a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.

5. Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4: Copper-alloy fittings with threaded end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.

 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F and 325 psig at 600 deg F ratings.

7. Expansion Joints for Steel Piping NPS 2-1/2 to NPS 6: Carbon-steel fittings with flanged end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.
2.2 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides

1. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding slider for bolting to pipe.

B. Anchor Materials:

1. Steel Shapes and Plates: ASTM A 36/A 36M.
2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.

5. Chemical Fasteners: Insert-type stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

2.3 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Dielectric Unions are not allowed.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Capitol Manufacturing Company; member of the Phoenix Forge Group.
 b. Central Plastics Company.
 c. Matco-Norca.
 d. Watts; a division of Watts Water Technologies, Inc.
e. Wilkins; a Zurn company.

3. Factory-fabricated, bolted, companion-flange assembly.
4. Pressure Rating: 175 psig (1200 kPa).
5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
2. Nonconducting materials for field assembly of companion flanges.
4. Gasket: Neoprene or phenolic.
5. Bolt Sleeves: Phenolic or polyethylene.

E. PEX Dielectric Separator:
1. Description: 6” long section of pex piping shall be installed between dis-similar piping materials.
2. Pipe Material: PEX plastic according to ASTM F 876.
3. Oxygen Barrier: O2 permeability <= 0.32 mg/m2/day in accordance with DIN 4726.
5. Pressure/Temperature Rating: Minimum 100 psig and 180 deg F.

2.4 SLEEVES

A. Galvanized-Steel Sheet Pipe Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.

2.5 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. GPT; an EnPro Industries company.
 4. Metraflex Company (The).

B. Description:
1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
2. Designed to form a hydrostatic seal of 20-psig (137-kPa) minimum.
3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
4. Pressure Plates: Composite plastic.
5. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.6 SILICONE SEALANTS

A. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

2.7 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.8 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 EXPANSION JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.
B. Install expansion joint per the manufacture’s written instructions.

3.2 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.
B. Install two guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four (4) pipe diameters from expansion joint.
C. Attach guides to pipe, and secure guides to building structure.
D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

E. Anchor Attachments:

2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24; U bolts bolted to anchor.

F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.

1. Anchor Attachment to Steel Structural Members: Attach by welding.
2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

3.3 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Install Dielectric fittings per the manufacturers written instructions.

C. Install pipe hangers immediately upstream and downstream of dielectric fittings.

D. Install isolation valves immediately upstream and downstream of dielectric fittings.

E. Dielectric Fittings for NPS 2 and Smaller: PEX Dielectric Separator.

F. Dielectric Fittings for NPS 2-1/2 and Larger: Dielectric Flange.

3.4 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
2. Using silicone sealant, seal space outside of sleeves in slabs and walls without sleeve-seal system.

D. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke-Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.5 SLEEVE-SEALS SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls at piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal-system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.6 SLEEVE-SEAL SCHEDULE

A. Use sleeve and sleeve-seals for the following piping-penetration applications:
1. Exterior Concrete Walls Above Grade: Galvanized-Steel Sheet Pipe Sleeves with Sleeve-seal system
2. Exterior Concrete Walls Below Grade: Galvanized-Steel Sheet Pipe Sleeves with Sleeve-seal system
3. Interior or Exterior Concrete Slabs-on-Grade: Sleeve not required.
4. Interior Concrete Slabs Above Grade: Galvanized-Steel Sheet Pipe Sleeves with Silicone Sealant or Fire calk
5. Interior Partitions: Sleeve not require – fire calk penetrations of rated assemblies.

3.7 ESCUTCHEON INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

3.8 FLOOR PLATE INSTALLATION

A. Install floor plates for piping penetrations of equipment-room floors.

B. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

END OF SECTION 220500
SECTION 220519 - METERS AND GAGES FOR PLUMBING AND HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Thermowells.
 3. Dial-type pressure gages.
 4. Gage attachments.

1.3 SUBMITTALS

A. See Section 220000 “General Requirements for Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ashcroft Inc.
 3. Tel-Tru Manufacturing Company.
 4. Trerice, H. O. Co.
 5. Prior Approved Equal

C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.

F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.
G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.

H. Window: Plain glass.

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES or CSA.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

A. Direct-Mounted and Remote, Metal-Case, Dial-Type Pressure Gages:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ashcroft Inc.
 b. Miljoco Corporation.
 c. Tel-Tru Manufacturing Company.
 d. Trerice, H. O. Co.
 e. Prior Approved Equal
 3. Case: Liquid-filled, Sealed type(s); 4-1/2-inch nominal diameter.
 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Ring: Metal.
11. Accuracy: Grade B, plus or minus 2 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston or porous-metal-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending a minimum of 2 inches into fluid and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install remote-mounted pressure gages on panel.

I. Install valve and snubber in piping for each pressure gage for fluids.

J. Install thermometers in the following locations:

1. Inlet and outlet of each domestic water heater.
2. Inlet and outlet of each domestic hot-water storage tank.
3. Two inlets and two outlets of each heat pump.
4. Inlet and outlet of each hydronic coil in air-handling units.
5. Inlet and outlet of each thermal-storage tank.
6. Inlet and outlet of each refrigeration condenser.
K. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Inlet and outlet of each pressure-reducing valve.
 3. Suction and discharge of each pump.

L. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

M. Adjust faces of meters and gages to proper angle for best visibility.

3.2 THERMOMETER SCALE-RANGE SCHEDULE

A. Domestic Cold-Water Piping: 0 to 150 deg F.
B. Domestic Hot-Water Piping: 50 to 200 deg F.
C. Heating Water Piping: 50 to 200 deg F.
D. Chilled Water Piping: 0 to 150 deg F.
E. Condenser Water Piping: 0 to 150 F.
F. Heat Pump Water Piping: 0 to 150 deg F.

3.3 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Water Service Piping: 0 to 150 psi.
B. Domestic Water Piping: 0 to 100 psi.
C. Heating Water Piping: 0 to 150 psi.
D. Chilled Water Piping: 0 to 150 psi.
E. Condenser Water Piping: 0 to 150 psi.
F. Heat Pump Water Piping: 0 to 150 psi.
G. Campus Steam: 0 to 150 psi.
H. Building Steam: 0 to 100 psi.

END OF SECTION 220519
SECTION 220523 - GENERAL DUTY VALVES FOR PLUMBING AND HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Ball Valves
 2. Butterfly Valves
 3. Bronze Gate Valves
 4. Iron Gate Valve
 5. Bronze Check Valves
 6. Iron Swing Check Valves
 7. Iron Silent Check Valves

1.2 SUBMITTALS

A. See Section 220000 “General Requirements for Pluming and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded-end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 5. ASME B31.1 for power piping valves.
 6. ASME B31.9 for building services piping valves.

C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

D. Refer to valve schedule articles for applications of valves.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.
G. Valves in Insulated Piping:

1. Include 2-inch (50-mm) stem extensions.
2. Extended operating handle of nonthermal-conductive material, and protective sleeves that allow operation of valves without breaking the vapor seals or disturbing insulation.
3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES, TWO-PIECE WITH FULL PORT AND STAINLESS-STEEL TRIM:

A. Manufacturers: Provide products from one of the following:
 1. Apollo
 2. Nibco
 3. Milwaukee
 4. Watts

B. Description:
 2. SWP Rating: 150 psig.
 3. CWP Rating: 600 psig.
 6. Ends: Solder or Threaded.
 7. Seats: PTFE.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES WITH ALUMINUM-BRONZE DISC:

A. Manufacturers: Provide products from one of the following:
 1. Apollo
 2. Nibco
 3. Dezurik
 4. Watts

B. Description:
 1. Standard: MSS SP-67, Type I.
 2. CWP Rating: 150 psig.
 3. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 5. Seat: EPDM.
 6. Stem: One- or two-piece stainless steel.

2.4 BRONZE GATE VALVES, NRS, CLASS 150:
A. Manufacturers: Provide products from one of the following:
1. Apollo
2. Nibco
3. Crane
4. Milwaukee

B. Description:
1. Standard: MSS SP-80, Type 1.
2. CWP Rating: 300 psig.
4. Ends: Threaded.
5. Stem: Bronze.
7. Packing: Asbestos free.
8. Handwheel: Malleable iron, bronze, or aluminum.

2.5 IRON GATE VALVES, NRS, CLASS 125:

A. Manufacturers: Provide product from one of the following:
1. Apollo
2. Crane
3. Nibco
4. Watts

B. Description:
1. Standard: MSS SP-70, Type I.
2. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
5. Trim: Bronze.
7. Packing and Gasket: Asbestos free.

2.6 BRONZE SWING CHECK VALVES WITH BRONZE DISC, CLASS 125:

A. Manufacturer: Provide products from one of the following:
1. Apollo
2. Crane
3. Nibco
4. Watts

B. Description:
1. Standard: MSS SP-80, Type 3.
2. CWP Rating: 200 psig (1380 kPa).
5. Ends: Threaded or soldered. See valve schedule articles.
2.7 IRON SWING CHECK VALVES WITH METAL SEATS, CLASS 125:

A. Manufacturers: Provide products from one of the following:
 1. Apollo
 2. Crane
 3. Milwaukee
 4. Mueller

B. Description:
 1. Standard: MSS SP-71, Type I.
 2. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 5. Ends: Flanged.
 6. Trim: Bronze.

2.8 IRON SILENT CHECK WITH METAL SEATS, CLASS 125:

A. Manufacturers: Provide products from one of the following:
 1. Nibco
 2. Metraflex
 3. Watts
 4. Dezurik

B. Description:
 1. Standard: MSS SP-125
 2. NPS 2-1/2 to NPS 12, CWP Rating: 200 psi
 4. Seat: ASTM B584 Bronze Alloy
 5. Disc: ASTM B584 Bronze Alloy
 6. Spring: Stainless Steel Type 316, ASTM A 313
 7. Ends: Flanged
 8. Trim: Stainless Steel

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.
3.2 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.

B. Select valves with the following end connections:
 1. For Copper Tubing, NPS ½” – 2” and Smaller: solder ends.
 2. For Steel Piping, NPS 2” and Smaller: Threaded ends.
 3. For Steel Piping NPS 2-1/2” and larger: Flanged or Grooved ends.

3.3 VALVE SCHEDULE

A. Domestic Water ½” – 2” NPS: Ball Valve, Solder or Threaded Ends
B. Domestic Water 2-1/2” NPS and Larger: Butterfly Valve, Lug Type
C. Steam ½” – 2” NPS: Bronze Gate Valve, Threaded Ends
D. Steam 2-1/2” NPS and Larger: Iron Body Gate Valve, Flanged
E. Steam Condensate ½” – 2” NPS: Bronze Gate Valve, Threaded Ends
F. Steam Condensate 2-1/2” NPS and Larger: Iron Body Gate Valve, Flanged
G. Heating Water ½” – 2” NPS: Ball Valve, Solder Ends
H. Heating Water 2-1/2” NPS and Larger: Butterfly Valve, Lug Type
I. Heat Pump Water ½” – 2” NPS: Ball Valve, Solder Ends
J. Heat Pump Water 2-1/2” NPS and Larger: Butterfly Valve, Lug Type
K. Condenser Water 2-1/2” NPS and Larger: Butterfly Valve, Lug Type

3.4 CHECK VALVE SCHEDULE

A. Pump Discharge ½” – 2” NPS: Bronze Swing Check, Threaded or Solder Ends
B. Pump Discharge 2-1/2” NPS and Larger: Iron Body Silent Check, Flanged Ends
C. Steam Condensate Piping ½” – 2” NPS: Bronze Swing Check, Threaded Ends
D. Steam Condensate Piping 2-1/2” NPS and Larger: Iron Body Swing Check, Flanged

END OF SECTION 220523
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING AND HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Thermal-hanger shield inserts.
4. Fastener systems.
5. Pipe positioning systems.
6. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment.

1.3 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1.4 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pre-galvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099113 "Exterior Painting.", Section 099123 "Interior Painting.", Section 099600 "High-Performance Coatings."

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.
I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.

8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

Q. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
SECTION 220548 - VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Open-spring isolators.
5. Housed-spring isolators.
6. Restrained-spring isolators.
8. Pipe-riser resilient supports.
9. Resilient pipe guides.
10. Elastomeric hangers.
11. Spring hangers.
12. Snubbers.
13. Restraint channel bracings.
15. Seismic-restraint accessories.
16. Mechanical anchor bolts.

1.2 ACTION SUBMITTALS

A. See Section 220000 “General Requirements for Plumbing and HVAC” for submittal requirements.

B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.

1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or
preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

Consult the project’s structural engineer prior to editing Part 2.1

2.1 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:

1. Site Class as Defined in the IBC: [A] [B] [C] [D] [E] [F].
2. Assigned Seismic Use Group or Building Category as Defined in the IBC: [I] [II] [III].
 a. Component Importance Factor: [1.0] [1.5] **<Insert value>**.
 b. Component Response Modification Factor: [1.5] [2.5] [3.5] [5.0] **<Insert value>**.
 c. Component Amplification Factor: [1.0] [2.5] **<Insert value>**.

3. Design Spectral Response Acceleration at Short Periods (0.2 Second): **<Insert number>**.
4. Design Spectral Response Acceleration at 1.0-Second Period: **<Insert number>**.

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
2. Size: Factory or field cut to match requirements of supported equipment.
3. Pad Material: Oil and water resistant with elastomeric properties.
4. Surface Pattern: Smooth, Ribbed or Waffle pattern.
5. Infused nonwoven cotton or synthetic fibers.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.

2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.
2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:
1. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:
1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.6 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with attachment and leveling bolt.

2.7 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
1. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
a. Base with holes for bolting to structure with an elastomeric isolator pad attached to
the underside. Bases shall limit floor load to 500 psig.
b. Top plate with threaded mounting holes.
c. Internal leveling bolt that acts as blocking during installation.

2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring
 at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without
deformation or failure.

2.8 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part
Telescoping Housing:
 1. Two-Part Telescoping Housing: A steel top and bottom frame separated by an
 elastomeric material and enclosing the spring isolators. Housings are equipped with
 adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad
 attached to the underside. Bases shall limit floor load to 500 psig.
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level
 equipment.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring
 at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without
 deformation or failure.

2.9 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a
minimum 1/2-inch- thick neoprene.
 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical
 travel in both directions.
 2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in
 all directions.

2.10 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement
separated by a minimum 1/2-inch- thick neoprene.
1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.11 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.12 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.13 SNUBBERS

A. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 3. Maximum 1/4-inch air gap, and minimum 1/4-inch thick resilient cushion.
2.14 RESTRAINT CHANNEL BRACINGS
A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.15 RESTRAINT CABLES
A. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.16 SEISMIC-RESTRAINT ACCESSORIES
A. Hanger-Rod Stiffener: Reinforcing steel angle clamped to hanger rod.
B. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
C. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
D. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 APPLICATIONS
A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.
3.2 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

D. Equipment Restraints:
 1. Install seismic snubbers on plumbing equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

E. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

F. Install cables so they do not bend across edges of adjacent equipment or building structure.

G. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

H. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

I. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

J. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

K. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Set anchors to manufacturer's recommended torque, using a torque wrench.
5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 221116 "Domestic Water Piping" for piping flexible connections.

3.4 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 220548
SECTION 220553 - IDENTIFICATION FOR PLUMBING AND HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
2. Letter Color: White
3. Background Color: Black
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch For name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: White
C. Background Color: Red

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

3.1 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.2 PIPE LABEL INSTALLATION

A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

B. Pipe Label Color Schedule:

1. Compressed Air Piping:
 a. Background: Blue
 b. Letter Colors: White

2. Natural Gas Piping:
 a. Background: Yellow
 b. Letters: Black:

3. Domestic Water Piping:
 a. Background: Green
 b. Letter Colors: White

4. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Black
 b. Letter Color: White

5. Heating Water Piping:
 a. Background Color: Green
 b. Letter Color: White

6. Heat Pump Water Piping:
 a. Background Color: Green
 b. Letter Color: White

7. Condenser Water Piping
 a. Background Color: Green
 b. Letter Color: White

END OF SECTION 220553
PART 1 - GENERAL

1.1 SUMMARY
A. Section includes insulating requirements for equipment, piping:

1.2 SUBMITTALS
A. See section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
A. Comply with requirements in "Equipment Insulation Schedule" "Piping Insulation Schedule," and “Duct Insulation Schedule” articles for where insulating materials shall be applied.
B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. K-Flex USA.

G. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

H. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. K-Flex USA.

I. Mineral-Fiber, Preformed Pipe Insulation:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Owens Corning.

2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

J. Thermal Insulating Wool:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Owens Corning
 b. Prior Approved Equal

2. Type I, 1000 Deg F Materials: Inorganic glass fibers bonded with thermostetting resin. Comply with ASTM C553, TIW Type I.

2.2 INSULATING CEMENTS

2.3 ADHESIVES
 A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
 B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 E. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS
 A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 SEALANTS
 A. Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.

B. ASJ Flashing Sealants, and PVC Jacket Flashing Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. P.I.C. Plastics, Inc.
 c. Proto Corporation.
 d. Speedline Corporation.
2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
b. ITW Insulation Systems; Illinois Tool Works, Inc.
c. RPR Products, Inc.

2. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.

3. Finish and thickness are indicated in field-applied jacket schedules.

4. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper or 2.5-mil-thick polysulyn.

5. Factory-Fabricated Fitting Covers:
 a. Same material, finish, and thickness as jacket.
 b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 c. Tee covers.
 d. Flange and union covers.
 e. End caps.
 f. Beveled collars.
 g. Valve covers.
 h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

D. Underground Direct-Buried Jacket: 125-mil-thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Pittsburgh Corning Corporation.
 b. Polyguard Products, Inc.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Width: 2 inches.
 2. Thickness: 6 mils.
 3. Adhesion: 64 ounces force/inch in width.
 4. Elongation: 500 percent.
 5. Tensile Strength: 18 lbf/inch in width.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
1. Width: 2 inches.
2. Thickness: 3.7 mils.
3. Adhesion: 100 ounces force/inch in width.
4. Elongation: 5 percent.
5. Tensile Strength: 34 lbf/inch in width.

2.9 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.

B. Insulation Pins and Hangers:
 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
 a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, stainless steel.

2.10 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

2.11 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Plumberex Specialty Products, Inc.
b. Truebro.
c. Zurn Industries, LLC.

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Truebro.
 b. Zurn Industries, LLC.

2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item as specified in insulation schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:
1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

Q. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

A. Mineral-Fiber, Pipe, and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 d. Do not over compress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch pre-stressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch pre-stressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
7. Stagger joints between insulation layers at least 3 inches.
8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
2. Seal longitudinal seams and end joints.

C. Insulation Installation on Pumps:

1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
2. Fabricate boxes from galvanized steel, at least 0.050 inch thick.
3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches O.C.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Fittings, Joints and Couplings:
1. All piping fittings shall be insulated by filling the total void over all fittings between straight runs of pipe insulation with thermal insulating wool, forming a uniform insulation thickness equal to, or exceeding, the adjacent pipe insulation.
2. Finish all insulated pipe fittings by applying PVC fitting covers overlapping the adjacent pipe insulation outer covering.
3. For hot service piping (105°F and above), secure the PVC fitting covers stainless steel tack fasteners.
4. For cold service piping (60°F and below), seal the ends of the adjacent pipe insulation with vapor barrier mastic, ensure that the PVC fitting cover overlaps the adjacent pipe insulation jacket by 2” minimum and secure PVC fitting covers to adjacent pipe insulation with 2” wide PVC Tape.
5. Fitting covers for grooved piping systems shall be the type specifically manufactured for grooved piping systems.

3.7 INSULATION INSTALLATION ON VALVES AND PIPE SPECIALTIES
A. Install removable insulation covers on all valves and specialties 1-1/2” and larger.

1. Valves, Strainers, and Unions 1-1/2 – 2 NPS: “No Sweat” re-usable valve covers or approved equal product.
2. Valves, Strainers and Unions 2-1/2” and larger use removable insulation jackets from Thermax or prior approved manufacturer.

3.8 FIELD-APPLIED JACKET INSTALLATION
A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

C. Where underground direct-buried jacket are indicated, install per the manufacturers instructions.

3.9 FINISHES

A. Insulation with ASJ or Other Paintable Jacket Material and where Required: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Do not field paint aluminum or PVC jacketing.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
3.11 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses for Plumbing and HVAC equipment are identified in the table below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>System Temp</th>
<th>Insulation Type</th>
<th>Insulation Conductivity ((\text{Btu} \times \text{in}) / (\text{hr} \times \text{ft}^2 \times \text{F}))</th>
<th>Insulation Thickness (in)</th>
<th>Vapor Barrier</th>
<th>Factory Installed Jacket Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanks</td>
<td>Below 60F and above 105F</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>2</td>
<td>Cold Service >60F only</td>
<td>ASJ</td>
</tr>
<tr>
<td>Pumps</td>
<td>Below 60F and above 105F</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>2</td>
<td>Cold Service >60F only</td>
<td>ASJ</td>
</tr>
<tr>
<td>Air Separators</td>
<td>Below 60F and above 105F</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>2</td>
<td>Cold Service >60F only</td>
<td>ASJ</td>
</tr>
<tr>
<td>Heat Exchangers</td>
<td>Below 60F and above 105F</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>2</td>
<td>Cold Service >60F only</td>
<td>ASJ</td>
</tr>
<tr>
<td>Roof Drain Sumps</td>
<td>NA</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>1</td>
<td>No</td>
<td>ASJ</td>
</tr>
</tbody>
</table>

3.12 PIPING INSULATION SCHEDULE

A. Insulation materials and thicknesses for Plumbing and HVAC piping are identified in the table below. If more than one material is listed for an application, selection from materials listed is at the Contractor's option.

<table>
<thead>
<tr>
<th>Application</th>
<th>Nominal Pipe Size</th>
<th>Insulation Type</th>
<th>Insulation Conductivity ((\text{Btu} \times \text{in}) / (\text{hr} \times \text{ft}^2 \times \text{F}))</th>
<th>Insulation Thickness (in)</th>
<th>Vapor Barrier</th>
<th>Factory Installed Jacket Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Cold Water Piping</td>
<td>All</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>1</td>
<td>Yes</td>
<td>ASJ</td>
</tr>
<tr>
<td>Domestic Hot Water and Recirc.</td>
<td>All</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>1</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Plumbing Vents</td>
<td>All</td>
<td>Glass Fiber or Flexible</td>
<td>0.27</td>
<td>1</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>System</td>
<td>Diameter/Pressure</td>
<td>Insulation Material</td>
<td>Thickness (in)</td>
<td>Expansion Joint</td>
<td>ASJ</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Roof Drain Piping</td>
<td>All</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>1</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Hydronic Systems Above 105°F</td>
<td>¾-1-1/2 NPS</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>1</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Hydronic Systems Above 105°F</td>
<td>2 – 8 NPS</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>1-1/2</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Hydronic Systems Below 60°F</td>
<td>1/2-1-1/2 NPS</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>1</td>
<td>Yes</td>
<td>ASJ</td>
</tr>
<tr>
<td>Hydronic Systems Below 60°F</td>
<td>2–8 NPS</td>
<td>Glass Fiber or Flexible Elastomeric</td>
<td>0.27</td>
<td>1-1/2</td>
<td>Yes</td>
<td>ASJ</td>
</tr>
<tr>
<td>Low Pressure Steam (up to 15 psi)</td>
<td>½-4 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>2-1/2</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Low Pressure Steam (up to 15 psig)</td>
<td>6 – 12 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>3</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Medium Pressure Steam (16-75 psig)</td>
<td>1/2 – 1 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>3</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Medium Pressure Steam (16-75 psig)</td>
<td>1-1/2 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>4</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Medium Pressure Steam (16-75 psig)</td>
<td>2 – 12 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>4-1/2</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Gravity Steam Condensate</td>
<td>1/2 - 1-1/2 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>1-1/2</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Gravity Steam Condensate</td>
<td>2-12 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>2</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Pumped Steam Condensate</td>
<td>½ - 1-1/2 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>1-1/2</td>
<td>No</td>
<td>ASJ</td>
</tr>
<tr>
<td>Pumped</td>
<td>2 – 12 NPS</td>
<td>Glass Fiber</td>
<td>0.27</td>
<td>2</td>
<td>No</td>
<td>ASJ</td>
</tr>
</tbody>
</table>
3.13 FIELD APPLIED JACKETING SCHEDULE

A. Field applied jackets for Plumbing and HVAC piping are identified in the table below. If more than one material is listed for an application, selection from materials listed is at the Contractor's option.

<table>
<thead>
<tr>
<th>Application</th>
<th>Installation Location</th>
<th>Filed Applied Jacketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Water Piping</td>
<td>Indoors</td>
<td>PVC when piping is exposed and within 7ft of the floor.</td>
</tr>
<tr>
<td>Domestic Water Piping</td>
<td>Outdoors</td>
<td>Aluminum Jacket</td>
</tr>
<tr>
<td>Hydronic Piping</td>
<td>Indoors</td>
<td>PVC when piping is exposed and within 7ft of the floor.</td>
</tr>
<tr>
<td>Hydronic Piping</td>
<td>Outdoors</td>
<td>Aluminum Jacket</td>
</tr>
<tr>
<td>Hydronic Piping</td>
<td>Below Grade</td>
<td>Direct-Buried Jacket</td>
</tr>
</tbody>
</table>

END OF SECTION 220716
SECTION 22 08 00 - COMMISSIONING OF PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this section.
 B. The OPR and BOD documentation are included by reference for information only.

1.2 SUMMARY
 A. This section includes commissioning process requirements for Plumbing systems, assemblies, and equipment.
 B. Related Sections:
 1. Division 01 Section 019113 “General Commissioning Requirements” for general commissioning process requirements.

1.3 DESCRIPTION
 A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for the description of commissioning.

1.4 DEFINITIONS
 A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for definitions.

1.5 SUBMITTALS
 A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for CxA’s role.
 B. Refer to Division 01 Section “Submittals” for specific requirements. In addition, provide the following:
 C. Certificates of readiness
 D. Certificates of completion of installation, prestart, and startup activities.
 E. O&M manuals
 F. Test reports
1.6 QUALITY ASSURANCE

A. Test Equipment Calibration Requirements: Contractors will comply with test manufacturer’s calibration procedures and intervals. Recalibrate test instruments immediately after instruments have been repaired resulting from being dropped or damaged. Affix calibration tags to test instruments. Furnish calibration records to CxA upon request.

1.7 COORDINATION

A. Refer to Division 01 Section 0019113 “General Commissioning Requirements” for requirements pertaining to coordination during the commissioning process.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

A. All standard testing equipment required to perform startup, initial checkout and functional performance testing shall be provided by the contractor for the equipment being tested. For example, the plumbing contractor of Division 22 shall ultimately be responsible for all standard testing equipment for the plumbing system in Division 22, except for equipment specific to and used by TAB in their commissioning responsibilities. A sufficient quantity of two-way radios shall be provided by each subcontractor.

B. Special equipment, tools and instruments (specific to a piece of equipment and only available from vendor) required for testing shall be included in the base bid price to the Owner and left on site, except for stand-alone data logging equipment that may be used by the CxA.

C. Proprietary test equipment and software required by any equipment manufacturer for programming and/or start-up, whether specified or not, shall be provided by the manufacturer of the equipment. Manufacturer shall provide the test equipment, demonstrate its use, and assist in the commissioning process as needed. Proprietary test equipment (and software) shall become the property of the Owner upon completion of the commissioning process.

D. Data logging equipment and software required to test equipment will be provided by the CxA, but shall not become the property of the Owner.

E. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5°F and a resolution of + or - 0.1°F. Pressure sensors shall have an accuracy of + or - 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year.

PART 3 - EXECUTION

3.1 GENERAL DOCUMENTATION REQUIREMENTS

A. With assistance from the installing contractors, the CxA will prepare Pre-Functional Checklists for all commissioned components, equipment, and systems.
B. Red-lined Drawings:
1. The contractor will verify all equipment, systems, instrumentation, wiring and components are shown correctly on red-lined drawings.
2. Preliminary red-lined drawings must be made available to the Commissioning Team for use prior to the start of Functional Performance Testing.
3. Changes, as a result of Functional Testing, must be incorporated into the final as-built drawings, which will be created from the red-lined drawings.
4. The contracted party, as defined in the Contract Documents will create the as-built drawings.

C. Operation and Maintenance Data:
1. Contractor will provide a copy of O&M literature within 45 days of each submittal acceptance for use during the commissioning process for all commissioned equipment and systems.
2. The CxA will review the O&M literature once for conformance to project requirements.
3. The CxA will receive a copy of the final approved O&M literature once corrections have been mad by the contractor.

D. Demonstration and Training:
1. Contractor will provide demonstration and training as required by the specifications.
2. A complete training plan and schedule must be submitted by the contractor to the CxA four weeks (4) prior to any training.
3. A training agenda for each training session must be submitted to the CxA one (1) week prior the training session.
4. The CxA shall be notified at least 72 hours in advance of scheduled tests so that testing may be observed by the CxA and Owner's representative. A copy of the test record shall be provided to the CxA, Owner, and Architect.
5. Engage a Factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specific equipment.
6. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, trouble shooting, servicing, and maintaining equipment.
7. Review data in O&M Manuals.

E. Systems manual requirements:
1. The Systems Manual is intended to be a usable information resource containing all of the information related to the systems, assemblies, and Commissioning Process in one place with indexes and cross references.
2. The GC shall include final approved versions of the following information for the Systems Manual:
 a. As-Built System Schematics
 b. Verified Record Drawings
 c. Test Results (not otherwise included in Cx Record)
 d. Periodic Maintenance Information for computer maintenance management system
 e. Recommendations for recalibration frequency of sensors and actuators
 f. A list of contractors, subcontractors, suppliers, architects, and engineers involved in the project along with their contact information
3.2 CONTRACTOR’S RESPONSIBILITIES

A. Perform commissioning tests at the direction of the CxA.

B. Attend construction phase controls coordination meetings.

C. Attend domestic water balancing review and coordination meetings.

D. Participate in Plumbing systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.

E. Provide information requested by the CxA for final commissioning documentation.

F. Include requirements for submittal data, operation and maintenance data, and training in each purchase order or sub-contract written.

G. Prepare preliminary schedule for Plumbing system orientations and inspections, operation and maintenance manual submissions, training sessions, pipe and duct system testing, flushing and cleaning, equipment start-up, testing and balancing and task completion for owner. Distribute preliminary schedule to commissioning team members.

H. Update schedule as required throughout the construction period.

I. During the startup and initial checkout process, execute the related portions of the prefunctional checklists for all commissioned equipment.

J. Assist the CxA in all verification and functional performance tests.

K. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

L. Gather operation and maintenance literature on all equipment, and assemble in binders as required by the specifications. Submit to CxA (45) days after submittal acceptance.

M. Coordinate with the CxA to provide (48) hour advance notice so that the witnessing of equipment and system start-up and testing can begin.

N. Notify the CxA a minimum of (2) weeks in advance of the time for start of the balancing work. Attend the initial balancing meeting for review of the balancing procedures.

O. Participate in, and schedule vendors and contractors to participate in the training sessions.

g. Training Records, Information on training provided, attendees list, and any ongoing training

3. This information shall be organized and arranged by building system, such as fire alarm, chilled water, heating hot water, etc.

4. Information should be provided in an electronic version to the extent possible. Legible, scanned images are acceptable for non-electronic documentation to facilitate this deliverable.
P. Provide written notification to the CM/GC and CxA that the following work has been completed in accordance with the contract documents, and that the equipment, systems, and sub-system are operating as required.
 1. Plumbing equipment including domestic water heaters, pumps, plumbing fixtures, and all other equipment furnished under this Division.
 2. Gas piping, sanitary waste and vent piping, storm drainage piping, sump pumps and automatic sprinkler system.
 3. Fire stopping in fire rated construction, including caulking, gasketing and sealing of smoke barriers.

Q. The equipment supplier shall document the performance of his equipment.

R. Provide a complete set of red-lined drawings to the CxA prior to the start of Functional Performance Testing.

S. Balance Contractor
 1. Attend initial commissioning coordination meeting scheduled by the CxA.
 2. Submit the site specific balancing plan to the CxA and Design Professional for review and acceptance.
 3. Attend the balancing review meeting scheduled by the CxA. Be prepared to discuss the procedures that shall be followed in balancing the Plumbing system.
 4. At the completion of the balancing work, and the submittal of the final balancing report, notify the Plumbing contractor and the CM/GC.
 5. At the completion of balancing work, and the submittal of the final balancing report, notify the Plumbing Contractor and the CM/GC.
 6. Participate in verification of the balancing report, which will consist of repeating measurements contained in the balancing reports. Assist in diagnostic purposes when directed.

T. Provide training of the Owner’s operating staff using expert qualified personnel, as specified.

U. Equipment Suppliers
 1. Provide all requested submittal data, including detailed start-up procedures and specific responsibilities of the Owner, to keep warranties in force.
 2. Assist in equipment testing per agreements with contractors.
 3. Provide information requested by CxA regarding equipment sequence of operation and testing procedures.

V. Refer to Division 01 Section 019113 “General Commissioning Requirements” for additional contractor responsibilities.

3.3 OWNER’S RESPONSIBILITIES

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for Owner’s Responsibilities.

3.4 DESIGN PROFESSIONAL’S RESPONSIBILITIES

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for Design Professional’s Responsibilities.
3.5 CxA'S RESPONSIBILITIES

A. Refer to Division 01 Section 019113 "General Commissioning Requirements" for CxA's Responsibilities.

3.6 TESTING PREPARATION

A. Certify in writing to the CxA that Plumbing systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.

B. Certify in writing to the CxA that Plumbing instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.

C. Certify in writing that balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.

D. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).

E. Inspect and verify the position of each device and interlock identified on checklists.

F. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.

G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.7 DOMESTIC WATER BALANCING VERIFICATION

A. Prior to performance of Domestic Water Balancing work, provide copies of reports, sample forms, checklists, and certificates to the CxA.

B. Notify the CxA at least ten (10) days in advance of testing and balancing Work, and provide access for the CxA to witness balancing Work.

C. Provide technicians, instrumentation, and tools to verify testing and balancing of Plumbing systems at the direction of the CxA.

1. The CxA will notify testing and balancing subcontractor ten (10) days in advance of the date of field verification. Notice will not include data points to be verified.

2. The balancing subcontractor shall use the same instruments (by model and serial number) that were used when original data were collected.

3. Failure of an item includes a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final balancing report.

4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.
3.8 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.

B. Scope of Plumbing testing shall include entire Plumbing installation. Testing shall include measuring capacities and effectiveness of operational and control functions.

C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.

D. The CxA along with the Plumbing contractor, balancing subcontractor shall prepare detailed testing plans, procedures, and checklists for Plumbing systems, subsystems, and equipment.

E. Tests will be performed using design conditions whenever possible.

F. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

G. The CxA may direct that set points be altered when simulating conditions is not practical.

H. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.

I. If tests cannot be completed because of a deficiency outside the scope of the Plumbing system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.

J. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.9 PLUMBING SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

A. Equipment Testing and Acceptance Procedures: Testing requirements are specified in individual Division 22 sections. Provide submittals, test data, inspector record, and certifications to the CxA.

B. Plumbing Instrumentation and Control System Testing: Field testing plans and testing requirements are specified in Division 23 Section 230993 "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls." Assist the CxA with preparation of testing plans.

C. Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment: Test requirements are specified in Division 22 piping Sections. Plumbing Contractor shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan. Provide cleaning, flushing, testing, and treating plan and final reports to the CxA. Plan shall include the following:

1. Sequence of testing and testing procedures for each section of pipe to be tested, identified by pipe zone or sector identification marker. Markers shall be keyed to Drawings for each pipe sector, showing the physical location of each designated pipe test.
section. Drawings keyed to pipe zones or sectors shall be formatted to allow each section of piping to be physically located and identified when referred to in pipe system cleaning, flushing, hydrostatic testing, and chemical treatment plan.

2. Description of equipment for flushing operations.
4. Tracking checklist for managing and ensuring that all pipe sections have been cleaned, flushed, hydrostatically tested, and chemically treated.

D. Plumbing Distribution System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of air, fuel gas, sanitary waste and vent piping, storm drainage piping, sprinkler and domestic water distribution systems.

E. Vibration and Sound Tests: Provide technicians, instrumentation, tools, and equipment to test performance of vibration isolation and seismic controls.

F. The work included in the commissioning process involves a complete and thorough evaluation of the operation and performance of all components, systems and sub-systems. The following equipment and systems shall be evaluated:

1. Domestic Hot Water System
2. Gas System – Natural Gas
3. Hot Water Circulating Pump
4. Hot Water Tempering Station

3.10 DEFICIENCIES/NON-CONFORMANCE, COST OF RETESTING, FAILURE DUE TO MANUFACTURER DEFECT

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to deficiencies/non-conformance, cost of retesting, or failure due to manufacturer defect.

3.11 APPROVAL

A. Refer to Division 01 Section “General Commissioning Requirements” for approval procedures.

3.12 DEFERRED TESTING

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to deferred testing.

3.13 OPERATION AND MAINTENANCE MANUALS

A. The Operation and Maintenance Manuals shall conform to Contract Documents requirements as stated in Division 01.

B. Refer to Division 01 Section “General Commissioning Requirements” for the AE and CxA roles in the Operation and Maintenance Manual contribution, review and approval process.
3.14 TRAINING OF OWNER PERSONNEL

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to training.

B. Plumbing Contractor. The mechanical contractor shall have the following training responsibilities:

1. Provide the CxA with a training plan two weeks before the planned training.

2. Provide designated Owner personnel with comprehensive orientation and training in the understanding of the systems and the operation and maintenance of each piece of Plumbing equipment.

3. During any demonstration, should the system fail to perform in accordance with the requirements of the O&M manual or sequence of operations, the system will be repaired or adjusted as necessary and the demonstration repeated.

4. The appropriate trade or manufacturer’s representative shall provide the instructions on each major piece of equipment. This person may be the start-up technician for the piece of equipment, the installing contractor or manufacturer’s representative. Practical building operating expertise as well as in-depth knowledge of all modes of operation of the specific piece of equipment are required. More than one party may be required to execute the training.

5. The training sessions shall follow the outline in the Table of Contents of the operation and maintenance manual and illustrate whenever possible the use of the O&M manuals for reference.

6. Hands-on training shall include start-up, operation in all modes possible, including manual, shut-down and any emergency procedures and preventative maintenance for all pieces of equipment.

7. The plumbing contractor shall fully explain and demonstrate the operation, function and overrides of any local packaged controls.

8. Training shall occur after functional testing is complete, unless approved otherwise by the Owner.

END OF SECTION 22 08 00
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Copper tube and fittings.
 2. PEX tube and fittings.
 3. Piping joining materials.
 4. Transition fittings.

B. Related Requirements:

 1. Section 220500 “General Provisions of Plumbing and HVAC”

1.2 ACTION SUBMITTALS

A. See Section 220000 “General Requirement of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. and Plastic piping components shall be marked with "NSF-pw."

C. Comply with NSF Standard 372 for low lead.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

E. Copper Unions:
1. MSS SP-123.
4. Solder-joint or threaded ends.

2.3 PEX TUBE AND FITTINGS

A. Tube Material: PEX plastic according to ASTM F 876 and ASTM F 877.
B. Fittings: ASTM F 1960, cold expansion fittings and reinforcing rings.
C. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F 876; with plastic or corrosion-resistant-metal valve for each outlet.

2.4 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.
B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
C. Solder Filler Metals: ASTM B 32, lead-free alloys.
D. Flux: ASTM B 813, water flushable.
E. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.5 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.
B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."

D. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."

E. Install domestic water piping level and plumb.

F. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

G. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

K. Install piping to permit valve servicing.

L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

M. Install piping free of sags and bends.
N. Install fittings for changes in direction and branch connections.

O. Install PEX tubing with loop at each change of direction of more than 90 degrees.

P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

Q. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."

R. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing and HVAC Piping."

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220500 "General Provisions of Plumbing and HVAC."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220500 "General Provisions of Plumbing and HVAC."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220500 "General Provisions of Plumbing and HVAC."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
G. Joints for PEX Tubing: Join according to ASTM F 1960 for cold expansion fittings and reinforcing rings.

H. Joints for PEX Tubing: Join according to ASSE 1061 for push-fit fittings.

I. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

B. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing and HVAC Piping and Equipment."
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
6. NPS 6: 10 feet with 5/8-inch rod.
7. NPS 8: 10 feet with 3/4-inch rod.

F. Install supports for vertical copper tubing every 10 feet.

G. Install vinyl-coated hangers for PEX tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.

H. Install hangers for vertical PEX tubing every 48 inches.

I. Support piping and tubing not listed in this article according to MSS SP-58 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing and HVAC Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
<table>
<thead>
<tr>
<th>Application</th>
<th>Location</th>
<th>Size</th>
<th>Material</th>
<th>Fittings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Water Piping</td>
<td>Outdoor Below Grade</td>
<td>All</td>
<td>PEX or Type K Soft Copper</td>
<td>None – below grade piping shall be continuous without fitting or joints</td>
</tr>
<tr>
<td>Domestic Water Piping</td>
<td>Indoor Above Grade Up Stream of Plumbing Manifolds</td>
<td>All</td>
<td>Type L Copper</td>
<td>Copper: Sweat</td>
</tr>
<tr>
<td>Domestic Water Piping</td>
<td>Indoor Above Grade Down Stream of Plumbing Manifolds</td>
<td>All</td>
<td>PEX</td>
<td>PEX: cold expansion fittings and reinforcing rings</td>
</tr>
</tbody>
</table>

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Vacuum breakers.
2. Backflow preventers.
4. Temperature-actuated, water mixing valves.
5. Digital, water temperature control valves.
7. Drain valves.
8. Water-hammer arresters.

B. Related Requirements:

2. Section 220519 "Meters and Gages for Plumbing and HVAC Piping" for thermometers, pressure gages.
3. Section 221116 "Domestic Water Piping" for piping and fittings.
4. Section 224100 “Plumbing Fixtures” for plumbing fixtures.

1.2 ACTION SUBMITTALS

A. See Section 220000 “General Requirement of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.
2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
4. Inlet and Outlet Connections: Threaded.
5. Finish: Chrome plated.

B. Hose-Connection Vacuum Breakers:

2. Body: Bronze, nonremovable, with manual drain.
4. Finish: Chrome or nickel plated.

2.4 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

1. Manufacturers:
 a. Watts
 b. Zurn Wilkins
 c. Prior approved Equal
2. Description:
 b. Operation: Continuous-pressure applications.
 c. Pressure Loss: 12 psig maximum, through middle third of flow range.
 d. Size: See Drawings – Line size of size not specifically listed.
 e. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 f. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 g. Accessories:
 1) Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 2) Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

B. Double-Check, Backflow-Prevention Assemblies:

1. Manufacturers:
 a. Watts
 b. Zurn Wilkins
 c. Prior approved Equal
2. Description:
 b. Operation: Continuous-pressure applications unless otherwise indicated.
 c. Pressure Loss: 5 psig maximum, through middle third of flow range.
 d. Size: See Drawings – Line size of size not specifically listed.
e. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
f. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
g. Accessories:
 1) Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 2) Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

2.5 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Watts; a Watts Water Technologies company.
 c. Zurn Industries, LLC.
 4. Size: See Drawings – Line size of size not specifically listed.
 5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
 7. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Leonard Valve Company.
 b. Symmons Industries, Inc.
 c. Watts; a Watts Water Technologies company.
 d. Zurn Industries, LLC.
 4. Type: Thermostatically controlled, water mixing valve.
 5. Material: Bronze body with corrosion-resistant interior components.
 6. Connections: Threaded union inlets and outlet.
 7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Finish: Chrome plated.

B. Primary, Thermostatic, Water Mixing Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. Leonard Valve Company.
 c. Symmons Industries, Inc.
 d. Zurn Industries, LLC.

3. Pressure Rating: 125 psig minimum unless otherwise indicated.
4. Type: Cabinet-type, thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Finish: Chrome plated.
10. Cabinet: Factory fabricated, stainless steel, for surface mounting and with hinged, stainless-steel door.

2.7 DIGITAL, WATER TEMPERATURE CONTROL VALVES

A. Manufacturers:
1. “The Brain” by Armstrong International
2. Prior approved equal.

B. Description: Water temperate control valves with integral digital controls and pre-piped re-circulation manifold.

C. Precision: +/- 2 F Temperature Control

D. Communication: Serial Connection for BMS interface (BACnet).

E. Valve Construction: Stainless Steel

F. Electrical: 120 – 240 V single phase

G. Max Inlet Temperature: 185F

H. Operating Pressure: 10-150 psig.

I. Minimum Re-circulation Flow: 5 gpm

J. ASSE 1017, CSA B125 and CE Certified.
K. Auto shutoff on less of cold water flow or power failure.

L. High and Low temp alarms.

2.8 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.

2.9 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.10 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 b. Sioux Chief Manufacturing Company, Inc.
 c. Watts; a Watts Water Technologies company.
 d. Zurn Industries, LLC.
3. Type: Metal bellows or Copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.11 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Sioux Chief Manufacturing Company, Inc.
 c. Watts; a Watts Water Technologies company.
 d. Zurn Industries, LLC.

5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.

6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.

7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install double check backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.

2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.

3. Do not install bypass piping around backflow preventers.

B. Install water regulators with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

C. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

1. Install cabinet-type units recessed in or surface mounted on wall as specified.

D. Install Y-pattern strainers for water on supply side of each water pressure-reducing valve, solenoid valve and pump.
E. Install water-hammer arresters in water piping according to PDI-WH 201.

F. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test each reduced-pressure-principle backflow preventer and double-check, detector-assembly backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.4 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves. Verify pressure set points with Engineer prior to setting.

B. Set field-adjustable flow set points of balancing valves. Verify flow rates with Engineer prior to setting.

C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves. Verify temperature setting with engineer prior to setting.

END OF SECTION 221119
SECTION 221120 - WATER METERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes water meters, water meter registers and accessors.

1.2 SUBMITTALS
A. See Section 220000 “General Requirement of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE
A. All meters furnished shall be manufactured by a registered ISO 9001 quality standard facility. Acceptable meters shall have a minimum of fifteen (15) years of successful field use. All specifications meet or exceed the latest revision of AWWA C702.

B. All meter and components must comply with the Safe Drinking Water Act (SDWA) per NSF 372 and be compliant with NSF/ANSI 61, Annex G and Annex F. Specifically:
 1. Meters shall be made of “lead free” alloy as defined by NSF/ANSI 61, Annex G and Annex F.
 2. Meters shall comply with NSF/ANSI 61, Annex G which allows a maximum weighted average lead content level of 0.25% of the wetted surface area.
 3. Meters shall comply with NSF/ANSI 61, Annex F which requires leaching of less than 5 μg/L in tests performed per the NSF/ANSI 61 test methodology for water with pH of 5 and pH of 10.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Provide Neptune TRU/FLO Compound meter or prior approved equal.

2.2 DESCRIPTION
A. Compound meters shall consist of a combination of an AWWA Class II turbine meter for measuring high rates of flow and a nutating disc type positive displacement meter for measuring low rates of flow enclosed in a single maincase. An automatic valve shall direct flows through the disc meter at low flow rates and through the turbine meter at high flow rates. At high flow rates, the automatic valve shall also serve to restrict the flow through the disc meter to minimize wear.
2.3 CAPACITY AND OPERATING CHARACTERISTICS

A. See drawings for size.

2.4 CONSTRUCTION

A. The maincase and cover shall be cast from an NSF/ANSI 61, Annex G and Annex F certified lead free high copper alloy containing a minimum of 85% copper. The size, model, NSF certification and arrows indicating direction of flow shall be cast in raised characters on the maincase or cover. The covers all contain a stainless steel calibration vane for the purpose of calibrating the turbine measuring element while the meter is inline and under pressure. A test plug shall be located in the maincase or the cover for the purpose of field testing of the meter.

B. Casing bolts shall be made of AISI Type 316 stainless steel.

C. Maincases shall be flanged. The 2" meters shall be oval flanged and 3" through 6" sizes shall be round flanged per Table 4, AWWA C702.

D. The meter serial number shall be imprinted on the meter flange or cover as well as the register box covers.

E. The turbine measuring chamber shall be a self-contained unit, attached to the cover for easy removal. The turbine shaft shall be tungsten carbide with tungsten carbide inserts and shall rotate in removable graphite bushings. Thrust bearings shall be tungsten carbide.

F. The nutating disc chamber shall be a self-contained unit mounted on the cover and easily removable from the cover. It shall conform to AWWA Standard C700 for the following sizes: 2” and 3” - 5/8” disc; 4” - 3/4” disc; 6” - 1” disc. The inlet to the disc chamber shall be a “single” opening of adequate size not to be susceptible to plugging and water restriction by water-borne debris.

G. The intermediate gear train shall be directly coupled from the turbine rotor and magnetically coupled to the register through the meter cover. The gear train shall be housed in the turbine measuring chamber. All moving parts of the gear train shall be made of a self-lubricating polymer or stainless steel for operation in water. Only the cover must be removed to gain access to the valve for inspection or service. The disc meter shall include a self-actuated valve that directs flow through the disc meter at low flow rates and through the turbine meter at high flow rates. At high flow rates, the self-actuated throttle valve shall restrict the flow through the disc meter to minimize wear.

H. A strainer shall be provided for the disc meter. It shall be easily removable and have an effective straining area of double the disc meter inlet.

2.5 REGISTER

A. Provide the meter with Neptune TRICON/S Register. The register shall output a switch closure that is proportional to the flow rate. Coordinate the switch configuration (gallons, cubic feet, etc…) with the Owner and electrical contractor prior to ordering.
B. Provide separate registers for the disc and turbine portions of the meter if required.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Follow manufacturer’s recommendation for installation. Installation will conform to the guidelines provided by the Installation & Operation Manual.

B. Provide manufacturers straight pipe requirements on the inlet (upstream) side, and on the outlet (downstream) side. Provide Neptune Strainer on inlet of meter.

3.2 RESPONSIBILITY

A. The Mechanical Contractor shall furnish and install in the flow meter in the location shown on the plans.

B. The electrical contractor shall provide all wiring (line and low voltage) between the flow meter and smart meter (see electrical drawings for location).

END OF SECTION 221120
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

1.2 ACTION SUBMITTALS

A. See section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

B. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. See section 220548 “Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment”

2.2 PIPING MATERIALS

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. CISPI, Hubless-Piping Couplings:
2. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 COPPER TUBE AND FITTINGS

A. Copper Type DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

D. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

E. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.5 PVC PIPE AND FITTINGS

B. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

C. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

D. Adhesive Primer: ASTM F 656.

E. Solvent Cement: ASTM D 2564.

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 2. Unshielded, Nonpressure Transition Couplings:
b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

c. End Connections: Same size as and compatible with pipes to be joined.

d. Sleeve Materials:

2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

3. Shielded, Nonpressure Transition Couplings:

b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

c. End Connections: Same size as and compatible with pipes to be joined.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.

1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
2. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.
G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 a. Straight tees, elbows, and crosses may be used on vent lines.
 3. Do not change direction of flow more than 90 degrees.
 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 a. Reducing size of waste piping in direction of flow is prohibited.

L. Lay buried building waste piping beginning at low point of each system.
 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 3. Maintain swab in piping and pull past each joint as completed.

M. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 1. Horizontal Sanitary Waste: 1/4” per foot downward in direction of flow. 1/8” per foot is allowable if necessitated by site conditions.
 2. Vent Piping: 1/8” per foot down toward vertical fixture vent or toward vent stack.

N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

O. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

P. Install aboveground PVC piping according to ASTM D 2665.

Q. Install underground PVC piping according to ASTM D 2321.

R. Plumbing Specialties:
1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.

 a. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."

S. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

T. Install sleeves for piping penetrations of walls, ceilings, and floors.

 1. Comply with requirements for sleeves specified in Section 220500 "General Provisions of Plumbing and HVAC."

U. Install sleeve seals for piping penetrations of concrete walls and slabs.

 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors.

 1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

B. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

C. Grooved Joints: Cut groove ends of pipe according to AWWA C606. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections, over gasket, with keys seated in piping grooves. Install and tighten housing bolts.

D. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 appendixes.
 3. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

 1. Install transition couplings at joints of piping with small differences in ODs.
 2. In Waste Drainage Piping: [Unshielded] [Shielded], nonpressure transition couplings.
3.5 VALVE INSTALLATION

A. Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping" for general-duty valve installation requirements.

B. Shutoff Valves:
 1. Install shutoff valve on each sewage pump discharge.
 2. Install gate or full-port ball valve for piping NPS 2 and smaller.
 3. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing and HVAC Piping and Equipment."
 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 2. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
 5. NPS 6: 10 feet with 5/8-inch rod.
 6. NPS 8: 10 feet with 3/4-inch rod.

I. Install supports for vertical copper tubing every 10 feet.

J. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

K. Install supports for vertical PVC piping every 48 inches.

L. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect waste and vent piping to the following:
 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Equipment: Connect waste piping as indicated.
 a. Provide shutoff valve if indicated and union for each connection.
 b. Use flanges instead of unions for connections NPS 2-1/2 and larger.
D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping.

B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing and HVAC Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Re-inspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for re-inspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 a. Expose work that was covered or concealed before it was tested.
 3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
c. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
 b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 c. Air pressure must remain constant without introducing additional air throughout period of inspection.
 d. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

E. Repair damage to adjacent materials caused by waste and vent piping installation.

Review and Edit the following schedule prior to issuing

3.11 PIPING SCHEDULE

A. Piping system materials are identified in the table below. If more than one material is listed, selection from the materials listed is at the Contractor’s option.

<table>
<thead>
<tr>
<th>Application</th>
<th>Location</th>
<th>Size</th>
<th>Material</th>
<th>Fittings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitary Waste and Vent</td>
<td>Below Grade</td>
<td>All</td>
<td>PVC</td>
<td>Solvent Joint</td>
</tr>
<tr>
<td>Description</td>
<td>Grade Level</td>
<td>Material</td>
<td>Joint Type</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Sanitary Waste and Vent with High Temp Discharge (120°F – 140°F)</td>
<td>Below Grade</td>
<td>All Cast Iron</td>
<td>No-Hub</td>
<td></td>
</tr>
<tr>
<td>Grease Waste</td>
<td>Below Grade</td>
<td>All Cast Iron</td>
<td>No-Hub</td>
<td></td>
</tr>
<tr>
<td>Acid Waste and Vent</td>
<td>Below Grade</td>
<td>All Polypropylene</td>
<td>DWV Mechanical Joint</td>
<td></td>
</tr>
<tr>
<td>Sanitary Waste and Vent</td>
<td>Above Grade</td>
<td>All Cast Iron</td>
<td>No-Hub</td>
<td></td>
</tr>
<tr>
<td>Sanitary Waste and Vent with High Temp Discharge (120°F – 140°F)</td>
<td>Above Grade</td>
<td>All Cast Iron</td>
<td>No Hub</td>
<td></td>
</tr>
<tr>
<td>Grease Waste</td>
<td>Above Grade</td>
<td>All Cast Iron</td>
<td>No-Hub</td>
<td></td>
</tr>
<tr>
<td>Acid Waste and Vent</td>
<td>Above Grade</td>
<td>All Polypropylene</td>
<td>DWV Mechanical Joint</td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Cleanouts.

B. Related Requirements:
 1. Section 221316 “Sanitary Waste and Vent Piping”

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 14 for plastic sanitary waste piping specialty components.

2.2 CLEANOUTS

A. Above Grade Wall Cleanout
 1. Provide JR Smith 4422 or approved equal
 2. Description: Cast iron caulked spigot ferrule with cast bronze taper thread plug and stainless steel round cover and screw.

B. Finished Floor Cleanout
 1. Provide JR Smith 4100 or approved equal
 2. Description: Cast iron cleanout with extra heavy duty round, adjustable, scoriated, secured nickel bronze top, and no-hub outlet, gasket seal bronze plug and flashing clamp for.

C. Outdoor Cleanout
 1. Provide JR Smith 4241S or approved equal
 2. Description: Cast iron floor level cleanout assembly with heavy duty, round, adjustable, scoriated cast iron top, non-tilt tractor cover, gasket seal bronze plug.
2.3 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains or Hub Drains:
 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-less, cast-iron soil-pipe fittings. Include P-trap, riser section; and where required, increaser fitting joined with ASTM C 564 rubber gaskets.
 2. Size: See drawings. If not shown drain shall 2” minim or one size larger than piping discharging to the drain.

B. Floor-Drain, Trap-Seal Primer Fittings:
 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

C. Floor-Drain, Trap Seal:
 1. Barrier type floor drain or sink trap seal device.
 2. IAPMO 7479 and ASSE std. 1072 listed.

D. Trap Primers:
 1. Provide electronic trap priming assembly equal to PPP “Prime-Time”.

E. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

F. Expansion Joints:
 2. Body: Cast iron with bronze sleeve, packing, and gland.
 3. End Connections: Matching connected piping.
 4. Size: Same as connected soil, waste, or vent piping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout with top flush with finished floor. It shall be the responsibility of the plumbing contractor to coordinate the installation of cleanouts with the general contractor and flooring contractor to ensure that floor cleanouts are properly adjusted so that the top is flush and level with finished flooring material. Cleanout covers that are not flush and level with the finished floor will be rejected and the plumbing contractor will be required to sawcut or core drill the floor, provide and install new cleanout, coordination installation of new concrete and new finished flooring material.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Coordinate installation of roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof with the general contractor or construction manager.

E. Assemble open drain fittings and install with top of hub 2 inches above floor.

F. Install deep-seal traps on floor drains and other waste outlets, if indicated.

G. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

H. Install electronic trap primer assembly per manufacturer’s instructions. Electronic trap primer assemblies may be surface mounted when located in mechanical rooms or plumbing chases. Electronic trap primer assemblies must be recessed in walls when installed in public areas.

I. Trap primer may be omitted for floor sinks that regularly receive drainage from a sink, dishwasher or other kitchen appliance.

J. Trap primers must be installed for all floor drains and floor sinks that do not regularly receive drainage.

K. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

L. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

M. Install wood-blocking reinforcement for wall-mounting-type specialties.

N. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.
3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 221323 - SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Grease interceptors.
2. Grease removal devices.
3. Oil interceptors.

1.2 SUBMITTALS

A. See section 220000 “General Requirements or Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 GREASE INTERCEPTORS AND SAND OIL INTERCEPTORS

A. Precast Concrete Grease Interceptors:

1. Include rubber-gasketed joints, vent connections, manholes, compartments or baffles, absorbent pillows and piping or openings to retain grease, san & oil an and to permit wastewater flow.
2. Structural Design Loads:

<table>
<thead>
<tr>
<th>Load Rating</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Walkway Load</td>
<td>Comply with ASTM C 890, A-03.</td>
</tr>
</tbody>
</table>

3. Resilient Pipe Connectors: ASTM C 923, cast or fitted into interceptor walls, for each pipe connection.
5. Steps: FRP ladder, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of interceptor to finished grade is less than 60 inches.
6. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover.
7. Manhole Frames and Covers: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch-minimum width flange and 26-inch-diameter cover.
 a. Ductile Iron: ASTM A 536, Grade 60-40-18, unless otherwise indicated.
 c. Include indented top design with lettering cast into cover, using wording equivalent to "GREASE INTERCEPTOR" or “SAND & OIL INTERCEPTOR”.

2.2 PRECAST CONCRETE MANHOLE RISERS

A. Precast Concrete Manhole Risers: ASTM C 478 and ASTM C 913, with rubber-gasket joints.
 1. Structural Design Loads:

 Select load rating from the list below was required by the location of the Interceptor

 d. Walkway Load: Comply with ASTM C 890, A-03.

2. Length: From top of underground concrete structure to grade.
3. Riser Sections: 3-inch minimum thickness and 36-inch diameter.
4. Top Section: Eccentric cone, unless otherwise indicated. Include top of cone to match grade ring size.
5. Gaskets: ASTM C 443, rubber.

B. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, diameter matching manhole frame and cover, and height as required to adjust the manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch-minimum width flange and 26-inch-diameter cover.
 1. Ductile Iron: ASTM A 536, Grade 60-40-18, unless otherwise indicated.
 3. Include indented top design with lettering cast into cover, using wording equivalent to the following:
 a. Grease Interceptors in Sanitary Sewerage System: "GREASE INTERCEPTOR."
 b. Sand & Oil Interceptors in Sanitary Sewerage System: "SAND & OIL INTERCEPTOR."
PART 3 - EXECUTION

3.1 EARTHWORK
 A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 INSTALLATION
 A. Install precast concrete interceptors according to ASTM C 891.
 B. Set interceptors level and plumb.
 C. Install manhole risers from top of underground concrete interceptors to manholes and gratings at finished grade.
 D. Set tops of manhole frames and covers flush with finished surface in pavements.
 1. Set tops 3 inches above finish surface elsewhere unless otherwise indicated.
 E. Set tops of grating frames and graters flush with finished surface.
 F. Install piping and oil storage tanks according to Section 231113 "Facility Fuel-Oil Piping."
 G. Install grease interceptors, according to authorities having jurisdiction and with clear space for servicing.
 1. Install cleanout immediately downstream from interceptors not having integral cleanout on outlet.
 H. Install sand & oil interceptors, according to authorities having jurisdiction and with clear space for servicing.
 1. Install cleanout immediately downstream from interceptors not having integral cleanout on outlet.

3.3 CONNECTIONS
 A. Piping installation requirements are specified in Section 221316 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
 B. Make piping connections between interceptors and piping systems.

3.4 IDENTIFICATION
 A. Identification materials and installation are specified in Section 312000 "Earth Moving."
 1. Arrange for installation of green warning tapes directly over piping and at outside edges of underground interceptors.
 2. Use warning tapes or detectable warning tape over ferrous piping.
3. Use detectable warning tape over nonferrous piping and over edges of underground structures.

END OF SECTION 221323
SECTION 221329 - SANITARY SEWERAGE PUMPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Submersible sewage grinder pumps.
 2. Sewage-pump basins and basin covers.

1.2 SUBMITTALS
A. See section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

PART 2 - PRODUCTS

2.1 SUBMERSIBLE SEWAGE GRINDER PUMPS
A. Submersible, centrifugal grinder pumps:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Liberty Pumps.
 b. Weil Pump Company, Inc.
 c. Zoeller Company.
 2. Description: Factory-assembled and -tested sewage-pump unit.
 3. Pump Type: Centrifugal grinder pump.
 4. Pump Casing: Cast iron, with open inlet, legs that elevate pump to permit flow into impeller, and vertical discharge for piping connection.
5. Impeller: Statically and dynamically balanced, stainless steel, nonclog, open, or semiopen design for solids handling, and keyed and secured to shaft.
7. Seal: Mechanical.
8. Motor: Hermetically sealed, capacitor-start type; with built-in overload protection; lifting eye or lug; and three-conductor, waterproof power cable of length required and with grounding plug and cable-sealing assembly for connection at pump.
 a. Motor Housing Fluid: Oil.
9. Controls:
 a. Enclosure: NEMA 250, [Type 1] [Type 4X]; [pedestal] [wall]-mounted.
 b. Switch Type: Mechanical-float type, in NEMA 250, Type 6 enclosures with mounting rod and electric cables.
 c. Magnetic Motor Contactor
 d. Hand/Off/Auto switches for duplex units
 e. Automatic Alternator: Start pumps on successive cycles and start multiple pumps if one cannot handle load.
 f. High-Water Alarm: Rod-mounted, NEMA 250, Type 6 enclosure with mechanical-float, mercury-float, or pressure switch matching control and electric bell; 120-V ac, with transformer and contacts for remote alarm bell.
 g. Pump on float.
 h. Pump off float.
10. Control-Interface Features:
 b. Building Automation System Interface: Auxiliary contacts in pump controls for interface to building automation system and capable of providing the following:
 1) On-off status of pump.
 2) Alarm status.
11. Guide-Rail Supports:
 b. Guide Rails: Vertical pipes or structural members, made of galvanized steel or other corrosion-resistant metal, attached to baseplate and basin sidewall or cover.
 c. Baseplate: Corrosion-resistant metal plate, attached to basin floor, supporting guide rails and stationary elbow.
 d. Pump Yoke: Motor-mounted or casing-mounted yokes or other attachments for aligning pump during connection of flanges.
 e. Movable Elbow: Pump discharge-elbow fitting with flange, seal, and positioning device.
 f. Stationary Elbow: Fixed discharge-elbow fitting with flange that mates to movable-elbow flange and support attached to baseplate.
 g. Lifting Cable: Stainless steel; attached to pump and cover at manhole.
12. Capacities and Characteristics:
2.2 SEWAGE-PUMP BASINS AND BASIN COVERS

A. Basins: Factory-fabricated, watertight, cylindrical, basin sump with top flange and sidewall openings for pipe connections.
 1. Material: Fiberglass or Polyethylene.
 2. Reinforcement: Mounting plates for pumps, fittings, guide-rail supports if used, and accessories.
 3. Anchor Flange: Same material as or compatible with basin sump, cast in or attached to sump, in location and of size required to anchor basin in concrete slab.
 4. Inlet and outlet connections shall be field installed to allow for height adjustments required by field conditions.
 5. Provide basin extensions where required to ensure the top of the basin is flush and level with the finished floor.

B. Basin Covers: Fabricate metal cover with openings having gaskets, seals, and bushings; for access to pumps, pump shafts, control rods, discharge piping, vent connections, and power cables.
 1. Reinforcement: Steel or cast iron, capable of supporting foot traffic for basins installed in foot-traffic areas.

C. Capacities and Characteristics:
 1. See drawings.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

B. Motors for submersible pumps shall be hermetically sealed.

C. Capacities and Characteristics: See drawings.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation and filling are specified in Section 312000"Earth Moving."
3.2 INSTALLATION

A. Pump Installation Standard: Comply with HI 1.4 for installation of centrifugal pumps.

END OF SECTION 221329
SECTION 221413 - FACILITY STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

1.2 SUBMITTALS
 A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS
 A. Pipe and Fittings: ASTM A 888 or CISPI 301.
 B. CISPI, Hubless-Piping Couplings:
 2. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
 C. Heavy-Duty, Hubless-Piping Couplings:
 2. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
2.3 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. Cellular-Core PVC Pipe: ASTM F 891, Schedule 40.

C. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

D. Adhesive Primer: ASTM F 656.

E. Solvent Cement: ASTM D 2564.

2.4 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

1. General Requirements: Fitting or device for joining piping with small differences in ODs or of different materials. Include end connections same size as and compatible with pipes to be joined.

2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified-piping-system fitting.

3. Unshielded, Nonpressure Transition Couplings:
 b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 c. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

4. Shielded, Nonpressure Transition Couplings:
 b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."
3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping at indicated slopes.

F. Install piping free of sags and bends.

G. Install fittings for changes in direction and branch connections.

H. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

I. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

J. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

K. Install storm drainage piping at the following minimum slopes unless otherwise indicated:

1. Building Storm Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.

L. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

M. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

N. Install aboveground ABS piping according to ASTM D 2661.
O. Install aboveground PVC piping according to ASTM D 2665.

P. Install underground PVC piping according to ASTM D 2321.

Q. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Section 221423 "Storm Drainage Piping Specialties."
 2. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Section 221423 "Storm Drainage Piping Specialties."

R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

B. Plastic, Nonpressure-Piping, Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendices.
 3. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendices.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in ODs.
 2. In Drainage Piping: Shielded, nonpressure transition couplings.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
5. Vertical Piping: MSS Type 8 or Type 42, clamps.
6. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
8. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot pipe lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

I. Install supports for vertical PVC piping every 48 inches.

J. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.
3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.

C. Connect storm drainage piping to roof drains and storm drainage specialties.
 1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
 2. Comply with requirements for cleanouts and drains specified in Section 221423 "Storm Drainage Piping Specialties."

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

3.7 IDENTIFICATION

A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Re-inspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for re-inspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 3. Test Procedure: Test storm drainage piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.
4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
5. Prepare reports for tests and required corrective action.

3.9 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.10 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground storm drainage piping shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI, hubless-piping couplings; and coupled joints.

C. Underground storm drainage piping shall be the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION 221413
SECTION 221423 - STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Roof drains.
2. Miscellaneous storm drainage piping specialties.
3. Cleanouts.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 METAL ROOF DRAINS

A. Cast-Iron, General-Purpose Roof Drains:
 1. See Plumbing Fixture Schedule for Basis of Design Products.
 2. Roof Drains shall have coated cast iron body, combination flashing clamp and gravel guard, cast iron dome, vertical no hub outlet and expansion joint. Secondary or over flow roof drains shall have 2 inch high water dam.

2.2 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

A. Roof Drain Outlet:
 1. Provide Zum Model Z199 or equal.
 2. Description: Bronze body with threaded or no-hub inlet and bronze wall flange with mounting holes.
 3. Size: Same as connected pipe.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions.
 1. Install flashing collar or flange of roof drain to prevent leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 2. Install expansion joints, if indicated, in roof drain outlets.
 3. Position roof drains for easy access and maintenance.

B. Install roof drain outlets at exposed bottom of conductors where they spill onto grade.

C. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated:
 1. Use cleanouts the same size as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
 3. Locate cleanouts at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate cleanouts at base of each vertical stack.

D. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

E. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

F. Install wall cleanouts in vertical conductors. Install access door in wall if indicated.
3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 221413 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

3.3 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221423
This Section covers pumps that handle gray water, storm water or condensate only – no solids.

SECTION 221429 - SUMP PUMPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Submersible sump/effluent pumps.
 2. Sump-pump basins and basin covers.

1.2 SUBMITTALS
A. See section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

PART 2 - PRODUCTS

2.1 SUBMERSIBLE SUMP/EFFLUENT PUMPS
A. Submersible, Fixed-Position, Single-Seal Sump Pumps:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Liberty Pumps.
 b. Weil Pump Company, Inc.
 c. Zoeller Company.
 2. Description: Factory-assembled and -tested sump-pump unit.
 3. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller, centrifugal sump pump as defined in HI 1.1-1.2 and HI 1.3.
 4. Pump Casing: Cast iron, with strainer inlet, legs that elevate pump to permit flow into impeller, and vertical discharge for piping connection.
5. Impeller: Statically and dynamically balanced, ASTM A 48/A 48M, Class No. 25 A cast iron or engineered polymer, designed for clear wastewater handling, and keyed and secured or screw mounted to the shaft.
7. Seal: Mechanical.
8. Motor: Hermetically sealed, capacitor-start type; with built-in overload protection; lifting eye or lug; and three-conductor, waterproof power cable of length required and with grounding plug and cable-sealing assembly for connection at pump.
 a. Motor Housing Fluid: Oil.
9. Controls:
 a. Enclosure: NEMA 250, [Type 1] [Type 4X]; [pedestal] [wall]-mounted.
 b. Switch Type: Mechanical-float Pressure Insert type type, in NEMA 250, Type 6 enclosures with mounting rod and electric cables.
 c. Magnetic Motor Contactor
 d. Hand/Off/Auto switches for duplex units
 e. f. Automatic Alternator: Start pumps on successive cycles and start multiple pumps if one cannot handle load.
 g. High-Water Alarm: Rod-mounted, NEMA 250, Type 6 enclosure with mechanical-float matching control and electric bell; 120-V ac, with transformer and contacts for remote alarm bell.
10. Control-Interface Features:
 b. Building Automation System Interface: Auxiliary contacts in pump controls for interface to building automation system and capable of providing the following:
 1) On-off status of pump.
 2) Alarm status.
11. Capacities and Characteristics:
 a. See Drawings.

2.2 SUMP-PUMP BASINS AND BASIN COVERS
A. Basins: Factory-fabricated, watertight, cylindrical, basin sump with top flange and sidewall openings for pipe connections.
 1. Material: Fiberglass or Polyethylene.
 2. Reinforcement: Mounting plates for pumps, fittings, and accessories.
 3. Anchor Flange: Same material as or compatible with basin sump, cast in or attached to sump, in location and of size required to anchor basin in concrete slab.
 4. Inlet and outlet connections shall be field installed to allow for height adjustments required by field conditions.
5. Provide basin extensions where required to ensure the top of the basin is flush and level with the finished floor.

B. Basin Covers: Fabricate metal cover with openings having gaskets, seals, and bushings; for access to pumps, pump shafts, control rods, discharge piping, vent connections, and power cables.

1. Reinforcement: Steel or cast iron, capable of supporting foot traffic for basins installed in foot-traffic areas.

C. Capacities and Characteristics:

1. See Drawings.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation and filling are specified in Section 312000 "Earth Moving."

3.2 INSTALLATION

A. Pump Installation Standard: Comply with HI 1.4 for installation of sump pumps.

END OF SECTION 221429
SECTION 223401 - STEAM OPERATED WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes Semi-Instantaneous, Steam Operated, Water Heaters.

B. Related Requirements:
 1. Section 221119 “Domestic Water Piping Specialties”
 2. Section 232213 “Steam and Condensate Heating Piping”
 3. Section 232216 “Steam and Condensate Heating Piping Specialties”

1.2 SUBMITTALS

A. See Section 220000 “General Requirements for Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the following:
 1. Cemline
 2. Prior Approved Equal

B. Description:
 1. Shall be factory assembled, sem-instantaneous heater shall be Cemline Series SSH; factory assembled and packaged. Water heater shall be constructed in accordance with ASME Code for a working pressure of 150 psig.

C. Performance Requirements:
 1. The packaged water heater shall be constructed in accordance with ASME Code for a working pressure of 150 psig.
 2. Manufacturer shall assume responsibility for correct sizing of components to assure performance designated in design criteria.

D. Tank & Tube Bundle:
1. The packaged water heater shall be constructed with a 316 stainless steel tank, with stainless threaded opening, ¾" O.D. double walled Cu (in) + Cu (out) tubes, copper lined tube sheet, and steel or cast iron coil head.

2. Heater shall be mounted on a steel support skid. Heater shall be mounted on a steel support skid.

E. Insulation:
1. Heater shall be mounted on a steel support skid.

F. Steam Supply and Condensate Drain:
1. Heater shall be factory assembled and piped including incoming steam strainer, electronic operated temperature regulator, main and auxiliary float and thermostatic steam traps, and condensate strainer.
2. Coil shall have wrapper, shall be baffled and shall have an integral bronze valved circulator to circulate the water across the coil.

G. Controls:
1. Heater shall be supplied with solid-state control module with LED backlit LCD display and LED pilot lights to indicate on-off, primary high limit, and secondary high limit.
2. Solid-state control module shall be provided with a field programmable digital electronic PID controller allowing the owner to set operating and temperature limits on the display screen.
3. Solid-state control module shall have red alarm light and alarm horn with built in alarm silence relay.
4. Solid-state control module shall be supplied with dry contact closure outputs to indicate to building automation system (BAS) the occurrence of power on, primary high temperature, and secondary high temperature.
5. The control module shall allow the BAS to turn the heater on or off through a remote relay suitable for 24 VAC, 1 amp.
6. The control module shall allow the BAS to remotely set the temperature of the heater using a 4-20 mA input signal.
7. The control module shall allow the BAS to remotely monitor the operating temperature.
8. Control module shall be supplied with an on-off switch and shall be mounted in a NEMA 4 panel. All solenoids and limits shall be 24 VAC.

H. Accessories:
1. Heater shall be furnished with a water pressure gauge and an A.S.M.E. pressure-temperature relief valve of sufficient size to relieve total BTU input of the coil.
2. Heater shall be provided with a vacuum breaker.

I. Capacities and Characteristics:
1. See Drawings

PART 3 - EXECUTION

3.1 INSTALLATION

A. Maintain manufacturer's recommended clearances for service and maintenance.
B. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to buffer tank to allow service and maintenance.

C. Domestic Piping: Comply with Section 221116 “Domestic Water Piping” and 221119 “Domestic Water Piping Specialties”

D. Steam and condensate piping shall comply with Section 232213 “Steam and Condensate Heating Piping” and Section 232216 “Steam and Condensate heating Piping Specialties”

3.3 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assemblies, installations, and connections.

C. Prepare a written startup report that records the results of tests and inspections.

END OF SECTION 223401
SECTION 223402 - HEAT PUMP WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes Water Source Heat Pump Water heaters.
B. Related Requirements:
 1. Section 221116 “Domestic Water Piping”
 2. Section 221119 “Domestic Water Piping Specialties”
 3. Section 230900 “HVAC Controls”
 4. Section 232113 “Hydronic Piping”
 5. Section 232116 “Hydronic Piping Specialties”

1.2 SUBMITTALS
A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Products: Subject to compliance with requirements, provide the following:
 1. Colemac Industries Inc. Model HPW-24M
 2. Prior Approved Equal
B. Description:
 1. The heat pump water heater shall be packaged water source equipment, factory assembled and charged. The heat pump shall be suitable for heating potable water and have the capability of producing no less than 160°F water, with heating capacity and C.O.P. as indicated on the drawings.
 2. Heat Pump unit shall consist of compressor, condenser, evaporator, hot water circulating pump, piping, and controls, factory piped and charged.
C. Evaporator:
 1. Shall be single-wall brazed plate type constructed with stainless steel plates.
D. Refrigerant:
 1. Refrigerant shall be R-134a.
E. Expansion Valve:
 1. Valves shall be specifically designed for heat pump use with field adjustable superheat feature. Expansion valve shall have MOP (Maximum Operating Pressure) type power element to effectively limit saturated suction temperature to 65°F.
F. Compressor:
1. Hermetic scroll type by Copeland Corp., suitable for high temperature operation with R-134a refrigerant.

G. Condenser:
1. Stainless steel brazed plate vented double wall type. Single wall condenser construction shall not be allowed for potable water applications. UL Listed and suitable for high temperature operation with potable water.

H. Hot Water Circulating Pump:
1. Shall be factory installed in-line all bronze or stainless steel body centrifugal type.

I. Source Water Circulating Pump:
1. Provided by others. Shall have capacity and construction as shown on the drawings. To be approved by the Engineer and the heat pump Manufacturer prior to installation.

J. Accessories:
1. Suction and Discharge Service Valves
2. High and Low Refrigerant Pressure Safety Switches
3. Indicator Lights for:
 a. Power On
 b. Hot Water Demand
 c. High Pressure Fail
 d. Low Pressure Fail
4. Multi-function Phase Failure Relay
5. Crankcase Heater and Relay
6. Filter-driers: Non-Replaceable Core Type
7. Refrigerant Sight Glass: Moisture Indicating Type

K. Controls:
1. The heat pump unit shall be factory wired for fully automatic operation. Safeties shall include compressor motor thermal overload protection, manual reset pressure stats, anti-cycling compressor relays, plus standard items recommended by the equipment manufacturer.
2. Heat pump shall be factory equipped with electronic temperature control valve (e-TCV) which automatically maintains constant leaving water temperature regardless of entering water temperature. Leaving water temperature is set by the heat pump operator/user via a field adjustable electronic temperature controller.
3. Units shall be factory wired to allow a maximum of twelve compressor starts per hour to prevent compressor short cycling and allow time for suction and discharge pressures to equalize permitting the compressor to start in an unloaded condition.
4. See Section 230900 “HVAC Controls” for additional requirements.

L. Capacities and Characteristics:
1. See Drawings

PART 3 - EXECUTION

A. Equipment Mounting:
1. Install heat pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete" and Section 033053 "Miscellaneous Cast-in-Place Concrete."

2. Comply with requirements for vibration-isolation and seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

B. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:
 1. Connect supply and return hydronic piping to heat pump with unions, flexible pipe connectors and shutoff valves.

C. Install electrical devices furnished by manufacturer but not specified to be factory mounted.

D. Install piping adjacent to machine to allow space for service and maintenance.

E. Install all domestic water piping in accordance with Section 221116 “Domestic Water Piping” and 221119 “Domestic Water Piping Specialties”.

F. Install all source water piping in accordance with Section 232113 “Hydronic Piping” and 232116 “Hydronic Piping Specialties.”

G. Balance source water and domestic water flow rates prior to start-up.

H. Install heat pump water heaters in accordance with the manufacturers written instructions.

3.2 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections with the assistance of a factory authorized agent:
 1. After installing water to water heat pumps and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Heat pumps will be considered defective if they do not pass tests and inspections.

END OF SECTION 223402
SECTION 224100 – PLUMBING FIXTURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Plumbing fixtures shown and scheduled on the drawings.

1.2 SUBMITTALS

A. See section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 PLUMBING FIXTURE MANUFACTURERS – In addition to the manufacturer(s) listed on the plumbing fixture schedule on the drawings, the following manufacturers approved. Manufacturers not listed below are not specifically approved and will be evaluated on an individual basis. All plumbing fixtures used on this project shall meet the conditions of quality and performance of the fixtures listed in the Plumbing Fixture Schedule on the Drawings.

A. DRINKING FOUNTAINS & WATER COOLERS
 1. FIXTURES
 a. HAWS
 b. ELKAY
 c. ACORN

B. FLOOR DRAINS & SINKS
 1. FIXTURES
 a. JR SMITH
 b. ZURN
 c. JOSAM
 2. TRAP SEAL
 a. TRAP GUARD
 b. JR SMITH
 3. TRAP PRIMERS
 a. JR SMITH
 b. WATTS
 c. ZURN

C. HOSE BIBBS / WALL HYDRANTS
1. WOODFORD
2. WATTS
3. ZURN

D. INTERCEPTORS
1. JR SMITH
2. ZURN
3. JOSAM

E. LAVATORIES
1. FIXTURES
 a. KOHLER
 b. AMERICAN STANDARD
 c. TOTO
2. CARRIERS AND SUPPORTS
 a. JR SMITH
 b. ZURN
 c. JOSAM
3. FAUCETS
 a. MOEN COMMERCIAL
 b. SLOAN
 c. CHICAGO FACUET
4. PIPING COVERS
 a. TRUBRO
 b. PLUMMEREX

F. ROOF DRAINS
1. JR SMITH
2. ZURN
3. SIOUX CHEIF

G. STAINLESS STEEL SINKS
1. FIXTURES
 a. ELKAY
 b. JUST
 c. KOHLER
2. FAUCETS
 a. MOEN COMMERCIAL
 b. T&S BRASS
 c. CHICAGO FAUCET

H. STOP VALVES
1. BRASSCRAFT
2. WATTS
3. KINGSTON BRASS
I. THERMOSTATIC MIXING VALVES
 1. SYMMONS
 2. WATTS
 3. LEONARD

J. UTILITY SINKS & MOP SINKS
 1. FIXTURES
 a. FIAT
 b. MUSTEE
 c. KOHLER
 2. FAUCETS
 a. MOEN COMMERCIAL
 b. T&S BRASS
 c. CHICAGO FAUCET
 3. ACCESSORIES
 a. FIAT
 b. MUSTEE

K. URINALS
 1. FIXTURES
 a. KOHLER
 b. AMERICAN STANDARD
 c. TOTO
 2. FLUSH VALVES
 a. MOEN
 b. ZURN
 c. SLOAN
 3. CARRIERS AND SUPPORTS
 a. JR SMITH
 b. ZURN
 c. JOSAM

L. WATER CLOSETS
 1. FIXTURES
 a. KOHLER
 b. AMERICAN STANDARD
 c. TOTO
 2. SEATS
 a. KOHLER
 b. CHURCH
 c. OLSONITE
 3. CARRIERS AND SUPPORTS
 a. JR SMITH
2.2 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install plumbing fixtures level and plumb according to roughing-in drawings.

B. Install floor-mounted water closets on closet flange attachments to drainage piping.

C. Install counter-mounting fixtures in and attached to casework.

D. Install pedestal lavatories on pedestals and secured to wood blocking in wall.

E. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.

1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Comply with valve requirements specified in Section 220523 "General-Duty Valves for Plumbing Piping."

F. Install tanks for accessible, tank-type water closets with lever handle mounted on wide side of compartment.

G. Install toilet seats on water closets.

H. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

I. Install shower flow-control fittings with specified maximum flow rates in shower arms.

J. Install traps on fixture outlets.

1. Exception: Omit trap on fixtures with integral traps.

2. Exception: Omit trap on indirect wastes unless otherwise indicated.
K. Install disposer in outlet of each sink indicated to have disposer. Install switch where indicated or in wall adjacent to sink if location is not indicated.

L. Install dishwasher air-gap fitting at each sink indicated to have air-gap fitting. Install in sink deck. Connect inlet hose to dishwasher and outlet hose to disposer.

M. Set bathtubs and shower receptors in leveling bed of cement grout.

N. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories and sinks.

O. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings.

P. Seal joints between plumbing fixtures, counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color.

3.2 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

D. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories and sinks.

3.3 ADJUSTING

A. Operate and adjust plumbing fixtures and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.4 CLEANING AND PROTECTION

A. After completing installation of plumbing fixtures, inspect and repair damaged finishes.

B. Clean plumbing fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed plumbing fixtures and fittings.

D. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.
SECTION 230519 - MAGNETIC FLOW METERS

PART 1 - GENERAL

1.1 SUMMARY

A. This section describes the requirements for a flow sensor.

B. The contractor shall furnish and install the flow measurement equipment to allow measurement of condensate returned from the building. The equipment shall communicate with the campus utility metering system to allow remote monitoring of condensate flow and totalization of condensate flow.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. Referenced Standards and Guidelines - Complies with applicable portions of ANSI/AWWA Standards and NSF/ANSI Standard 61, Annex G. There are currently no AWWA standards that specifically address electromagnetic metering.

 1. Flow measurement function complies with Industry Standards
 a. ANSI B16.5 Class 150 RF
 b. AWWA Class B
 c. NEMA 4X/6P (IP66/IP67)
 d. CSA

1.4 WARRANTY

A. The manufacturer of the above specified equipment warrants the Product to be free from defects in materials and workmanship appearing within the earlier of either: One (1) year after installation; or one (1) year and six (6) months after shipment from manufacturer.

1.5 DEFINITIONS

A. Amplifier – Device used for increasing the power of a signal. It does this by taking energy from a power supply and controlling the output to match the input signal shape but with larger amplitude.

B. Detector Coils – Also called an “induction loop”, an electromagnetic communication or detection system which uses a moving magnet to induce an electrical current in a nearby wire.
C. Modbus RTU – a serial communications protocol use with its programmable logic controllers (PLCs). This is used in serial communication & makes use of a compact, binary representation of the data for protocol communication.

D. PLCs – (Programmable Logic Controller) A digital computer used for automation of electromechanical processes, such as control of machinery on factory assembly lines, amusement rides, or light fixtures. PLCs are used in many industries and machines.

E. Serial Communications – In telecommunication and computer science, serial communication is the process of sending data one bit at a time, sequentially, over a communication channel or computer bus. This is in contrast to parallel communication, where several bits are sent as a whole, on a link with several parallel channels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Provide Badger Meter ModMAG M2000 or prior approved equal.

2.2 Meter Components

A. Metering Tube (Detector)
 1. Consists of stainless steel tube lined with a non-conductive material. Energized detector coils around tube create a magnetic field across the diameter of the pipe. As a conductive fluid flows through the magnetic field, a voltage is induced across two electrodes; this voltage is proportional to the average flow velocity of the fluid.

B. Signal Amplifier
 1. Consists of unit which receives, amplifies, and processes the detector’s analog signal. Signal is converted to both analog and digital signals that are used to display rate of flow and totalization. Processor controls zero-flow stability, analog and frequency outputs, serial communications and a variety of other parameters. Integrated LCD display indicates rate of flow, forward and reverse totalizers and diagnostic messages. Display guides user through programmable routines.

C. Operational Requirements
 1. The flow meter system shall operate with a pulsed DC excitation frequency, and shall produce a signal output that is directly proportional and linear with the volumetric flow rate of the liquid flowing through the metering tube. The metering system shall include a metering sensor tube (detector), a signal amplifier, and the necessary connecting wiring. The metering system shall have the ability to incorporate a meter mounted or remote mounted amplifier.
 2. The signal amplifier shall be program selectable to display the following units of measure: U.S. gallons, imperial gallons, million gallons (U.S.), cubic feet, cubic meters, liters, hectar-liters, oil barrels, pounds, ounces or acre feet.
 3. Operating Principle: Electromagnetic Induction
 4. Metering Tube
a. The metering tube (detector) shall be constructed of 316 stainless steel, and rated for a maximum allowable non-shock pressure and temperature for steel pipe flanges, according to ANSI B16.5.
b. The metering tube (detector) shall be available in line size from ¼" to 54".
c. The metering tube (detector) end connections shall be carbon steel or 316 stainless steel flanged, according to ANSI B16, Class 150 and AWWA Class B standards.
d. The insulating liner material of the metering tube (detector) shall be made of a hard rubber elastomer and NSF-listed for meter sizes 4" and above, in conformance with manufacturer’s recommendation for the intended service or an NSF-listed meter option with PTFE liner.
e. The metering tube (detector) shall include two self-cleaning measuring electrodes. The electrode material shall be corrosion resistant and available in Alloy C or 316 stainless steel.
f. The metering tube (detector) shall include a third “empty pipe detection” electrode located in the upper portion of the inside diameter of the flow tube in order to detect an empty pipe condition when the flow tube is running partially empty. Empty pipe detection that is not activated until the pipe is 50% empty is not acceptable.
g. The metering tube (detector) housing shall be constructed of carbon steel, welded at all joints, and rated to meet NEMA 4X/6P (IP66/IP67) ratings.
h. For remote amplifier applications, the metering tube (detector) junction box enclosure shall be constructed of cast aluminum (powder-coated paint) and shall meet NEMA 4X/6P (IP66/IP67) ratings.
i. When installed in non-metallic or internally lined piping, the metering tube (detector) shall be provided with a pair of corrosion resistant grounding rings. The grounding ring material shall be 316 stainless steel.

5. Fluid Temperature Range
a. For remote amplifier applications, the fluid temperature range shall be -4°F to 248°F at a maximum ambient temperature of 122°F for the PTFE liner material.

6. Signal Amplifier
a. The signal amplifier shall be microprocessor based, and shall energize the detector coils with a digitally controlled pulsed DC. The excitation frequency shall be program selectable for the following: 1Hz, 3.75Hz, 7.5Hz, or 15Hz. (factory optimized to pipe size and application)
b. The signal amplifier electrical power requirement shall be 85-265VAC, 45-65Hz. The power consumption shall not exceed 15W.
c. The signal amplifier shall have an ambient temperature rating of -4°F to 140°F.
d. The signal amplifier shall include non-volatile memory capable of storing all programmable data and accumulated totalizer values in the event of a power interruption.
e. Automatic zero stability, low flow cut-off, empty pipe detection and bi-directional flow measurement shall be inherent capabilities of the signal amplifier.
f. All signal amplifier outputs shall be galvanically isolated to 250 volts.
g. The signal amplifier and remote junction enclosures shall be constructed of cast aluminum (powder-coated paint) and shall meet NEMA 4X/6P (IP66/IP67) ratings.

7. Outputs: The signal amplifier shall provide a total of four digital outputs, one analog output and one digital input.
a. Up to four open collector digital outputs, program selectable from the following: Forward pulse, reverse pulse, AMR pulse, flow set point, empty pipe alarm, flow direction, reset output, error alarm and 24V supply.
b. Up to two active digital (24 Volt) outputs, program selectable from the following: Forward pulse, reverse pulse, AMR pulse, flow set point, empty pipe alarm, flow direction, preset output, error alarm and 24V supply.
c. Up to two AC solid-state relay outputs, program selectable from the following: Frequency output, flow set point, empty pipe alarm, flow direction, preset amount and error alarm.
d. One digital input, program selectable from the following: Remote reset, batch reset and positive return to zero.
e. Advanced protocol support using Modbus/RTU.
f. One analog output programmable and scalable from the following: 0-10mA, 0-20mA, 2-10mA or 4-20mA. Voltage sourced and isolated. Max. loop resistance = 800 ohms.

D. User Interface
1. The signal amplifier shall be programmed via three function buttons.
2. Programmable parameters of the amplifier include, but are not limited to: calibration factors, totalizer resets, unit of measure, analog and pulse output scaling, flow-alarm functions, language selection, low-flow cutoff, noise dampening factor and excitation frequency selection.
3. The signal amplifier shall include a four-line, 20-character, backlit LCD interface to display the following values:
 a. Flow rate in selectable rate units
 b. Forward totalizer in selectable volume units
 c. Reverse totalizer in selectable volume units
 d. Net totalizer in selectable volume units
 e. Error or alarm messages
 f. Software revision level

E. System Performance
1. The metering system shall operate over a flow range of 0.10 to 39.4 ft/s.
2. The metering system shall perform to an accuracy ± 0.2 percent of rate for velocities greater than 1.64 ft/s, ± 0.0032 ft/s for velocities less than 1.64 ft/s.
3. The metering system shall be capable of measuring the volumetric flow rate of liquids having an electrical conductivity as low as 5.0 micromhos per centimeter.
4. The system measuring repeatability shall be <0.10% of full scale.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Follow manufacturer’s recommendation for installation. Installation will conform to the guidelines provided by the Installation & Operation Manual.
B. Straight pipe requirement shall be an equivalent of three diameters on the inlet (upstream) side, and two diameters on the outlet (downstream) side.
C. For best performance, place meter vertically, with liquid flowing upward and meter electrodes in a closed, full pipe
3.2 CALIBRATION

A. Each meter shall be hydraulically calibrated in an ISO 9000-certified testing facility, which utilizes a computerized gravimetric testing method with a measuring uncertainty of 0.1%.

B. Each meter shall be provided with a calibration certificate indicating the measured error (percent deviation) at three different flows, respectively equivalent to 25%, 50% and 75% of the nominal flow rate for each size.

3.3 RESPONSIBILITY

A. The Mechanical Contractor shall furnish and install in the flow meter in the location shown on the plans.

B. The electrical contractor shall provide power for the meter and all wiring (line and low voltage) between the flow meter and smart meter (see electrical drawings for location).

END OF SECTION 230519
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.

2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems.
 b. Variable-flow hydronic systems.

1.2 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
F. TDH: Total dynamic head.

1.3 ACTION SUBMITTALS

A. See Section 220000 “General Requirement of Plumbing and HVAC” for submittal requirements

1.4 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC, NEBB, TABB, or as approved by the Engineer prior to bidding.
B. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

E. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

PART 2 - PRODUCTS

2.1 Test and Balance Contractors:

A. the following companies are pre-approved. Companies not listed below must submit for approval prior to bidding the project:

1. TestComm, LLC, Spokane WA
2. AirCommander, Spokane, WA
3. Precision Air and Water Balance, Kalispell, MT
4. RGO, Belgrade, MT
5. Bighorn Testing, LLC, Billings, MT
6. Highlands Balancing, Bozeman, MT

PART 3 - EXECUTION

Delete Part 3.1 Examination if 3rd Party Commissioning will be provided.

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

E. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
F. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

G. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

H. Examine system pumps to ensure absence of entrained air in the suction piping.

I. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Duct systems are complete with terminals installed.
 b. Volume, smoke, and fire dampers are open and functional.
 c. Clean filters are installed.
 d. Fans are operating, free of vibration, and rotating in correct direction.
 e. Variable-frequency controllers' startup is complete and safeties are verified.
 f. Automatic temperature-control systems are operational.
 g. Ceilings are installed.
 h. Windows and doors are installed.
 i. Suitable access to balancing devices and equipment is provided.

2. Hydronics:
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete.
 d. Systems are flushed, filled, and air purged.
 e. Strainers are pulled and cleaned.
 f. Control valves are functioning per the sequence of operation.
 g. Shutoff and balance valves have been verified to be 100 percent open.
 h. Pumps are started and proper rotation is verified.
 i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 j. Variable-frequency controllers' startup is complete and safeties are verified.
 k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC’s "National Standards for Total System Balance", NEBB's "Procedural Standards for
Testing, Adjusting, and Balancing of Environmental Systems" or SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

 1. After testing and balancing, patch probe holes in ducts with plastic plugs.
 2. Coordinate with the mechanical insulation contractor to Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

 1. Measure total airflow.
a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Engineer for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.

1. Measure airflow of submain and branch ducts.
2. Adjust submain and branch duct volume dampers for specified airflow.
3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.

1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
2. Measure inlets and outlets airflow.
3. Adjust each inlet and outlet for specified airflow.
4. Re-measure each inlet and outlet after they have been adjusted.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
Verify that the system is under static pressure control.

Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.

Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:

a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
d. Adjust controls so that terminal is calling for minimum airflow.
e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.

a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

Measure fan static pressures as follows:

a. Measure static pressure directly at the fan outlet or through the flexible connection.
b. Measure static pressure directly at the fan inlet or through the flexible connection.
c. Measure static pressure across each component that makes up the air-handling system.
d. Report any artificial loading of filters at the time static pressures are measured.
7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 b. Verify that terminal units are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:
 1. Check liquid level in expansion tank.
 2. Check highest vent for adequate pressure.
 3. Check flow-control valves for proper position.
 4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
 5. Verify that motor starters are equipped with properly sized thermal protection.
 6. Check that air has been purged from the system.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Adjust pumps to deliver total design gpm.
 1. Measure total water flow.
 a. Position valves for full flow through coils.
 b. Measure flow by main flow meter, if installed.
 c. If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
2. Measure pump TDH as follows:
 a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 c. Convert pressure to head and correct for differences in gage heights.
 d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow, and verify that the pump has the intended impeller size.
 e. With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

B. Adjust flow-measuring devices installed in mains and branches to design water flows.
 1. Measure flow in main and branch pipes.
 2. Adjust main and branch balance valves for design flow.
 3. Re-measure each main and branch after all have been adjusted.

C. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 1. Measure flow at terminals.
 2. Adjust each terminal to design flow.
 3. Re-measure each terminal after it is adjusted.
 4. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
 5. Perform temperature tests after flows have been balanced.

D. For systems with pressure-independent valves at terminals:
 1. Measure differential pressure and verify that it is within manufacturer's specified range.
 2. Perform temperature tests after flows have been verified.

E. For systems without pressure-independent valves or flow-measuring devices at terminals:
 1. Measure and balance coils by either coil pressure drop or temperature method.
 2. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

F. Verify final system conditions as follows:
 1. Re-measure and confirm that total water flow is within design.
 2. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 3. Mark final settings.

G. Verify that memory stops have been set.
3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.

B. Adjust the variable-flow hydronic system as follows:

1. Verify that the differential-pressure sensor is located as indicated.
2. Determine whether there is diversity in the system.

C. For systems with no diversity:

1. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

2. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.

3. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
e. Perform temperature tests after flows have been balanced.

4. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

5. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

6. Prior to verifying final system conditions, determine the system differential-pressure set point.

7. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.

8. Mark final settings and verify that all memory stops have been set.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.

10. Verify that memory stops have been set.

D. For systems with diversity:

1. Determine diversity factor.
2. Simulate system diversity by closing required number of control valves, as approved by the design engineer.
3. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
3) Convert pressure to head and correct for differences in gage heights.
4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

4. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.

5. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
 d. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
 e. Perform temperature tests after flows have been balanced.

6. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure, and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

7. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

8. Open control valves that were shut. Close a sufficient number of control valves that were previously open to maintain diversity, and balance terminals that were just opened.

9. Prior to verifying final system conditions, determine system differential-pressure set point.
10. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.

11. Mark final settings and verify that memory stops have been set.
12. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
c. Mark final settings.

13. Verify that memory stops have been set.

3.10 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer’s name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.11 PROCEDURES FOR CHILLERS

A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:

1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.12 PROCEDURES FOR COOLING TOWERS

A. Shut off makeup water for the duration of the test, and verify that makeup and blowdown systems are fully operational after tests and before leaving the equipment. Perform the following tests and record the results:

1. Measure condenser-water flow to each cell of the cooling tower.
2. Measure condenser-water flow rate recirculating through the cooling tower.
3. Measure cooling-tower spray pump discharge pressure.
4. Adjust water level and feed rate of makeup water system.

3.13 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.
B. Record compressor data.

3.14 PROCEDURES FOR BOILERS

A. Hydronic Boilers: Measure water flow and pressure drop through the boiler.

3.15 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:
 1. Water flow rate.
 2. Water pressure drop.
 3. Airflow.
 4. Air pressure drop.

B. Measure, adjust, and record the following data for each electric heating coil:
 1. Nameplate data.
 2. Airflow.
 3. Voltage and amperage input of each phase at full load and at each incremental stage.
 4. Calculated kilowatt at full load.
 5. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each steam coil:
 1. Airflow.
 2. Air pressure drop.
 3. Inlet steam pressure.

D. Measure, adjust, and record the following data for each refrigerant coil:
 1. Airflow.
 2. Air pressure drop.

3.16 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 3. Check the refrigerant charge.
 4. Check the condition of filters.
5. Check the condition of coils.
6. Check the operation of the drain pan and condensate-drain trap.
7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:

1. New filters are installed.
2. Coils are clean and fins combed.
3. Drain pans are clean.
4. Fans are clean.
5. Bearings and other parts are properly lubricated.
6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.

1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
4. Balance each air outlet.

3.17 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.
3. Heating-Water Flow Rate: Plus or minus 10 percent.
4. Cooling-Water Flow Rate: Plus or minus 10 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.18 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers' test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Face and bypass damper settings at coils.
 d. Settings for supply-air, static-pressure controller.
 e. Other system operating conditions that affect performance.

D. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
e. Manufacturer's serial number.
f. Unit arrangement and class.
g. Discharge arrangement.
h. Sheave make, size in inches, and bore.
i. Center-to-center dimensions of sheave and amount of adjustments in inches.
j. Number, make, and size of belts.
k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Filter static-pressure differential in inches wg.
f. Preheat-coil static-pressure differential in inches wg.
g. Cooling-coil static-pressure differential in inches wg.
h. Heating-coil static-pressure differential in inches wg.
i. Outdoor airflow in cfm.
j. Return airflow in cfm.
k. Outdoor-air damper position.
l. Return-air damper position.

E. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
b. Location.
c. Coil type.
d. Make and model number.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
b. Average face velocity in fpm.
c. Air pressure drop in inches wg.
d. Water flow rate in gpm.
e. Water pressure differential in feet of head or psig.
f. Refrigerant expansion valve and refrigerant types.
g. Inlet steam pressure in psig.
F. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h.
 h. Motor horsepower and rpm.
 i. Motor volts, phase, and hertz.
 j. Motor full-load amperage and service factor.

2. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Entering-air static pressure in inches wg.
 c. Leaving-air static pressure in inches wg.
 d. Air static-pressure differential in inches wg.
 e. Low-fire fuel input in Btu/h.
 f. High-fire fuel input in Btu/h.
 g. Manifold pressure in psig.
 h. High-temperature-limit setting in deg F.
 i. Operating set point in Btu/h.
 j. Motor voltage at each connection.
 k. Motor amperage for each phase.

G. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Number of stages.
 e. Connected volts, phase, and hertz.
 f. Rated amperage.
 g. Airflow rate in cfm.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Voltage at each connection.
 d. Amperage for each phase.

H. Fan Test Reports: For supply, return, and exhaust fans, include the following:
1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

I. Air-Terminal-Device Reports:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final airflow rate in cfm.
 f. Final velocity in fpm.

J. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model number and serial number.
 f. Water flow rate in gpm.
 g. Water pressure differential in feet of head or psig.
 h. Required net positive suction head in feet of head or psig.
 i. Pump rpm.
 j. Impeller diameter in inches.
 k. Motor make and frame size.
 l. Motor horsepower and rpm.
 m. Voltage at each connection.
 n. Amperage for each phase.
 o. Full-load amperage and service factor.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
 b. Pump shutoff pressure in feet of head or psig.
 c. Actual impeller size in inches.
 d. Full-open flow rate in gpm.
 e. Full-open pressure in feet of head or psig.
 f. Final discharge pressure in feet of head or psig.
 g. Final suction pressure in feet of head or psig.
 h. Final total pressure in feet of head or psig.
 i. Final water flow rate in gpm.
 j. Voltage at each connection.
 k. Amperage for each phase.

K. Instrument Calibration Reports:
 1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.19 DUCT TESTING

A. Duct Testing is required for supply, return or exhaust ductwork that will operate at 3 inWC static pressure or greater.

B. Leakage test procedures shall follow the outlines and classifications in the SMANCA HVAC Air Duct Leakage Test Manual.
C. The Owner and mechanical engineer shall select sections of ductwork from each air handling system for duct leakage testing. The sample shall include at least five transverse joints, typical seams, and access door connections. The sample will include all medium pressure supply ductwork between the air handling unit to within 2’ of the connection to variable air volume terminal units.

D. The Air handling systems shall be tested at 3 inches w.g. and shall meet leakage Class 3.

E. If a section fails to meet allotted leakage level, the contractor shall modify the ductwork to bring it into compliance and shall retest the section until acceptable leakage is demonstrated. One retest shall will be provided by the TAB contractor. The mechanical contractor shall pay the TAB contractor for any additional retesting required.

F. All testing and necessary repairs shall be completed prior to concealment of the ductwork.

3.20 ADDITIONAL TESTS

A. Within 120 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following duct services:
 1. Indoor, Duct Insulation.
 2. Outdoor Duct Insulation.
 3. Fire Rated Duct Insulation.

B. Related Sections:
 1. Section 220716 "Plumbing and HVAC Equipment and Piping Insulation."
 2. Section 233113 "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

G. Jacketed Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation without factory-applied jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

2.2 **FIRE-RATED INSULATION SYSTEMS**

A. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 1-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

 1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. 3M.
 b. CertainTeed Corporation.
 c. Johns Manville; a Berkshire Hathaway company.
 d. Thermal Ceramics.

2.3 **ADHESIVES**

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

2.4 **MASTICS**

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: 60 percent by volume and 66 percent by weight.
2.5 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When
 factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing;
 complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a
 removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing;
 complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED JACKETS

A. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing
 membrane for installation over insulation located aboveground outdoors; consisting a
 rubberized bitumen compound; heat applied to a multi-ply embossed UV-resistant aluminum
 foil/polymer laminate, and polyester/foil multiple layer laminate with acrylic adhesive.
 1. Manufacturers: Subject to compliance with requirements, provide products by the
 following:
 a. Polyguard Products, Inc
 b. Prior Approved Equal

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive,
 complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Width: 2 inches.
 2. Thickness: 3.7 mils.
 3. Adhesion: 100 ounces force/inch in width.
 4. Elongation: 5 percent.
 5. Tensile Strength: 34 lbf/inch in width.

2.9 SECUREMENTS

A. Cupped Head Weld Pins:
 1. Material: Low carbon steel.
 2. Finish: Copper coated pins with galvanized washer

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

C. Wire: 0.080-inch nickel-copper alloy.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:

1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
d. Do not overcompress insulation during installation.
e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.5 OUTDOOR DUCT INSULATION INSTALLATION

A. Cover all sides of ductwork with jacketed mineral-fiber board insulation. Insulation on the top of the ductwork must be installed in such a manner as to allow ‘water-shed’ from the top of the duct to prevent water from ‘ponding’ on top of the ductwork.

B. Install self-adhesive outdoor jacket over board insulation according the jacket manufacturers written instructions. All joint in jacketing must overlap by 6” minimum.

C. Insulation and jacketing must be continuous and may not be interrupted by duct supports or hangers.
3.6 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078413 "Penetration Firestopping."

3.7 FINISHES

A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint outdoor ductwork.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect ductwork, randomly selected by engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

A. Insulation materials and thicknesses for ductwork are identified in the table below. If more than one material is listed for an application, selection from materials listed is at the Contractor's option. Ductwork that is not listed below or is exposed to view shall not be insulated.

<table>
<thead>
<tr>
<th>Application</th>
<th>Insulation Type</th>
<th>Installed R-Value</th>
<th>Vapor Barrier</th>
<th>Factory Installed Jacket Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Supply</td>
<td>Mineral-Fiber Blanket</td>
<td>6</td>
<td>YES</td>
<td>FSK</td>
</tr>
</tbody>
</table>
Indoor Exhaust * | Mineral-Fiber Blanket | 8 | YES | FSK
---|---|---|---|---
Indoor Type I Kitchen Exhaust | Fire-rated Insulation Systems | NA | NO | FSK
Indoor Fresh Air | Mineral-Fiber Board | 8 | YES | FSK
Outdoor Supply | Mineral-Fiber Board | 8 | YES | FSK
Outdoor Return | Mineral-Fiber Board | 8 | YES | FSK

*Indoor Exhaust Ductwork shall be insulated from the penetration of the building envelope to 10ft upstream of a backdraft of shutoff damper.

3.10 FIELD APPLIED JACKETING SCHEDULE

A. Field applied jackets for Plumbing and HVAC piping are identified in the table below. If more than one material is listed for an application, selection from materials listed is at the Contractor's option.

<table>
<thead>
<tr>
<th>Application</th>
<th>Location</th>
<th>Field Applied Jacketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply</td>
<td>Outdoor</td>
<td>Self-Adhesive Outdoor Jacket</td>
</tr>
<tr>
<td>Return</td>
<td>Outdoor</td>
<td>Self-Adhesive Outdoor Jacket</td>
</tr>
</tbody>
</table>

END OF SECTION 230713
SECTION 23 08 00 - COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this section.

B. The OPR and BOD documentation are included by reference for information only.

C. Division 01 section ‘LEED Requirements’ for additional LEED requirements.

1.2 SUMMARY

A. This section includes commissioning process requirements for HVAC&R systems, assemblies, and equipment.

B. Related Sections:

1. Division 01 Section 019113 "General Commissioning Requirements" for general commissioning process requirements.

1.3 DESCRIPTION

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for the description of commissioning.

1.4 DEFINITIONS

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for definitions.

1.5 SUBMITTALS

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for CxA’s role.

B. Refer to Division 01 Section “Submittals” for specific requirements.

C. In addition, provide the following:

1. Certificates of readiness
2. Certificates of completion of installation, prestart, and startup activities.
3. O&M manuals
4. Test reports

D. Control Drawings Submittal

1. The control drawings shall have a key to all abbreviations.
2. The control drawings shall contain graphic schematic depictions of the systems and each component.
3. The schematics will include the system and component layout of any equipment that the control system monitors, enables or controls, even if the equipment is primarily controlled by packaged or integral controls.

4. Provide a full points list with at least the following included for each point:
 a. Controlled system
 b. Point abbreviation
 c. Point description
 d. Display unit
 e. Control point or set point (Yes / No)
 f. Monitoring point (Yes / No)
 g. Intermediate point (Yes / No)
 h. Calculated point (Yes / No)

1.6 QUALITY ASSURANCE

A. Test Equipment Calibration Requirements: Contractors will comply with test manufacturer’s calibration procedures and intervals. Recalibrate test instruments immediately after instruments have been repaired resulting from being dropped or damaged. Affix calibration tags to test instruments. Furnish calibration records to CxA upon request.

1.7 COORDINATION

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to coordination during the commissioning process.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

A. All standard testing equipment required to perform startup, initial checkout and functional performance testing shall be provided by the Contractor for the equipment being tested. For example, the mechanical contractor of Division 23 shall ultimately be responsible for all standard testing equipment for the HVAC&R system and controls system in Division 23, except for equipment specific to and used by TAB in their commissioning responsibilities. A sufficient quantity of two-way radios shall be provided by each subcontractor.

B. Special equipment, tools and instruments (specific to a piece of equipment and only available from vendor) required for testing shall be included in the base bid price to the Owner and left on site, except for stand-alone data logging equipment that may be used by the CxA.

C. Proprietary test equipment and software required by any equipment manufacturer for programming and/or start-up, whether specified or not, shall be provided by the manufacturer of the equipment. Manufacturer shall provide the test equipment, demonstrate its use, and assist in the commissioning process as needed. Proprietary test equipment (and software) shall become the property of the Owner upon completion of the commissioning process.

D. Data logging equipment and software required to test equipment will be provided by the CxA, but shall not become the property of the Owner.

E. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the fol-
lowing minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5°F and a resolution of + or - 0.1°F. Pressure sensors shall have an accuracy of + or - 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year.

PART 3 - EXECUTION

3.1 GENERAL DOCUMENTATION REQUIREMENTS

A. With assistance from the installing contractors, the CxA will prepare Pre-Functional Checklists for all commissioned components, equipment, and systems.

B. Red-lined Drawings:
 1. The contractor will verify all equipment, systems, instrumentation, wiring and components are shown correctly on red-lined drawings.
 2. Preliminary red-lined drawings must be made available to the Commissioning Team for use prior to the start of Functional Performance Testing.
 3. Changes, as a result of Functional Testing, must be incorporated into the final as-built drawings, which will be created from the red-lined drawings.
 4. The contracted party, as defined in the Contract Documents will create the as-built drawings.

C. Operation and Maintenance Data:
 1. Contractor will provide a copy of O&M literature within 45 days of each submittal acceptance for use during the commissioning process for all commissioned equipment and systems.
 2. The CxA will review the O&M literature once for conformance to project requirements.
 3. The CxA will receive a copy of the final approved O&M literature once corrections have been mad by the Contractor.

D. Demonstration and Training:
 1. Contractor will provide demonstration and training as required by the specifications.
 2. A complete training plan and schedule must be submitted by the contractor to the CxA four weeks (4) prior to any training.
 3. A training agenda for each training session must be submitted to the CxA one (1) week prior the training session.
 4. The CxA shall be notified at least 72 hours in advance of scheduled tests so that testing may be observed by the CxA and Owner's representative. A copy of the test record shall be provided to the CxA, Owner, and Architect.
 5. Engage a Factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specific equipment.
 6. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, trouble shooting, servicing, and maintaining equipment.
 7. Review data in O&M Manuals.

E. Systems manual requirements:
F. 1. The Systems Manual is intended to be a usable information resource containing all of the information related to the systems, assemblies, and Commissioning Process in one place with indexes and cross references.

2. The GC shall include final approved versions of the following information for the Systems Manual:
 a. As-Built System Schematics
 b. Verified Record Drawings
 c. Test Results (not otherwise included in Cx Record)
 d. Periodic Maintenance Information for computer maintenance management system
 e. Recommendations for recalibration frequency of sensors and actuators
 f. A list of contractors, subcontracts, suppliers, architects, and engineers involved in the project along with their contact information
 g. Training Records, Information on training provided, attendees list, and any ongoing training

3. This information shall be organized and arranged by building system, such as fire alarm, chilled water, heating hot water, etc.

4. Information should be provided in an electronic version to the extent possible. Legible, scanned images are acceptable for non-electronic documentation to facilitate this deliverable.

3.2 CONTRACTOR'S RESPONSIBILITIES

A. Mechanical, Controls and TAB Contractors. The commissioning responsibilities applicable to each of the mechanical, controls and TAB contractors of Division 23 are as follows (all references apply to commissioned equipment only):

B. Perform commissioning tests at the direction of the CxA.

C. Attend construction phase controls coordination meetings.

D. Attend testing, adjusting, and balancing review and coordination meetings.

E. Participate in HVAC&R systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.

F. Provide information requested by the CxA for final commissioning documentation.

G. Include requirements for submittal data, operation and maintenance data, and training in each purchase order or sub-contract written.

H. Prepare preliminary schedule for Mechanical system orientations and inspections, operation and maintenance manual submissions, training sessions, pipe and duct system testing, flushing and cleaning, equipment start-up, testing and balancing and task completion for owner. Distribute preliminary schedule to commissioning team members.

I. Update schedule as required throughout the construction period.

J. During the startup and initial checkout process, execute the related portions of the prefunctional checklists for all commissioned equipment.

K. Assist the CxA in all verification and functional performance tests.
L. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

M. Gather operation and maintenance literature on all equipment, and assemble in binders as required by the specifications. Submit to CxA (45) days after submittal acceptance.

N. Coordinate with the CxA to provide (48) hour advance notice so that the witnessing of equipment and system start-up and testing can begin.

O. Notify the CxA a minimum of (2) weeks in advance of the time for start of the testing and balancing work. Attend the initial testing and balancing meeting for review of the official testing and balancing procedures.

P. Participate in, and schedule vendors and contractors to participate in the training sessions.

Q. Provide written notification to the CM/GC and CxA Authority that the following work has been completed in accordance with the contract documents, and that the equipment, systems, and sub-system are operating as required.
 1. HVAC&R equipment including all fans, air handling units, ductwork, dampers, terminals, and all other equipment furnished under this Division.
 2. Fire stopping in the fire rated construction, including fire and smoke damper installation, caulking, gasketing and sealing of smoke barriers.
 3. Fire detection and smoke detection devices furnished under other divisions of the specification.

R. The equipment supplier shall document the performance of his equipment.

S. Provide a complete set of red-lined drawings to the CxA prior to the start of Functional Performance Testing.

T. Test, Adjust and Balance Contractor
 1. Attend initial commissioning coordination meeting scheduled by the Commissioning Authority.
 2. Submit the site specific testing and balancing plan to the CxA and AE for review and acceptance.
 3. Attend the testing and balancing review meeting scheduled by the CxA. Be prepared to discuss the procedures that shall be followed in testing, adjusting, and balancing the HVAC&R system.
 4. At the completion of the testing and balancing work, and the submittal of the final testing and balancing report, notify the HVAC&R contractor and the CM/GC.
 5. At the completion of testing and balancing work, and the submittal of the final testing and balancing report, notify the HVAC&R Contractor and the CM/GC.
 6. Participate in verification of the testing and balancing report, which will consist of repeating measurements contained in the testing and balancing reports. Assist in diagnostic purposes when directed.

U. Provide training of the Owner’s operating staff using expert qualified personnel, as specified.

V. Equipment Suppliers
 1. Provide all requested submittal data, including detailed start-up procedures and specific responsibilities of the Owner, to keep warranties in force.
 2. Assist in equipment testing per agreements with contractors.
 3. Provide information requested by CxA regarding equipment sequence of operation and testing procedures.
W. Refer to Division 01 Section “General Commissioning Requirements” for additional contractor responsibilities.

3.3 OWNER’S RESPONSIBILITIES

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for Owner’s Responsibilities.

3.4 DESIGN PROFESSIONAL’S RESPONSIBILITIES

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for Design Professional’s Responsibilities.

3.5 CxA’S RESPONSIBILITIES

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for CxA’s Responsibilities.

3.6 TESTING PREPARATION

A. Certify in writing to the CxA that HVAC&R systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.

B. Certify in writing to the CxA that HVAC&R instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.

C. Certify in writing that testing, adjusting, and balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.

D. Place systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).

E. Inspect and verify the position of each device and interlock identified on checklists.

F. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.

G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.7 TESTING, ADJUSTING AND BALANCING VERIFICATION

A. Prior to performance of Testing, Adjusting and Balancing work, provide copies of reports, sample forms, checklists, and certificates to the CxA.

B. Notify the CxA at least ten (10) days in advance of testing and balancing Work, and provide access for the CxA to witness testing and balancing Work.
C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC&R systems at the direction of the CxA.

1. The CxA will notify testing and balancing subcontractor ten (10) days in advance of the date of field verification. Notice will not include data points to be verified.
2. The testing and balancing subcontractor shall use the same instruments (by model and serial number) that were used when original data were collected.
3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.
4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

3.8 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.

B. Scope of HVAC&R testing shall include entire HVAC&R installation, from central equipment for heat generation and refrigeration through distribution systems to each conditioned space. Testing shall include measuring capacities and effectiveness of operational and control functions.

C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.

D. The CxA along with the HVAC&R contractor, testing and balancing Subcontractor, and HVAC&R Instrumentation and Control Subcontractor shall prepare detailed testing plans, procedures, and checklists for HVAC&R systems, subsystems, and equipment.

E. Tests will be performed using design conditions whenever possible.

F. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

G. The CxA may direct that set points be altered when simulating conditions is not practical.

H. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.

I. If tests cannot be completed because of a deficiency outside the scope of the HVAC&R system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.

J. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.
3.9 HVAC&R SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

A. Equipment Testing and Acceptance Procedures: Testing requirements are specified in individual Division 23 sections. Provide submittals, test data, inspector record, and certifications to the CxA.

B. HVAC&R Instrumentation and Control System Testing: Field testing plans and testing requirements are specified in Division 23 Section 230993 "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls." Assist the CxA with preparation of testing plans.

C. Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment: Test requirements are specified in Division 23 piping Sections. HVAC&R Contractor shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan. Provide cleaning, flushing, testing, and treating plan and final reports to the CxA. Plan shall include the following:

1. Sequence of testing and testing procedures for each section of pipe to be tested, identified by pipe zone or sector identification marker. Markers shall be keyed to Drawings for each pipe sector, showing the physical location of each designated pipe test section. Drawings keyed to pipe zones or sectors shall be formatted to allow each section of piping to be physically located and identified when referred to in pipe system cleaning, flushing, hydrostatic testing, and chemical treatment plan.
2. Description of equipment for flushing operations.
4. Tracking checklist for managing and ensuring that all pipe sections have been cleaned, flushed, hydrostatically tested, and chemically treated.

D. Refrigeration System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of chillers, cooling towers, refrigerant compressors and condensers, heat pumps, and other refrigeration systems. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.

E. HVAC&R Distribution System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of air, steam, and hydronic distribution systems; special exhaust; and other distribution systems, including HVAC&R terminal equipment and unitary equipment.

F. The work included in the commissioning process involves a complete and thorough evaluation of the operation and performance of all components, systems and sub-systems. The following equipment and systems shall be evaluated:

1. Steam Heat Exchangers
2. Pumps/Piping Systems
3. Cooling Tower
4. Air Handling Units
5. ERV Unit
6. Heat Pumps
7. Building Automation System (see below)
8. Cabinet Unit Heater
9. Solar Wall
10. Exhaust Fans/Hoods
11. Glycol Make-up System
12. Verification of Testing, Adjusting and Balancing
13. VFD
3.10 DEFIENCIES/NON-CONFORMANCE, COST OF RETESTING, FAILURE DUE TO MANUFACTURER DEFECT

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for requirements pertaining to deficiencies/non-conformance, cost of retesting, or failure due to manufacturer defect.

3.11 APPROVAL

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for approval procedures.

3.12 DEFERRED TESTING

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to deferred testing.

3.13 OPERATION AND MAINTENANCE MANUALS

A. The Operation and Maintenance Manuals shall conform to Contract Documents requirements as stated in Division 01.

B. Refer to Division 01 Section “General Commissioning Requirements” for the AE and CxA roles in the Operation and Maintenance Manual contribution, review and approval process.

C. An updated as-built version of the control drawings and sequences of operation shall be included in the final controls O&M manual submittal.

3.14 TRAINING OF OWNER PERSONNEL

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for requirements pertaining to training.

B. All training will be performed in duplicate for two separate sets of trade groups.

C. Mechanical Contractor. The mechanical contractor shall have the following training responsibilities:

1. Provide the CxA with a training plan two weeks before the planned training.
2. Provide designated Owner personnel with comprehensive orientation and training in the understanding of the systems and the operation and maintenance of each piece of HVAC equipment including, but not limited to, all HVAC equipment (ex. pumps, heat exchangers, chillers, heat rejection equipment, air conditioning units, air handling units, fans, terminal units, controls and water treatment systems, etc.)
3. Training shall normally start with classroom sessions followed by hands-on training on each piece of equipment, which shall illustrate the various modes of operation, including startup, shutdown, fire/smoke alarm, power failure, etc.
4. During any demonstration, should the system fail to perform in accordance with the requirements of the O&M manual or sequence of operations, the system will be repaired or adjusted as necessary and the demonstration repeated.
5. The appropriate trade or manufacturer’s representative shall provide the instructions on each major piece of equipment. This person may be the start-up technician for the piece of equipment, the installing contractor or manufacturer’s representative. Practical building operating expertise as well as in-depth knowledge of all modes of operation of the specific piece of equipment are required. More than one party may be required to execute the training.

6. The controls contractor shall attend sessions other than the controls training, as requested, to discuss the interaction of the controls system as it relates to the equipment being discussed.

7. The training sessions shall follow the outline in the Table of Contents of the operation and maintenance manual and illustrate whenever possible the use of the O&M manuals for reference.

8. Training shall include:
 a. Use of the printed installation, operation and maintenance instruction material included in the O&M manuals.
 b. A review of the written O&M instructions emphasizing safe and proper operating requirements, preventative maintenance, special tools needed and spare parts inventory suggestions. The training shall include start-up, operation in all modes possible, shut-down, seasonal changeover and any emergency procedures.
 c. Discussion of relevant health and safety issues and concerns.
 d. Discussion of warranties and guarantees.
 e. Common troubleshooting problems and solutions.
 f. Explanatory information included in the O&M manuals and the location of all plans and manuals in the facility.
 g. Discussion of any peculiarities of equipment installation or operation.
 h. The format and training agenda in The HVAC Commissioning Process, ASHRAE Guideline 1-2007, is recommended.

9. Hands-on training shall include start-up, operation in all modes possible, including manual, shut-down and any emergency procedures and preventative maintenance for all pieces of equipment.

10. The mechanical contractor shall fully explain and demonstrate the operation, function and overrides of any local packaged controls, not controlled by the central control system.

11. Training shall occur after functional testing is complete, unless approved otherwise by the Owner.

D. Controls Contractor. The controls contractor shall have the following training responsibilities:

1. Provide the CxA and AE with a training plan four weeks before the planned training.

2. The controls contractor shall provide designated Owner personnel training on the control system in this facility. The intent is to clearly and completely instruct the Owner on all the capabilities of the control system.

3. Training manuals. The standard operating manual for the system and any special training manuals will be provided for each trainee, with three extra copies left for the O&M manuals. In addition, copies of the system technical manual will be demonstrated during training and three copies submitted with the O&M manuals. Manuals shall include
detailed description of the subject matter for each session. The manuals will cover all control sequences and have a definitions section that fully describes all relevant words used in the manuals and in all software displays. Manuals will be approved by the CxA and AE. Copies of audiovisuals shall be delivered to the Owner.

4. The trainings will be tailored to the needs and skill-level of the trainees.

5. The trainers will be knowledgeable on the system and its use in buildings. For the on-site sessions, the most qualified trainer(s) will be used. The Owner shall approve the instructor prior to scheduling the training.

6. During any demonstration, should the system fail to perform in accordance with the requirements of the O&M manual or sequence of operations, the system will be repaired or adjusted as necessary and the demonstration repeated.

7. The controls contractor shall attend sessions other than the controls training, as requested, to discuss the interaction of the controls system as it relates to the equipment being discussed.

8. There shall be three (3) training sessions:

a. Training I. Control System. The first training shall consist of 8 hours of actual training. This training may be held on-site or in the supplier's facility. If held off-site, the training may occur prior to final completion of the system installation. Upon completion, each student, using appropriate documentation, should be able to perform elementary operations and describe general hardware architecture and functionality of the system.

b. Training II. Building Systems. The second session shall be held on-site for a period of 8 hours of actual hands-on training after the completion of system commissioning. The session shall include instruction on:

1) Specific hardware configuration of installed systems in this building and specific instruction for operating the installed system, including HVAC systems, lighting controls and any interface with security and communication systems.

2) Security levels, alarms, system start-up, shut-down, power outage and restart routines, changing set points and alarms and other typical changed parameters, overrides, freeze protection, manual operation of equipment, optional control strategies that can be considered, energy savings strategies and set points that if changed will adversely affect energy consumption, energy accounting, procedures for obtaining vendor assistance, etc.

3) All trending and monitoring features (values, change of state, totalization, etc.), including setting up, executing, downloading, viewing both tabular and graphically and printing trends. Trainees will actually set-up trends in the presence of the trainer.

4) Every screen shall be completely discussed, allowing time for questions.

5) Use of keypad or plug-in laptop computer at the zone level.

6) Use of remote access to the system via phone lines or networks.

7) Setting up and changing an air terminal unit controller.

8) Graphics generation

9) Point database entry and modifications

10) Understanding DDC field panel operating programming (when applicable)
c. Training III. The third training will be conducted on-site six months after occupancy and consist of 8 hours of training. The session will be structured to address specific topics that trainees need to discuss and to answer questions concerning operation of the system.

E. TAB. The TAB contractor shall have the following training responsibilities:

1. TAB shall meet for 4 hours with facility staff after completion of TAB and instruct them on the following:

 a. Go over the final TAB report, explaining the layout and meanings of each data type.
 b. Discuss any outstanding deficient items in control, ducting or design that may affect the proper delivery of air or water.
 c. Identify and discuss any terminal units, duct runs, diffusers, coils, fans and pumps that are close to or are not meeting their design capacity.
 d. Discuss any temporary settings and steps to finalize them for any areas that are not finished.
 e. Other salient information that may be useful for facility operations, relative to TAB.

END OF SECTION 23 08 00
SECTION 230900 - HVAC CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes systems for monitoring and controlling for HVAC systems.

B. The HVAC controls shall consist of a system of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment and programmed to control mechanical systems. A PC or handheld device (tablet) permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

C. Related Requirements:
1. See Section 230993 "Sequence of Operations for HVAC Controls" for requirements that relate to this Section.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC for additional submittal requirements.

B. Product Data: For each control device.

C. Shop Drawings:

1. Schematic drawings for each controlled HVAC system indicating the following:

 1. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 2. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 3. A graphic showing location of control I/O in proper relationship to HVAC system.
 4. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 5. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
 6. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.
 7. Narrative sequence of operation.
 8. Graphic sequence of operation, showing all inputs and output logical blocks.

2. DDC system network riser diagram indicating the following:

 1. Each device connected to network with unique identification for each.
2. Interconnection of each different network in DDC system.
3. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or optical fiber cable type. Indicate raceway type and size for each.
4. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.

3. DDC system electrical power riser diagram indicating the following:
 1. Each point of connection to field power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
 2. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
 3. Each product requiring power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
 4. Power wiring type and size, race type, and size for each.

4. Monitoring and control signal diagrams indicating the following:
 1. Control signal cable and wiring between controllers and I/O.
 2. Point-to-point schematic wiring diagrams for each product.
 3. Control signal tubing to sensors, switches and transmitters.
 4. Process signal tubing to sensors, switches and transmitters.

5. Color graphics indicating the following:
 1. Itemized list of color graphic displays to be provided.
 2. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.
 3. Intended operator access between related hierarchical display screens.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data

 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 1. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 2. As-built versions of submittal Product Data.
 3. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 4. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
 5. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
 6. List of recommended spare parts with part numbers and suppliers.
7. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
8. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
10. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
11. Owner training materials

1.4 COORDINATION

A. Pre-engineering Conference
 1. Prior to preparation of submittals and within 45 days of the award of the general construction contract, a pre-engineering conference will be conducted at the offices of the owner. The purpose and scope of this conference is to have the Temperature Controls Contractor present their proposed systems, architecture and communications protocols such that the basic architecture/configuration, communications and combined systems capabilities can be determined and approved.
 2. Attendees at this conference, at a minimum, shall be the Temperature Controls Contractor’s application engineer/programmer, the Engineer, The Owner’s representative(s) the commissioning agent, and, at the contractors option, any other sub-contractors or general contractors representatives deemed appropriate.
 3. A minimum of four (4) hours shall be allocated for this conference.

B. Pre-installation Conference
 1. The purpose and scope of this conference is to have the Temperature Controls Contractor present their systems, programs, graphics and basic methods of operation of the system for review and approval. This conference shall include a “walk through” of all of the graphics screens, the logic and programming, the final system architecture, the final review of the sequence of operations and any other topics that may arise. The contractor shall make the presentation using a lap top and a projector to present the actual programs, graphics and logic that is contained on the programming computer specific to this project.
 2. This Conference shall be schedules approximately 30 days prior to starting of any HVAC equipment or installation of any programming into the building controllers on-site.
 3. Attendees at this conference, at a minimum, shall be the Temperature Controls Contractor’s application engineer/programmer, the Engineer, The Owner’s representative(s) the commissioning agent, and, at the contractors option, any other sub-contractors or general contractors representatives deemed appropriate.
 4. A minimum of eight (8) hours shall be allocated for this conference.

C. Pre Demonstration Conference
 1. Prior to demonstration of the system to the Owner, the Temperature Control Contractor shall meet with the owner to discuss how the system will be started, tested and demonstrated. Prior to or during this conference, the contractor shall provide the owner with a schedule of all proposed demonstrations, training, starting, testing and commissioning activities.
1.5 TESTING AND BALANCING
 A. The temperature control contractor shall have a technician present at the jobsite during testing and balancing of the HVAC systems to assist with making adjustment to the system.

1.6 COMMISSIONING
 A. The temperature control contractor shall have a technician present at the jobsite during Commissioning of the HVAC systems.

1.7 WIRING
 A. All low and live voltage wiring required by the HVAC Controls shall be the responsibility of the Temperature Controls Contractor. All low voltage wiring must be installed by direct employees of the Temperature Control Contractor. The installation of low voltage wiring may not be sub-contracted. The Temperature Control Contractor shall coordinate the installation of line voltage wiring required by the HVAC controls with the project electrical contractor. All wiring shall comply with the provisions in Division 26 and current local codes.

 B. All low and line voltage wiring required by the HVAC controls shall be installed in conduit. Installation of all conduit required by the HVAC Controls shall be installed by the Temperature Controls Contractor and in accordance with 260533 "Raceways and Boxes for Electrical Systems". Low and line voltage wiring shall be installed in separate conduits.

1.8 VARIABLE FREQUENCY DRIVES
 A. Variable frequency drives not supplied with the mechanical equipment shall be provided and installed by the Temperature Control Contractor. Coordinate the installation of all associated line voltage wiring with the electrical contractor.

1.9 UNINTERUPTABLE POWER SUPPLIES (UPS)
 A. Provide uninterruptable power supply and surge protector for all digital control systems to prevent power surges and short-term power outages (less than 5 min) from affecting stability of control systems.

1.10 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

 B. Installing contractor shall specialize in performing Work of this section with minimum three years documented experience approved by manufacturer.
C. Installing contractor shall be a franchised or direct representative of the control system manufacturer.

D. System shall be that of a contractor who regularly designs, installs and services HVAC temperature control systems as their primary function and must have a history of at least six years in that field.

E. The installing contractor shall have operated a permanent office for at least the past two years within 200 miles of the job site. The company shall have not less than three factory certified resident personnel who provide engineering, design, installation, troubleshooting and maintenance services.

F. The contractor shall provide ability to respond in person with factory certified personnel within 24 hours of a service call from the owner, regardless of time of day, day of week, holiday or other factors. The contractor shall also demonstrate ability to respond to an owner service call via telephone and/or e-mail within two hours, regardless of time of day, day of week, holiday or other factors.

1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.

1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
2. Include updates or upgrades to software and firmware if necessary to resolve deficiencies.
 1. Install updates only after receiving Owner's written authorization.
3. Warranty service shall occur during normal business hours and commence within 24 hours of Owner's warranty service request.
4. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DDC SYSTEM INSTALLERS

A. The following companies are pre-approved. Companies not listed below must submit for approval prior to bidding the project:

1. Johnson Controls, Inc.; Controls Group.
2. Facility Improvement Corp, Helena, MT.
3. Electro Controls, Missoula, MT.
4. Mechanical Technology, Inc., Billings, MT.
B. Provide a complete temperature control system including all required sensors, actuators, switched, relays, valves, dampers, controllers, user interfaces and programming required for a complete system and to provide the functionality listed in the sequence of operations.

C. The temperature control system shall allow the building owner to remotely access the control system to monitor and make adjustments.

D. The Temperature Control Contractor shall coordinate the connection of the Control system to the owner’s network and the internet.

E. The Temperature Control Contractor shall maintain a remote connection to the control system to assist the owner with monitoring, adjusting and troubleshooting for a period of 1 year following substantial completion.

2.2 NETWORK AREA CONTROLLER (NAC)

A. The contractor shall be responsible for programming the existing Network Area Controller (NAC) to accommodate the additional functions as part of this contract.

B. The Network Area Controller (NAC) shall provide the interface between the LAN or WAN and the field control devices, and provide global supervisory control functions over the control devices connected to the NAC. It shall execute application control programs to provide:

1. Calendar functions
2. Scheduling
3. Trending
4. Alarm monitoring and routing
5. Time synchronization
6. Integration of LonWorks controller data and BACnet controller data
7. Network Management functions for all LonWorks based devices

C. Control equipment and network failures shall be treated as alarms and annunciated.

D. Alarms shall be annunciated in any of the following manners as defined by the user:

1. Screen message text
2. Email of the complete alarm message to multiple recipients. Provide the ability to route and email alarms based on:
 1. Day of week
 2. Time of day
 3. Recipient
3. Pagers via paging services that initiate a page on receipt of email message
4. Graphic with flashing alarm object(s)
5. Printed message, routed directly to a dedicated alarm printer
6. Dial up to a secondary security office.

E. The following shall be recorded by the NAC for each alarm (at a minimum):

1. Time and date
2. Location (building, floor, zone, room number, etc.)
3. Equipment (air handler #, accessway, etc.)
4. Acknowledge time, date, and user who issued acknowledgement.
5. Number of occurrences since last acknowledgement.

F. Alarm actions may be initiated by user defined programmable objects created for that purpose.

G. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.

H. A log of all alarms shall be maintained by the NAC and/or a server (if configured in the system) and shall be available for review by the user.

I. Provide a “query” feature to allow review of specific alarms by user defined parameters.

J. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.

K. An Error Log to record invalid property changes or commands shall be provided and available for review by the user.

L. The NAC shall collect data for any property of any object and store this data for future use.

M. The data collection shall be performed by log objects, resident in the NAC that shall have, at a minimum, the following configurable properties:
 1. Designating the log as interval or deviation.
 2. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.
 3. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.
 4. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.
 5. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.

N. All log data shall be stored in a relational database in the NAC.

O. Note that the contractor will configure the system, tailored to the Owner’s request, to archive logs to the server automatically based upon one or more of the four criteria above. This will be determined at the preinstallation conference.
2.3 GRAPHICAL USER INTERFACE

A. Operating System: To run on the latest release of Windows or MAC OS.

B. Provide programming as necessary to create the additional graphics.

C. Graphics shall provide “quick links” or “jump tags” from an operating graphic directly to a trend, by left clicking on the numerical value to be trended.

D. The system graphics shall be expanded and organized so as to provide a logical, functional grouping of data on each graphical page(s) with pertinent information and functional devices for each system. Each page shall have “buttons” which will be for linking or navigating to all the other screens created for this system. This includes links to the scheduling and alarm functions in the system. On all pages, each button will display a red flashing condition if an alarm exists on its respective system depicted on that screen.

E. Graphics shall include:
 1. Graphics shall be dynamic, indicating status of fans, pumps, dampers and valves.
 2. All outputs shall be overridable.
 3. All overridden points shall be indicated as such on the graphic.
 4. All setpoints shall be adjustable on the respective graphics page. Include an option to return to a default setpoint.
 5. All logs of inputs and outputs shall be accessed by clicking on the point.

F. At a minimum, the graphical pages shall be arranged as follows. The final layout and grouping of the pages and points shall be determined at the pre engineering conference, and this shall be used as a basic guideline for graphical page creation.

 1. Main Page – The existing main page shall include “link buttons” to all other pages added to the system. These buttons may be arranged along the top, bottom, or side of the page, and also may be arranged as a menu “tree” along the side of the page. The “menu tree” will provide access to other pages such as alarm pages, scheduling functions, log/trend functions, etc.
 2. Provide an overall graphics page showing the new controls with links to individual pages. Show clearly if the north or south zone is in a heating or cooling mode. All temperature points shall be shown on the graphics.
 3. At a minimum, the following type of equipment or systems shall have graphics pages.
 1. Cooling Towers
 2. Pumps
 3. Heat Exchanges
 4. Heat Pumps: Air and Water Source
 5. Air Handling Units
 6. Exhaust Fans
 7. Exhaust Hoods
 8. Make-up Air Units
 9. Heat Recovery Units
 10. Domestic Hot Water Heaters
11. **Floor Plan Layout showing all equipment.**

2.4 DDC CONTROLLERS

A. DDC system shall consist of a combination of network controllers, programmable application controllers and application-specific controllers to satisfy performance requirements indicated.

B. DDC controllers shall perform monitoring, control, energy optimization and other requirements indicated.

C. DDC controllers shall use a multitasking, multiuser, real-time digital control microprocessor with a distributed network database and intelligence.

D. Each DDC controller shall be capable of full and complete operation as a completely independent unit and as a part of a DDC system wide distributed network.

E. DDC Controller Spare I/O Point Capacity: Include 10% spare I/O point capacity for each controller.

F. Maintenance and Support: Include the following features to facilitate maintenance and support:
 1. Mount microprocessor components on circuit cards for ease of removal and replacement.
 2. Means to quickly and easily disconnect controller from network.
 3. Means to quickly and easily access connect to field test equipment.
 4. Visual indication that controller electric power is on, of communication fault or trouble, and that controller is receiving and sending signals to network.

2.5 PROGRAMMABLE APPLICATION CONTROLLERS

A. General Programmable Application Controller Requirements:
 1. Include adequate number of controllers to achieve performance indicated.
 2. Controller shall have enough memory to support its operating system, database, and programming requirements.
 3. Data shall be shared between networked controllers and other network devices.
 4. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 5. Controllers shall have a real-time clock.
 6. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
 7. Controllers shall be fully programmable.

B. Communication:
 1. Programmable application controllers shall communicate with other devices on network.

C. Operator Interface:
1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or mobile device.

2. Local Keypad and Display:
 1. Equip controller with local keypad and digital display for interrogating and editing data.
 2. Use of keypad and display shall require security password.

D. Serviceability:
 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.6 APPLICATION-SPECIFIC CONTROLLERS

A. Description: Microprocessor-based controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. Controllers are not fully user-programmable but are configurable and customizable for operation of equipment they are designed to control.

 1. Capable of standalone operation and shall continue to include control functions without being connected to network.
 2. Data shall be shared between networked controllers and other network devices.

B. Communication: Application-specific controllers shall communicate with other application-specific controller and devices on network, and to programmable application and network controllers.

C. Operator Interface: Controller shall be equipped with a service communications port for connection to a portable operator's workstation. Connection shall extend to port on space temperature sensor that is connected to controller.

D. Serviceability:
 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 3. Controller shall use nonvolatile memory and maintain all BIOS and programming information in event of power loss.

2.7 WORK STATION (PC)

A. Description: Laptop computer

B. Performance Requirements:
1. Performance requirements may dictate equipment exceeding minimum requirements indicated.
2. Energy Star compliant.
3. Hardware and software shall support local down-loading to DDC controllers.
4. Data transfer rate to DDC controller shall be at network speed.

C. Processor:

1. Minimum Processor Speed: 2.3GHz.
2. RAM:
 1. Capacity: 4 GB.
 2. Speed and Type: 2,133 MHz, DDR4.
3. Hard Drive:
 1. Media: Solid state.
 2. Number of Hard Drives: One.
 3. Capacity: 128GB.
4. Video Card: 1 GB of RAM.

D. Input and Output Ports:

1. Serial port.
2. Shared port for external keyboard or mouse.
3. Four USB 3.0 ports.
4. HDMI port.
5. Ethernet port.
6. IEEE 1394 port.

E. Battery:

1. Capable of supporting operation of portable workstation for a minimum of 8 hours.
2. Battery life of at least three years.
3. Battery charge time of less than three hours.

F. Keyboard:

1. 85-key backlit keyboard.
2. Full upper- and lowercase ASCII keyset.

G. Integral Pointing Device: Touchpad with two buttons or equivalent pointing device.

H. Display:

1. 14 diagonal or larger high-definition WLED color display.
2. Antiglare screen.

I. Network Interface Card: Include card with connection, as application.

1. 10-100-1000 base TX Ethernet with RJ45 connector port.
2. 100 base FX Ethernet with SC or ST port.

J. Digital Video Disc Rewrite Recorder (DVD+-RW):

1. Compatible with DVD disks and data, audio, recordable and rewritable compact disks.

K. Accessories:

1. Nylon carrying case.
2. Mobile broadband card.
3. Category 6a patch cable. Minimum cable length shall be 10 ft.

2.8 VARIABLE-FREQUENCY DRIVES

A. The VFD is used to vary the speed of three-phase AC motors which proportionally varies the volume/flow of fans/pumps as used in heating, ventilation, air-conditioning, and process systems.

B. Manufacturers:

1. All VFDs provided by DIV 23 shall be from the same manufacturer.
2. Provide product from one of the following:
 1. Danfoss
 2. ADD

C. VFD Output Power: The VFD output power shall vary frequency to the motor from 0 to 400 Hz with resultant motor speed varying at the motor nameplate rated speed, with output voltage variation from zero to motor rated voltage for optimum volts per hertz (V/Hz) ratio for fan and pump loads. Output current shall be rated 215% of motor full load amps (FLA) for 1 minute based upon VFD's variable torque FLA rating (or 150% based upon VFD's constant torque rating). The output must be a voltage source type generating a sine coded PWM waveform utilizing an asynchronous carrier frequency (output transistor switching frequency is to be independent of drive output frequency) up to 15,000 Hz. This carrier frequency shall be adjustable to minimize harmonically induced noise or vibration. This must be accomplished using a microprocessor based technique which forms a true sine coded current waveform to the motor for smooth performance at all speeds.

D. VFD Power Structure: The VFD power structure which converts the input AC power to variable frequency output power shall consist of three functional stages:

1. Input Stage: The VFD power input stage shall convert three-phase AC line power to a fixed DC bus voltage. This will be accomplished with a solid state three-phase fullwave diode rectifier with metal oxide varistor (MOV) three-phase protection. Displacement power factor shall be .98 throughout the speed range or power factor correcting capacitors will be provided. Drive shall not cause voltage line notching or input isolation transformer is to be provided.
2. Intermediate Stage: The VFD intermediate power stage shall be interfaced with the VFD diagnostic to provide continuous monitoring for VFD power component protection. The DC bus shall be fused for short circuit power protection. The DC bus shall have capacitive filtering to provide smooth DC power to the output power stage.
3. Output Stage: The VFD output stage shall utilize switching transistors to convert DC bus power to sine-coded PWM voltage source power for motor control. Current transformers
(CTs) shall be utilized to detect the output current of all three phases to the motor. This three-phase current detection shall be utilized by the microprocessor to generate information for:

1. Electronic thermal motor overload protection or provide external thermal overload.
2. Three-phase current limit.
3. Ground fault and short circuit protection or an isolation transformer.
4. Speed search that allows drive to start into a rotating motor, or provide a time delay relay or a mechanical brake to accomplish this.

4. Insulated Gate Bipolar Transistors (IGBTs) shall be utilized in the inverter output section, enabling a fixed carrier frequency of 15 KHz, with performance results of:
 1. Reduction of induced magnetic audible motor noise such that, under VFD power, motor noise will not increase by more than 2dB (@ 1 meter) above across-the-line power, or an output reactor shall be utilized to reduce this noise.
 2. Maximum torque per amp performance of motor such that start at minimum output frequency of 1.5 Hz will produce 100% full load motor torque without use of extreme levels of voltage boost.
 3. Reduced motor heat rise above ambient, thereby reducing stress on motor insulation and mechanical components and thus increasing motor life.

E. Operation/Protective Functions
1. DC injection braking with start frequency, current limit and time duration all adjustable, and selectable for either stop (deceleration braking) or braking before start (anti-windmill) or provide a mechanical brake (for anti-windmill).
2. In order to avoid mechanical resonant vibrations drive shall have 3 prohibited frequency ranges with an adjustable span of 0 to 10 Hz, or provide a programmable logic controller (PLC) that provides a speed reference signal to the drive which can have portions of the signal locked out or interrupted to avoid these resonant points.
3. Speed search shall allow drive to start into a rotating motor, or provide a time delay relay or a mechanical brake to accomplish a safe restart.
4. Detection of auto speed reference loss whereby the drive automatically drops to a preset speed upon loss of auto speed command signal, or provide discrete logic or programmable logic controller to accomplish.
5. Auto restart shall be programmable for up to ten attempts and is fault selective, or provide a programmable logic controller to monitor the fault and selectively restart.
6. Power loss ride thru of 2 seconds duration, or provide an external capacitor or battery back-up or uninterruptible power supply (UPS).
7. A programmed reverse run inhibit shall be provided to prevent reverse rotation of motor for fans or pumps.
8. An up-down setter, also known as on-off, incremental or floating point control, shall be provided that allows a set of contacts to increase or decrease output frequency and, when contacts are opened, will then hold that frequency.

F. VFD Control Terminal Functions
1. The VFD shall include a control terminal strip for the purpose of accepting external control commands. These shall include:
2. Forward Run/Stop: A command from any normally-open contact shall cause the VFD to run.
3. Speed Reference input: Shall accept either a manual speed pot signal or an instrument follower signal of:
 1. 1. 0 to 10 VDC
 2. 2. 4 to 20 mA current
3. 3. 1 to 5 VDC

4. Multi-function output contacts shall be provided: one shall be a relay contact rated for 1A at 230VAC or 30VDC; two shall be open collector outputs rated for 48VDC at 50mA. All shall be individually programmable for any of the following indications:
 1. Run mode
 2. Zero speed detect
 3. Over torque detect
 4. Speed synchronization
 5. Output frequency detect
 6. Low voltage detect
 7. Operation ready
 8. Coast to stop detect
 9. Run reference mode
 10. Speed reference mode
 11. Speed reference missing
 12. Braking resistor fault
 13. Drive fault
 14. Firestat/freezestat

5. Output Fault Relay Contact: A form C fault relay contact shall be provided for remote indication that the VFD diagnostic has detected a fault condition and can be selectively activated when either a fault initially occurs or after final (unsuccessful) auto restart attempt. This contact shall be rated for 1A at 230 VAC or 30 VDC.

6. Terminal that will accept contact closure for remote switching between local/remote control (or H.O.A.).

7. Multi-function input terminals that will accept freezestat of firestat signals or any external fault signal that will then shut down the drive and give a digital readout, or provide external relays and indicating lights to accomplish this.

8. A multi-function analog output signal shall be provided, selectable for 0 to 10 VDC signal proportional to either output frequency or output current.

G. Local Operator Control: The VFD shall have a front mounted sealed touch-pad operator to include:
 1. Local speed command.
 2. Reset push button.
 3. Digital output frequency meter and speed reference meter which both can be reprogrammed for other speed related indications, including RPM, CFM, FPM, etc., or provide an integrally mounted meter.
 4. Digital voltmeter, or provide integrally mounted meter.
 5. Digital kilowattmeter, or provide integrally mounted meter.
 6. Digital ammeter, or provide integrally mounted meter.
 7. Input and output terminal status indication, or provide a programmable logic controller to monitor drive terminals and provide status.
 8. Ability to program various control functions without necessity of stopping Drive while in Run mode, including but not limited to the following.
 1. Acceleration and deceleration
 2. Frequency command bias & gain
 3. Torque compensation
 4. Slip compensation
 5. Energy savings gain
 6. Multi-step speed references
9. Digital diagnostic indication and protection for:
 1. DC bus undervoltage
 2. DC bus over voltage
 3. Load over torque
 4. Fuse blown
 5. Motor overload
 6. VFD overload
 7. Heatsink over temperature
 8. Instantaneous over current
 9. Operator error
 10. Central processor fault
 11. External fault
 12. Dynamic braking fault

H. VFD Adjustments: The microprocessor controlled VFD logic shall include the following adjustments:
 1. Maximum output frequency - 0 to 400 Hz.
 2. Minimum output frequency - 0 to 400 Hz.
 3. Acceleration time - .1 to 6000 seconds.
 4. Deceleration time - .1 to 6000 seconds.
 5. Current limit - 0 to 170%.
 6. V/Hz pre-set selection patterns.
 7. Capability to program a totally customized V/Hz pattern.
 8. Auto speed reference (instrument follower) input adjustable for bias and gain.
 9. Stall prevention accomplished by reducing output voltage and frequency during momentary overload. When overload clears, drive will automatically resume normal operation.
 10. Adjustable torque and/or current limit.
 11. Ramp to stop or coast to stop selection.
 12. Capability to set upper and lower frequency limits independent of min and max V/Hz frequency patterns.
 13. Linear or S-curve function for soft start.
 14. Two independent, selectable accel/decel ramp functions.
 15. A minimum of 4 programmable multi-function inputs.
 16. External start-stop shall be programmable for either 2 wire or 3 wire control. 3 wire option should not require a holding contact.
 17. There shall be a programmable lock out code available to prevent operator access to parameter setting.
 18. A selectable/adjustable energy saving gain shall be available that can be activated during frequency command synchronization.
 20. Capability via drive software programmability to provide Hand-Off-Auto (H.O.A.) selection without need for separate H.O.A. selector switch.
 21. Up/down frequency setting.

I. VFD Functional Summary: The VFD shall provide the following standard functions:
 1. Ground fault protection.
 2. Transducer (or process) follower.
 3. Critical frequency rejection.
 4. Diagnostics.
 5. Auto restart.
6. Speed search.
7. DC injection.
8. Digital keypad/display.
9. Minimum displacement power factor of .98 or provide power factor correction capacitor.
11. 2 second power loss ride-thru.
13. Speed reference loss detection.
14. 9 pre-set speeds.
15. Stall prevention.

J. Bypass Control
1. Where indicated in the plans, a bypass control shall be provided for the purpose of running the AC motor at full speed with line power while the VFD is being serviced. Bypass and drive shall be electrically interlocked. The VFD package shall be configured so that the VFD can be remove for service with the bypass control left in place. The bypass control shall include:
 1. NEMA 1 enclosure.
 2. Door interlocked disconnect. Provide lockable disconnect switch.
 4. VFD Input Contactor.
 5. VFD Output Contactor.
 6. Overload Relay.
 7. 115 VAC Control Transformer.
 11. VFD Select Light.
 12. Line Select Light.

K. Redundant Drive Packages
1. Where indicated in the plans, a Redundant VFD Package such as ABB ACH550 or approved equal.
 1. Redundant drive packages shall have single point power connection and single point control connection. Redundant drive packages shall be individually fused, below the main disconnect, for uninterrupted operation. The intelligent redundant control automatically switches from Lead Drive to Redundant Drive upon a Lead Drive fault. Additionally, safely disconnect the package, from the main input power supply, through a single disconnect, which is mechanically interlocked with the enclosure door, lockable in the off position for up to three padlocks.
 2. Redundant Drive packages shall also include electrically interlocked drive output isolation contactors, connected together for a single point motor connection at the output power terminal block. The analog signal converter provides a single speed reference signal to both drives (0 to 10V DC / 4 to 20 mA), as well a customer Terminal Block provides connection for two user Safety/Interlocks and an external start signal. The drive’s keypads shall be accessible without opening the enclosure door.
 3. The following control shall be accessible without opening the enclosure door:
 1) Lead Drive selector switch
 2) AUTO/OFF/MANUAL selector switch for each drive
 3) Drive Run and Fault lights for each drive
4) External Fault Light

L. QUALITY ASSURANCE
1. All Printed Circuit boards will utilize surface mounted devices (SMDs) to provide high reliability and strengthened printer circuit assembly:
 1. Printed Circuit boards burned in for 96 hours.
 2. Integrated circuit boards tested to a criteria of 0.5% AQL (Accepted Quality Level).
 3. Fully assembled VFD tested with fully loaded induction motors.
 4. Mean time between failures (M.T.B.F.) data should be available and have a minimum value of 100,000 hours.

2. Standards:
 1. UL listed.
 2. CSA certified.
 3. Applicable items per NEMA, IEEE & IEC.

3. Environmental Specification: The VFD shall be enclosed in a NEMA-1 package for use in the following environmental conditions:
 1. Ambient Temperature from -10 to +40°C.
 2. Humidity: non-condensing to 90%.
 3. Altitude of the project site as listed on the plans. Provide oversized drives to permit operation at the project site elevation.
 4. Service factor: 1.0.

M. Accessories to be furnished and mounted by the drive manufacturer:
1. Customer Interlock Terminal Strip - provide a separate terminal strip for connection of freeze, fire, smoke contacts, fault contact output, input reference signal, and external start command. All external interlocks shall remain full functional whether the drive is in Hand or Auto modes. External start command shall be active when in the Auto mode only.

2. Door interlocked circuit breaker (25,000 A.I.C.) which will disconnect all input power from the drive and all internally mounted options. The disconnect handle shall be through-the-door type, and be padlockable in the Off position. A disconnect switch is not acceptable as this will protect neither the inverter nor the motor. For multiple motor applications, the circuit breaker shall be of the thermal magnetic type per NEC.

3. Manual bypass circuit: The bypass circuit shall allow the user to manually bypass the drive and transfer control of the motor across the line, running the motor at full speed. While in the bypass operation, the motor shall be protected by a circuit breaker and an overload relay. A three position selector switch to control the bypass contactor and the drive output contactor is to be mounted on the enclosure door. When in the Inverter mode, the bypass contactor is open and the drive output contactor is closed. In the Off position, power will be removed from both the inverter and the bypass circuits. In the Bypass position, the drive output contactor is open and the bypass contactor is closed. All safety interlocks will work in both the drive and bypass modes. The contactors shall have auxiliary contacts connected to a terminal strip for indication of bypass or inverter modes.

4. A service contactor shall be provided to electrically isolate the drive while in bypass operation without having to remove power from the motor. This will allow the ability to service the drive when in bypass operation. The service contactor shall open when the drive is switched to bypass, and also be controlled by a switch which is mounted on the drive enclosure.

5. A motor overload relay shall be provided to protect the motor in the bypass mode.
2.9 TEMPERATURE SENSORS AND THERMOSTATS

A. Room Thermostat: Electric, solid state, microprocessor based with the following features:

1. Heat / Cool auto change over.
2. 40 – 90 F range
3. +/- 2ºF user adjustment.
4. Insulated back.
6. Integral service jack.
7. Thermostats shall not display the room temperature.

B. Room Temperature Sensors: Blank face, space temperature sensors

1. Insulated Back
2. Stainless steel face plate

C. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.

1. Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.

D. Remote-Bulb Thermostats: On-off or modulating type, liquid filled to compensate for changes in ambient temperature; with copper capillary and bulb, unless otherwise indicated.

1. Bulbs in water lines with separate wells of same material as bulb.
2. Bulbs in air ducts with flanges and shields.
3. Averaging Elements: Copper tubing with either single- or multiple-unit elements, extended to cover full width of duct or unit; adequately supported.
4. Scale settings and differential settings are clearly visible and adjustable from front of instrument.
5. On-Off Thermostat: With precision snap switches and with electrical ratings required by application.
6. Modulating Thermostats: Construct so complete potentiometer coil and wiper assembly is removable for inspection or replacement without disturbing calibration of instrument.
2.10 DUCT AND PIPE TEMPERATURE SENSORS, TRANSMITTERS

A. Immersion Thermostat (Aquastat): Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range and adjustable set point.

B. Airstream Thermostats: Two-pipe, fully proportional, single-temperature type; with adjustable set point in middle of range, adjustable throttling range, plug-in test fitting or permanent pressure gage, remote bulb, bimetal rod and tube, or averaging element.

C. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual (freezestat use) or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.
 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

D. Electric, High-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or above set point.
 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.

2.11 DAMPERS

A. AMCA-rated, opposed-blade design; 0.108-inch- minimum thick, galvanized-steel or 0.125-inch- minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.

B. Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with nylon blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.

C. Operating Temperature Range: From minus 40 to plus 200 deg F.

D. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.

E. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.

2.12 ACTUATORS

A. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
B. Valves: Size for torque required for valve close off at maximum pump differential pressure.

C. Dampers: Size for running torque required for the damper.

D. Coupling: V-bolt and V-shaped, toothed cradle.

E. Overload Protection: Electronic overload or digital rotation-sensing circuitry.

F. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.

G. Temperature Rating: Minus 22 to plus 122 deg F.

H. Run Time: 12 seconds open, 5 seconds closed.

2.13 VALVES

A. Determine control valve sizes and flow coefficients by ISA 75.01.01.

B. Control valve characteristics and rangeability shall comply with ISA 75.11.01.

C. Selection Criteria:

1. Fail positions unless otherwise indicated:
 2. Condenser Water: Open.
 5. Steam: Close.

D. Ball-Style Control Valves (2-way)

 1. Pressure Rating for NPS 1 and Smaller: Nominal 600 WOG.
 2. Pressure Rating for NPS 1-1/2 through NPS 2: Nominal 400 WOG.
 4. Process Temperature Range: Zero to 212 deg F.
 8. Stem and Stem Extension:
 1. Material to match ball.
 2. Blowout-proof design.
 3. Sleeve or other approved means to allow valve to be opened and closed without damaging the insulation or the vapor barrier seal.

 9. Ball Seats: Reinforced PTFE.
 10. Stem Seal: Reinforced PTFE packing ring with a threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means,
such as EPDM O-rings, are acceptable if an equivalent cycle endurance can be demonstrated by testing.

12. 3-Way Flow Characteristics:
 1. A-Port: Equal percentage.
 2. B-Port: Modified for constant common port flow.

E. Butterfly-Style Control Valves (2-Way)

1. Performance:
 1. Bi-directional bubble tight shutoff at 250 psig.
 2. Comply with MSS SP-67 or MSS SP-68.
 3. Rotation: Zero to 90 degrees.
 4. Linear or modified equal percentage flow characteristic.

2. Body: Cast iron ASTM A 126, Class B, ductile iron ASTM A 536 or cast steel ASTM A 216/A 216M WCB fully lugged, suitable for mating to ASME B16.5 flanges.
4. Shaft: 316 or 17-4 PH stainless steel.
5. Seat: Reinforced EPDM or reinforced PTFE with retaining ring.
7. Replaceable seat, disc, and shaft bushings.
8. Corrosion-resistant nameplate indicating:
 1. Manufacturer's name, model number, and serial number.
 2. Body size.
 4. Flow arrow.

F. Butterfly-Style Control Valves (3-Way)

1. Arrangement: Two valves mated to a fabricated tee with interconnecting mechanical linkage.
2. Performance:
 1. Bi-directional bubble tight shutoff at 250 psig.
 2. Comply with MSS SP-67 or MSS SP-68.
 3. Rotation: Zero to 90 degrees.
 4. Linear or modified equal percentage flow characteristic.

3. Body: Cast iron ASTM A 126, Class B, ductile iron ASTM A 536 or cast steel ASTM A 216/A 216M WCB fully lugged, suitable for mating to ASME B16.5 flanges.
5. Shaft: 316 or 17-4 PH stainless steel.
6. Seat: Reinforced EPDM or reinforced PTFE seat with retaining ring.
7. Shaft Bushings: Reinforced PTFE or stainless steel.
8. Replaceable seat, disc, and shaft bushings.
9. Corrosion-resistant nameplate indicating:
 1. Manufacturer's name, model number, and serial number.
2. Body size.
4. Flow arrow.

2.14 STATUS SENSORS

A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.

B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig, piped across pump.

C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.

E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.

F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.

G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

H. Water-Flow Switches: Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainless-steel or bronze paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure.

2.15 CONTROL WIRE AND CABLE

A. Wire: Single conductor control wiring above 24 V.

1. Wire size shall be at least No. 18 AWG. Size all conductors for load and distance.
2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.
4. Conductor colors shall be black (hot), white (neutral), and green (ground).
5. Furnish wire on spools.
B. Single Twisted Shielded Instrumentation Cable above 24 V:

1. Wire size shall be a minimum No. 18 AWG. Size all conductors for load and distance.
2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5-inch lay.
3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
7. Furnish wire on spools.

C. Single Twisted Shielded Instrumentation Cable 24 V and Less:

1. Wire size shall be a minimum No. 18 AWG. Size all conductors for load and distance.
2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
7. Furnish wire on spools.

D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.

1. Cable shall be balanced twisted pair.
2. Cable shall be plenum rated.
3. Cable shall comply with NFPA 70.
4. Cable shall have a unique color that is different from other cables used on Project.

2.16 CONTROL POWER WIRING AND RACEWAYS

A. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" electrical power conductors and cables.

B. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for products to verify actual locations of connections before installation.
1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

B. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 DDC SYSTEM INTERFACE WITH OTHER SYSTEMS AND EQUIPMENT

A. Communication Interface to Equipment with Integral Controls:
 1. DDC system shall have communication interface with equipment having integral controls and having a communication interface for remote monitoring or control.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install room thermostats 48 inches above the floor to comply with accessibility requirements. Install all other devices 60 inches above the floor.

B. Install Blank Face room temperature sensors in public areas, corridors and entries.

C. Install products to satisfy more stringent of all requirements indicated.

D. Install products level, plumb, parallel, and perpendicular with building construction.

E. Support products, tubing, piping wiring and raceways.

F. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.

G. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

H. Firestop Penetrations Made in Fire-Rated Assemblies: Comply with requirements in Section 078413 "Penetration Firestopping."

I. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 079200 "Joint Sealants."

J. Fastening Hardware:
1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.

K. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

3.4 OPERATOR WORKSTATION INSTALLATION

A. Portable Workstations Installation:

1. Turn over portable workstations to Owner at Substantial Completion.
2. Install software on workstation(s) and verify software functions properly.

B. Color Graphics Application:

1. Use system schematics indicated as starting point to create graphics.
2. Develop Project-specific library of symbols for representing system equipment and products.
3. Incorporate digital images of Project-completed installation into graphics where beneficial to enhance effect.
4. Submit sketch of graphic layout with description of all text for each graphic for Owner's and Engineers review before creating graphic using graphics software.
5. Seek Owner input in graphics development once using graphics software.
6. Final editing shall be done on-site with Owner's review and feedback.
7. Refine graphics as necessary for Owner acceptance.
8. On receiving Owner acceptance, print a hard copy for inclusion in operation and maintenance manual. Prepare a scanned copy PDF file of each graphic and include with softcopy of DDC system operation and maintenance manual.

3.5 CONTROLLER INSTALLATION

A. Install controllers in enclosures to comply with indicated requirements.

B. Connect controllers to field power supply and to UPS units where indicated.

C. Install controller with latest version of applicable software and configure to execute requirements indicated.

D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.

E. Installation of Network Controllers:

1. Quantity and location of network controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. Install controllers in a protected location that is easily accessible by operators.
3. Top of controller shall be within 72 inches of finished floor.

F. Installation of Programmable Application Controllers:

1. Quantity and location of programmable application controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. Install controllers in a protected location that is easily accessible by operators.
3. Top of controller shall be within 72 inches of finished floor.

G. Application-Specific Controllers:

1. Quantity and location of application-specific controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. For controllers not mounted directly on equipment being controlled, install controllers in a protected location that is easily accessible by operators.

3.6 VFD INSTALLATION

A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks fabricated from uni-strut.

B. Install wiring between VFCs and the HVAC Control System. Bundle, train, and support wiring in enclosures.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.

D. Acceptance Testing Preparation:

1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

E. Tests and Inspections:

1. Inspect VFD, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
2. Test insulation resistance for each VFD element, component, connecting motor supply, feeder, and control circuits.
3. Test continuity of each circuit.
4. Verify that voltages at VFD locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Engineer before starting the motor(s).
5. Test each motor for proper phase rotation.
7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
9. VFDs will be considered defective if they do not pass tests and inspections.

F. Adjusting
1. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
2. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

3.7 ELECTRIC POWER CONNECTIONS
A. Connect electrical power to DDC system products requiring electrical power connections.
B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.
C. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.
D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.
E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.8 NETWORK INSTALLATION
A. Install balanced twisted pair cable when connecting between Network controllers located in same building.
B. Install cable in continuous raceway.
1. Where indicated on Drawings, cable trays may be used for copper cable in lieu of conduit.

3.9 NETWORK NAMING AND NUMBERING
A. All HVAC devices utilizing the MSU campus network must be connected to the HVAC VPN, unless specifically allowed to do otherwise.
B. All HVAC devices on the HVAC VPN using BACnet communication protocols must adhere to the following addressing standards for proper operation.
C. BACnet Network Number: (Range 0 – 65535):
1. The BACnet Standard requires that all devices on the same network segment, follow the SAME network numbering structure to avoid conflicts. In the case of the HVAC VPN
subnet at MSU, even though it serves multiple buildings across campus, it is currently configured as one network segment.

2. There are three types of physical networks (IP, Ethernet, MS/TP) in the BACnet architecture. Given the current configuration of the MSU HVAC subnet, the only networks capable of utilizing unique network numbers would be MS/TP trunks, because their physical network segment falls beneath their parent Ethernet or IP device, thereby isolating them.

D. BACnet IP Network Number (all devices): 10001.

E. BACnet Ethernet Network Number (all devices): 20001.

F. BACnet MS/TP Network Numbers. Five Digit Network Number, with digits as follows:
 1. Digit 1:
 1. 3 or higher for MS/TP network type.
 2. Digits 2, 3, and 4:
 1. Three-digit building number. MSU will provide this number for each building.
 3. Digit 5:
 1. Instance/trunk number. First MS/TP trunk could be 0, tenth trunk could be 9.
 2. Note that if you exceed 10 MS/TP trunks, then you can start the 11th by increasing the digit 1 (mentioned above) from 3 to 4 in order to allow more MS/TP trunks.

G. BACnet Device Addressing: (Range 0 – 4194303):
 1. Digit 1:
 1. Range 0 to 3, starting with 1 for Bozeman campus.
 2. Digits 2, 3, and 4:
 1. Three-digit building number. Always use three digits, even if building number is less than 100. (Range 0 - 999)
 3. Digit 5:
 1. Building network instance number (Range 1 to 9). If there are more than 9 subnets, then you can increase the value of digit 1 by 1 and start over.
 4. Digits 6 and 7:
 1. Device ID. This is actually an extension of Digit 5, so that the device ID is actually a three digit number 100-199, 200-299, etc…

3.10 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

A. Comply with NECA 1.

B. Wire and Cable Installation:
 1. Comply with installation requirements in Section 260523 "Control-Voltage Electrical Power Cables."
 2. Comply with installation requirements in Section 271313 "Communications Copper Backbone Cabling."
 3. Comply with installation requirements in Section 271513 "Communications Copper Horizontal Cabling."
 4. Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.
1. Provide shielding to prevent interference and distortion from adjacent cables and equipment.

5. Provide strain relief.
6. Terminate wiring in a junction box.

1. Clamp cable over jacket in junction box.
2. Individual conductors in the stripped section of the cable shall be slack between the clamping point and terminal block.

7. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.
8. Install signal transmission components according to IEEE C2, REA Form 511a, NFPA 70, and as indicated.
9. Use shielded cable to transmitters.
10. Use shielded cable to temperature sensors.
11. Perform continuity and meager testing on wire and cable after installation.

C. Conduit Installation:

1. Comply with Section "260533 "Raceways and Boxes for Electrical Systems" for control-voltage conductors.
2. Comply with Section 270528 "Pathways for Communications Systems" for balanced twisted pair cabling and optical fiber installation.

3.11 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.12 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by DDC system manufacturer's authorized service representative. Include monthly preventive maintenance, repair or replacement of worn or defective components, cleaning, calibration and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.13 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two year(s).

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two year(s) from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
1. Upgrade Notice: At least 30 days to allow Owner to schedule and access system and to upgrade computer equipment if necessary.

3.14 DEMONSTRATION

A. See Section 017900 “Demonstration and Training” for additional requirements.

B. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.

C. Training Documentation:
 1. Contractor to submit draft copy of agenda and training documents to Owner for review at least two weeks prior to training date.
 2. Provide a copy of the following items for each person that will be attending the training sessions. Coordinate required number with the Owner.
 1. Training agenda.
 2. Summary of new systems and existing systems affected by this project.
 3. Summary of work performed under this project.
 4. Control system drawings and sequences of operation.
 5. List of important maintenance and trouble-shooting operations for all systems.
 3. Provide minimum of 2 copies of following items:
 1. Contract documents including all drawings, specifications, addendums, and change orders.

D. Training Sessions:
 1. Assemble at location to be determined by the Owner.
 2. Distribute training documentation as indicated above.
 3. Provide classroom style training if required for orientation, discussion of new systems and existing systems affected by this project, and other issues appropriate for a classroom format.
 4. Visit site and review locations, and perform detailed review of operation and maintenance requirements for current systems.

END OF SECTION 230900
SECTION 230901 - COMMERCIAL KITCHEN DEMAND VENTILATION CONTROLS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes: Demand Ventilation Controls for Type I Commercial-Kitchen Hoods
B. Related Requirements:
 1. Section 230900 “HVAC Controls”
 2. Section 233424 “Kitchen Exhaust Power Ventilators”
 3. Section 233533 “Listed Kitchen Ventilation System Exhaust Ducts”
 4. Section 233813 “Type I Commercial Kitchen Hoods”

1.2 SUBMITTALS
A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.
B. Shop Drawings
 1. Shop Drawings generated specifically for the project by the control system manufacture shall include the following:
 a. A schedule of control equipment required for kitchen hood and exhaust fan.
 b. Details showing the location of all control components for kitchen hood and exhaust fan.
 c. Floor plans the show the location of any remote mounted control components.
 d. Wiring diagrams that show all field wiring for:
 1) Wiring between Demand Ventilation Controls
 2) Interlocks and wiring between Demand Ventilation Controls with building fire alarm system.
 3) BACnet interfaces and associated wiring between the Demand Ventilation Controls and the HVAC Controls system.
 4) Wiring between the Demand Ventilation Controls and natural gas shutoff valves for cooking equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Products: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire, Demand Control Ventilation System (DCV)
 2. Prior Approved Equal
B. Description: The Demand Ventilation Control System automatically reduces exhaust and supply airflow quantities, by using temperature sensors in the exhaust ducts to modulate the fans speed during cooking operation and maximize energy savings. A LCD user interface screen, provides fan control, system configuration, and diagnostic information. A BACnet interface allow remote monitoring of the Demand Ventilation Control System by the HVAC Control system.

C. Certifications: Controls shall be listed by ETL (UL 508A).

D. User Interface: The system includes a LCD screen interface for fan(s) and hood lights control, wash control (if applicable), gas valve reset, programmable schedule, Max Air Override function, Preparation Time mode, Cool Down mode, and diagnostics including VFD status. The LCD screen shows descriptive plain text explaining the functions or values. The LCD screen interface will be installed on the face of the hood, on the face of the utility cabinet or on the face of a wall mounted control enclosure.

E. Control Enclosure: Control enclosure will be NEMA 1 rated and listed for installation inside of the exhaust hood utility cabinet. Control enclosure may be constructed of stainless steel or painted steel.

F. Sequence of Operations:
 1. The controller will constantly monitor the exhaust air temperature through the riser mounted temperature sensor and modulate the fan speeds accordingly.
 2. A room temperature sensor will also be provided for field installation in the kitchen space in order to start the fan(s) based on the fixed temperature differential between the room and the exhaust air in the duct rather than fixed set-points.
 3. A Preparation Time Mode is available for morning operation: dedicated make-up air will be locked out only allowing the use of transfer air during this mode. Exhaust fan(s) will run at low CFM.
 4. A Cool Down Mode is designed for equipment cool-down period at the end of the daily cooking operations: similarly to Preparation Time mode, dedicated make-up air will be locked out only allowing the use of transfer air during this mode. Exhaust fan(s) will run at low CFM while maintaining a balanced kitchen pressure.
 5. Fan maximum/ minimum speeds will be adjustable for proper kitchen balance. Fan direction change is also available from the smart controller configuration menu without need for rewiring.
 6. Duct Temperature Sensor(s) will be mounted in the exhaust hood riser(s). Temperature probe will be constructed of Stainless Steel. System will be factory pre-set to modulate fan speed within a range of 45°F for 600°F and 700°F cooking applications and a range of 5°F for 400°F cooking applications. Setpoints are fully adjustable through the LCD screen interface based on application needs.
 7. The Max Air Override will have an adjustable timeout value.
 8. The panels include color-coded wiring with as-built wiring diagrams and spare terminals controlled by the fire system micro switch. The panel is factory pre-wired to shut supply fans down in a fire condition. Options to turn ON the exhaust fans or turn off the hood lights in a fire condition will be configurable through the smart controller, but only through a password protected menu to prevent any changes after a fire inspection has been performed.
PART 3 - EXECUTION

3.1 RESPONSIBILITY

A. The Demand Ventilation Control System shall be furnished by the Mechanical Contractor.

B. All low voltage wiring and field installed sensors for the Demand Ventilation Control System shall be installed by the Temperature Controls Contractor.

C. All line voltage wiring shall be installed by the Electrical Contractor.

D. Wiring between the Demand Ventilation Control System and all gas shutoff valves shall be by the electrical contractor.

E. All wiring between the Demand Ventilation Control System and the Fire Alarm System shall be by the Fire Alarm Contractor.

F. All wiring between remote Wet Chemical Fire Protection cabinets and the Demand Ventilation Control System shall be installed by the electrical contractor.

3.2 INSTALLATION

A. Install Demand Ventilation Control System and all associated components and accessories per the manufacturers written instructions.

B. Filed verify the installation location of all space temperature sensors with the owner, architect and engineer prior to installation.

C. Field verify the installation location of all remote control panels or user interfaces with the owner, architect and engineer prior to installation.

D. Connect electrical power to Demand Ventilation Control System components requiring electrical power connections.

E. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.

F. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.3 START-UP AND TESTING

A. Engage a factory trained and authorized representative to start-up the demand ventilation control system.
 1. Inspect the installation and report any deficiencies to the construction manager.
 2. Start-up the control system and associated equipment. Coordinate all start-up activates with the construction manager and Commissioning Agent.
3. Verify and test communication between the Demand Ventilation Control System and the HVAC Controls. Coordinate with the Temperature Controls Contractor and the Commissioning Agent.
4. Coordinate testing and balancing of exhaust fans with the Test and Balance Contractor. See Section 230593 “Testing, Adjusting and Balancing for HVAC” for additional information.
5. Adjust all setpoint and schedules. Coordinate all operating schedules with the owner, architect and engineer.

3.4 MAINTENANCE SERVICE

A. Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by Demand Ventilation Control System manufacturer's authorized service representative. Include monthly preventive maintenance, repair or replacement of worn or defective components, cleaning, calibration and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.5 DEMONSTRATION & TRAINING

1. See Section 017900 “Demonstration and Training”
2. Comply with Owner Training provisions of Section 220000 “General Requirements of Plumbing and HVAC”.

END OF SECTION 230901
SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
5. Motorized gas valves.
6. Earthquake valves.
7. Pressure regulators.
8. Dielectric unions.
9. Labeling and Identifying

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 100 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressure within Buildings: [0.5 psig or less] [More than 0.5 psig but not more than 2 psig] <Insert pressure range>

2.2 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.

 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.

2. Coating: PE with flame retardant.

 a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1) Flame-Spread Index: 25 or less.
 2) Smoke-Developed Index: 50 or less.

3. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.

4. Striker Plates: Steel, designed to protect tubing from penetrations.

5. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.

6. Operating-Pressure Rating: 5 psig.

C. PE Pipe: ASTM D 2513, SDR 11.

1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
2. **PE Transition Fittings:** Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

3. **Anodeless Service-Line Risers:** Factory fabricated and leak tested.
 a. **Underground Portion:** PE pipe complying with ASTM D 2513, SDR 11 inlet.
 b. **Casing:** Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering.
 c. **Aboveground Portion:** PE transition fitting.
 d. **Outlet:** Shall be threaded or suitable for welded connection.
 e. **Tracer wire connection.**
 f. **Ultraviolet shield.**
 g. **Stake supports** with factory finish to match steel pipe casing or carrier pipe.

4. **Transition Service-Line Risers:** Factory fabricated and leak tested.
 a. **Underground Portion:** PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 b. **Outlet:** Shall be threaded or suitable for welded connection.
 c. **Bridging sleeve** over mechanical coupling.
 d. **Factory-connected anode.**
 e. **Tracer wire connection.**
 f. **Ultraviolet shield.**
 g. **Stake supports** with factory finish to match steel pipe casing or carrier pipe.

2.3 PIPING SPECIALTIES

A. Flexible Piping Joints:

1. Approved for Natural Gas service.
2. Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
3. Minimum working pressure of 250 psig and 250 deg F operating temperature.
4. Threaded-end connections to match equipment connected and shall be capable of minimum 3/4-inch misalignment.
5. Maximum 12-inch length for natural gas lines.

B. Appliance Flexible Connectors:

4. Corrugated stainless-steel tubing with polymer coating.
5. Operating-Pressure Rating: 0.5 psig.
8. Maximum Length: 72 inches

C. Quick-Disconnect Devices: Comply with ANSI Z21.41.
1. Copper-alloy convenience outlet and matching plug connector.
2. Nitrile seals.
3. Hand operated with automatic shutoff when disconnected.
4. For indoor or outdoor applications.
5. Adjustable, retractable restraining cable.

D. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

E. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.4 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.5 MANUAL GAS SHUTOFF VALVES

A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

B. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
7. Ends: Threaded.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

C. PE Ball Valves: Comply with ASME B16.40.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Kerotest Manufacturing Corp.
 b. Lyall, R. W. & Company, Inc.
 c. Perfection Corporation.

2. Ball: PE.
5. Ends: Plain or fusible to match piping.
7. Operating Temperature: Minus 20 to plus 140 deg F.
8. Operator: Nut or flat head for key operation.
9. Include plastic valve extension.
10. Include tamperproof locking feature for valves where indicated on Drawings.

D. Valve Boxes:

1. Cast-iron, two-section box.
2. Top section with cover with "GAS" lettering.
3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
4. Adjustable cast-iron extensions of length required for depth of bury.
5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.6 MOTORIZED GAS VALVES

A. Electrically Operated Valves: Comply with UL 429.
1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. ASCO
b. Prior approved equal

2. Body: Aluminum.
3. Seats and Disc: NBR
5. Electrical: 120-V ac, 60 Hz.
7. Normally closed.

2.7 EARTHQUAKE VALVES

A. Earthquake Valves, Maximum Operating Pressure of 60 psig (414 kPa): Comply with ASCE 25.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Pacific Seismic Products, Inc.

2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
3. Maximum Operating Pressure: 60 psig.
4. Cast-aluminum body with stainless-steel internal parts.
6. Valve position, open or closed, indicator.
7. Composition valve seat with clapper held by spring or magnet locking mechanism.
8. Level indicator.

2.8 PRESSURE REGULATORS

A. **General Requirements:**

1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.

B. **Line Pressure Regulators:** Comply with ANSI Z21.80.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
a. American Meter Company.

b. Fisher Control Valves & Instruments; a brand of Emerson Process Management.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.

5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.

6. Orifice: Aluminum; interchangeable.

8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.

9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.

11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Maxitrol Company.

5. Seat Disc: Nitrile rubber.

8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.9 DIELECTRIC UNIONS

A. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. A.Y. McDonald Mfg. Co.

 b. Watts; a Watts Water Technologies company.

 c. Zurn Industries, LLC.

2. Description:
b. Pressure Rating: 125 psig minimum at 180 deg F.
c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.10 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Install underground, PE, natural-gas piping according to ASTM D 2774.

D. Install fittings for changes in direction and branch connections.

E. Install pressure gage downstream from each service regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

3.2 INDOOR PIPING INSTALLATION

B. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
F. Locate valves for easy access.

G. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Verify final equipment locations for roughing-in.

K. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

L. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

M. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

N. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

O. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

P. Connect branch piping from top or side of horizontal piping.

Q. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.

R. Do not use natural-gas piping as grounding electrode.

S. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

T. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."

U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.3 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install earthquake valves aboveground outside buildings according to listing.

3.4 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
3.5 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

D. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
 3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 LABELING AND IDENTIFYING

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.
3.8 FIELD QUALITY CONTROL

A. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.

B. Natural-gas piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be the following:
 1. PE pipe and fittings joined by heat fusion; service-line risers with tracer wire terminated in an accessible location.

B. Aboveground natural-gas piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.10 INDOOR PIPING SCHEDULE

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be the following:
 1. 2” NPS and smaller: Steel pipe with malleable-iron fittings and threaded joints.
 2. 2-1/2” NPS and Larger: Steel pipe with wrought-steel fittings and welded joints.

C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

D. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.11 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.
B. Underground: PE valves.

3.12 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

C. Valves in branch piping for single appliance shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123
SECTION 231124 - NATURAL GAS METERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes natural gas meters. Products in this section are supplemental to the metering requirements of the natural gas utility.
 B. Related Requirements:
 1. Section 231123 “Facility Natural Gas Piping”

1.2 SUBMITTALS
 A. See Section 220000 “General Requirements of Plumbing and HVAC”

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Itron
 B. NMT
 C. Prior approved equal

2.2 DESCRIPTION
 A. Provide positive displacement type gas meter rated for outdoor installation.

2.3 CONSTRUCTION & FEATURES
 A. Weather and tamper proof index housing
 B. Double low frequency pulse output

2.4 INDEX
 A. Sealed – rated for outdoor use
 B. 8-Digit Readout – cubic feet
 C. 2-pulsed outputs
D. UV Resistant

2.5 PULSED OUTPUT

A. Two Low Frequency (LF) pulse outputs. The LF transmitter consists of 2 dry reed switches, normally open, and actuated by a magnet located in the first odometer drum on the index register.

B. Volume per pulse contact
 1. ft³ index; 1 ft³/pulse

2.6 PERFORMANCE

A. Max Operating Pressure: 230 psig

B. Operating temperature Range: -22F to 140F

C. Pressure Drop at Max Flow: less than 2” W.C.

D. Provide meter with capacity to meet total building gas load.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Follow manufacturer’s recommendation for installation. Installation will conform to the guidelines provided by the Installation & Operation Manual.

3.2 RESPONSIBILITY

A. The Plumbing Contractor shall furnish and install in the flow meter in the location shown on the plans.

B. The electrical contractor shall provide all wiring (line and low voltage) between the flow meter and smart meter (see electrical drawings for location).

END OF SECTION 231124
SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:

1. Steel pipe and fittings.
2. Plastic pipe and fittings.
4. Transition fittings.
5. Dielectric fittings.
6. Bypass chemical feeder.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:

1. Closed Loop Hydronic System Piping: 150 psig at 200 deg F.
2. Makeup-Water Piping: 80 psig at 73 deg F.
3. Condensate-Drain Piping: 200 deg F.
4. Blowdown-Drain Piping: 200 deg F.
5. Air-Vent Piping: 200 deg F.
6. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
C. DWV Copper Tubing: ASTM B 306, Type DWV.

2.3 STEEL PIPE AND FITTINGS
A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.
C. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.
D. Grooved Mechanical-Joint Fittings and Couplings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil.
 b. Grinnell.
 c. Victaulic.
 2. General: Two piece fittings made from ASTM A 536, Grade 65-45-12 ductile iron. Gaskets shall be EPDM for -30F to 250F operating temperatures, grade to suit the intended service and conforms to ASTM D-2000. Bolts shall be zinc plated (ASTM B-633) heat treated carbon steel track head and conform to ASTM A-449 and ASTM A-183, minimum tensile strength 110,000 psi.
 3. Rigid Couplings: Shall provide system rigidity and support and hanging in accordance with ANSI B31.1, B31.9 and NFPA 13.
 4. Flexible Couplings: shall not be used unless specifically specified to prevent vibration isolation or stress relief.
 5. Grooved End Fittings: Cast ductile Iron conforming to ASTM A-536, Grade 65-45-12 with alkyd enamel finish or hot dipped galvanized.

2.4 PLASTIC PIPE AND FITTINGS
A. CPVC Plastic Pipe: ASTM F 441/F 441M, with wall thickness as indicated in "Piping Applications" Article.

B. Polypropylene Random (PP-R) Piping
1. Manufacturers:
 a. Aquatherm
 b. Vesbo
 c. Pestan
2. Pipe: Shall be manufactured from a PP-R resin meeting requirements of ASTM F 2389. The pipe shall contain no rework or recycled materials except that generated in the manufacturer's own plant from resin of the same specification from the same raw material. All pipe shall be made in an extrusion process. Hydronic hot water and heating piping shall contain a fiber layer to restrict thermal expansion. All pipe shall comply with the rated pressure requirements of ASTM F 2389 or CSA B137.11. All pipe shall be certified by NSF International as complying with NSF 14, and ASTM F 2389 or CSA B137.11.
3. Fittings: Shall be manufactured from a PP-R resin meeting the requirements of ASTM F 2389. The fittings shall contain no rework or recycled materials except that generated in the manufacturer's own plant from resin of the same specification from the same raw material. All fittings shall complying with ASTM F 2389. Fittings shall be, socket-fusion or butt fusion type.

C. PEX
1. Manufacturers:
 a. Uponor
 b. Rehau
 c. Watts Radiant
2. Performance:
 a. PEX piping and fittings shall meet the following pressure and temperature ratings:
 b. 1. 200 degrees F at 80 psi.
 c. 2. 180 degrees F at 100 psi.
 d. 3. 73.4 degrees F at 160 psi.
3. Pipe: PEX-a or PEX-b that conforms to ASTM 876 and ASTM 877 with oxygen-diffusion barrier that meets DIN 4726.
4. Show compliance with NFPA 90A requirements of flame spread/smoke development rating of 25/50 in accordance with ASTM E84.
5. Fittings: Use fittings approved by the tubing manufacturer
 a. ASTM F1960 cold-expansion fitting manufactured from the following material types:
 1) Lead-free (LF) Brass or 20 percent glass-filled polysulfone as specified in ASTM D6394. Fittings of the same type and material shall be used throughout the installation.
 2) Reinforcing cold-expansion rings shall be manufactured from the same source as PEX-a piping manufacturer.
 b. Fittings shall Copper Alloy and designed to work with either ASTM F1807 crimp rings or ASTM F2098 cinch clamps or a Compression ferrule, and are designed to be used with ASTM F876 (SDR-9) rated PEX tubing.
2.5 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

F. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

G. Solvent Cements for CPVC Piping: ASTM F 493.

H. Solvent Cements for PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.6 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings:
 1. One-piece fitting with one threaded brass or copper insert and one solvent-cement-joint end of material and wall thickness to match plastic pipe material.

B. Plastic-to-Metal Transition Unions:
 1. Brass or copper end, solvent-cement-joint end of material and wall thickness to match plastic pipe material, rubber gasket, and threaded union.

2.7 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions: Are not allowed and shall not be installed.

C. Dielectric Flanges:
 2. Factory-fabricated, bolted, companion-flange assembly.
 3. Pressure Rating: 125 psig minimum at 180 deg F.
4. End Connections: Solder or threaded.

D. Dielectric-Flange Insulating Kits:
1. Nonconducting materials for field assembly of companion flanges.
3. Gasket: Neoprene or phenolic.
4. Bolt Sleeves: Phenolic or polyethylene.
5. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:
2. Electroplated steel nipple complying with ASTM F 1545.
3. Pressure Rating and Temperature: 300 psig at 225 deg F.
4. End Connections: Male threaded or grooved.
5. Lining: Inert and noncorrosive, propylene.

F. Dielectric PEX Separator
1. A 6-10 inch long section of PEX tubing with appropriate transition fittings may be used to separate dis-similar metal piping system or equipment.

2.8 BYPASS CHEMICAL FEEDER

A. Description: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.

1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground, NPS 3/4 and smaller, shall be any of the following:

1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40, Grade B, Type 96 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
3. SDR 7.4 PPR with socket-fusion fittings.

B. Hot-water heating piping, aboveground, NPS 1 to NPS 2, shall be any of the following:

1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40, Grade B, Type 96 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
3. SDR 11 PPR with socket-fusion joints and fittings.

C. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:

1. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
2. SDR 11 PPR with socket-fusion joints and fittings.

D. Condenser-water piping, aboveground, shall be any of the following:
 1. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints or grooved joints and fittings.
 2. Schedule 80 CPVC plastic pipe and fittings and solvent-welded joints.
 3. SDR 7.4 or 11 (as available by size) PPR with socket-fusion joints and fittings.

E. Condenser-Water Piping Installed Belowground or Below Floor Slabs on Grade:
 1. Schedule 80 CPVC plastic pipe and fittings and solvent-welded joints.
 2. SDR 7.4 or 11 (as available by size) PPR with socket-fusion joints and fittings.

F. Makeup-water piping installed aboveground shall be the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

G. Makeup-Water Piping Installed Belowground or Below Floor Slabs on Grade:
 1. SDR 11 PPR with socket-fusion joints and fittings.

H. Condensate-Drain Piping: Type DWV, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

I. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

J. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.
 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

K. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.

3.2 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

N. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

O. Install valves according to the following:
 1. 220523 “General Duty Valves for Plumbing and HVAC”
 2. 232116 “Hydronic Piping Specialties”

P. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

Q. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

R. Install shutoff valve immediately upstream of each dielectric fitting.

S. Comply with requirements in Section 220500 "General Provisions of Plumbing and HVAC" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.

T. Comply with requirements in Section 220500 "General Provisions of Plumbing and HVAC" for identifying piping.

U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220500 "General Provisions of Plumbing and HVAC”.

V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220500 "General Provisions of Plumbing and HVAC".

W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220500 "General Provisions of Plumbing and HVAC".
X. When PPR piping is installed in systems with pumps in excess of 7.5 HP, piping shall be protected from excessive heat generated by operating the pump at shut-off conditions. Where the possibility exists that the pump will operate with no flow, the protection method shall be a temperature relief valve or comparable level of protection, set to a maximum temperature of 185°F.

Y. Fire stopping for PP-R piping shall be provided to both be compatible with the PP-R piping and meet the requirements of ASTM E 814 or ULC S115, “Fire Tests of Through-Penetration Firestops”. Pipe insulations or fire resistive coating shall be removed where the pipe passes through a fire stop and, if required by the firestop manufacturer, for 3 inches beyond the firestop outside of the fire barrier.

Z. Where PP-R pipe will be exposed to direct UV light for more than 30 days, it shall be provided with a Factory applied, UV-resistant coating or alternative UV protection.

AA. PP-R piping installed in air plenums, shall be wrapped and/or insulated with standard, field installed pipe insulation. The pipe wrap or insulation shall meet the requirements of CAN/ULC-S102.2-03 or ASTM E84. The system shall have a Flame Spread Classification of less than 25 and Smoke Development rating of less than 50.

BB. The same piping material shall be used throughout an entire hydronic system to prevent dielectric compatibility issues with the exception of heating water where steel piping may be used for 2-1/2” and larger and copper may be used for 2” and smaller. Appropriate dielectric fitting must be used where steel and cooper piping connect to each other.

3.3 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use PEX separator.

C. Dielectric Fittings for NPS 2-1/2 and Larger: Use dielectric flange kits.

3.4 HANGERS AND SUPPORTS

A. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.

B. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for seismic restraints.

C. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.

D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

 1. NPS 3/4: Maximum span, 7 feet.
 2. NPS 1: Maximum span, 7 feet.
 3. NPS 1-1/2: Maximum span, 9 feet.
 4. NPS 2: Maximum span, 10 feet.
 5. NPS 2-1/2: Maximum span, 11 feet.
 6. NPS 3 and Larger: Maximum span, 12 feet.

E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.

F. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.

G. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
3. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.
4. PVC Nonpressure Piping: Join according to ASTM D 2855.

H. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

I. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

J. PPR Fusion Joints:
1. Install fittings and joints using socket-fusion, elecrafusion, or butt-fusion as applicable for the fitting or joint type. All fusion-weld joints shall be made in accordance with the pipe and fitting manufacturer’s specifications and product standards.
2. Fusion-weld tooling, welding machines, and electrofusion devices shall be as specified by the pipe and fittings manufacturer.
3. Prior to joining, the pipe and fittings shall be prepared in accordance with ASTM F 2389 and the manufacturer’s specifications.
4. Joint preparation, setting and alignment, fusion process, cooling times and working pressure shall be in accordance with the pipe and fitting manufacturer’s specifications.

K. PEX Joints:
1. Install in accordance with manufacturer's published installation manual and/or published guidelines and final drawings.
2. At connections and fittings, use a plastic pipe cutter to ensure square and clean cuts, and join pipes immediately or cap ends of pipe to seal from contaminants.

3.6 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.
C. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 220519 "Meters and Gages for Plumbing and HVAC Piping."

3.7 CHEMICAL TREATMENT

A. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

B. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

Edit Part 3.7C to meet the freeze protection needs of your project:
See the following link for recommended concentrations: http://www.engineeringtoolbox.com/propylene-glycol-d_363.html

C. Fill systems that have antifreeze or glycol solutions with the following concentrations:

2. Chilled-Water Piping: Minimum of \(<\text{Insert number}>\) percent [propylene] glycol.
3. Condenser Water Piping: Minimum of \(<\text{Insert number}>\) percent [propylene] glycol.

3.8 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
3. Isolate expansion tanks and determine that hydronic system is full of water.
4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to
pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 232113
SECTION 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes special-duty valves and specialties for the following:

1. Hydronic specialty valves.
2. Air-control devices.
3. Strainers.
4. Connectors.
5. Buffer tanks with steam heat.

B. Related Requirements:

1. Section 220500 "General Provisions of Plumbing and HVAC" for expansion fittings and loops.
2. Section 220519 "Meters and Gauges for Plumbing and HVAC piping" for meters and gauges.
3. Section 220553 "Identification for Plumbing and HVAC Piping and Equipment" for identification requirements.
4. Section 220716 “Plumbing and HVAC Equipment and Piping Insulation” for insulation requirements.
5. Section 232213 “Steam and Condensate Heating Piping”
6. Section 232116 “Steam and Condensate Heating Piping Specialties”

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. ASME Compliance: Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 HYDRONIC SPECIALTY VALVES

A. Plastic Ball Valves:

1. Body: One-, two-, or three-piece CPVC or PVC to match piping.
2. Ball: Full-port CPVC or PVC to match piping.
3. Seats: PTFE.
4. Seals: EPDM.
5. End Connections: Socket, union, or flanged.
6. Handle Style: Tee shape.
7. CWP Rating: Equal to piping service.
8. Maximum Operating Temperature: Equal to piping service.
9. Comply with MSS SP-122.

B. Plastic Check Valves:
1. Body: One-, two-, or three-piece PVC or CPVC to match piping.
2. Ends: Socket or flanged.
3. Seats: PTFE.
4. Check Style: Swing or ball type.
5. CWP Rating: Equal to piping service.

C. Bronze, Calibrated-Orifice, Balancing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bell & Gossett; a Xylem brand.
 c. Nexus Valve, Inc.
 d. TACO Comfort Solutions, Inc.
2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
4. Plug: Resin.
5. Seat: PTFE.
6. End Connections: Threaded or socket.
8. Handle Style: Lever, with memory stop to retain set position.
10. Maximum Operating Temperature: 250 deg F.

D. Diaphragm-Operated Safety Valves: ASME labeled.
1. Body: Bronze or brass.
2. Disc: Glass and carbon-filled PTFE.
5. Diaphragm: EPT.
7. Inlet Strainer: Stainless steel, removable without system shutdown.
9. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

E. Automatic Flow-Control Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Body: Brass or ferrous metal.

3. Piston and Spring Assembly: Stainless steel, tamper proof, self-cleaning, and removable.

4. Combination Assemblies: Include bronze or brass-alloy ball valve.

5. Identification Tag: Marked with zone identification, valve number, and flow rate.

6. Size: Same as pipe in which installed.

7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.

9. Maximum Operating Temperature: 200 deg F.

2.2 AIR-CONTROL DEVICES

A. Manual Air Vents:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett; a Xylem brand.
 c. Hoffman Specialty.
 d. TACO Comfort Solutions, Inc.

2. Body: Bronze.

3. Internal Parts: Nonferrous.

4. Operator: Screwdriver or thumbscrew.

5. Inlet Connection: NPS 1/2.

7. CWP Rating: 150 psig.

8. Maximum Operating Temperature: 225 deg F.

B. Expansion Tanks:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. TACO Comfort Solutions, Inc.

2. ASME Welded steel Tank with 125 psig working pressure, 240F operating temperature, and replaceable heavy butyl rubber diaphragm.

3. See drawings for size and capacity.

C. In-Line Air Separators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armstrong Products, Inc.
 b. Bell & Gossett; a Xylem brand.
 c. Spirotherm, Inc.
 d. TACO Comfort Solutions, Inc.
2. Air removal device shall be constructed of steel. It shall be designed, fabricated and stamped per ASME Section VIII Division 1 with a maximum working pressure of 125 psi at 270°F.
3. Threaded, grooved, or flanged pipe connections as required for the piping system.
4. A brass flushing cock shall be located on the side of each separator to facilitate system fast-fill.
5. A blow down valve shall be provided by the unit manufacturer on the bottom of each unit to allow blow down and cleaning. On units 2 ½” and smaller the valve and all of its fittings shall be 1”. On units three 3” and larger the valve and all openings shall be 2”.

2.3 STRAINERS

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.

2.4 CONNECTORS

A. Stainless-Steel Bellow, Flexible Connectors:
 2. End Connections: Threaded or flanged to match equipment connected.
 4. CWP Rating: 150 psig.
 5. Maximum Operating Temperature: 250 deg F.

2.5 BUFFER TANKS WITH STEAM HEAT

A. Manufacturers: provide products for one of the following.
 1. Cemline
 2. Taco
 3. John Wood

B. Description: ASME rated, lined, steel storage tank with submerged, multi pass, steam heating coil. The tank shall be rated for 125 psi working pressure.

C. Connections:
 1. Qty 2 8” flanged condenser water connections.
 2. Qty 1 1” NPT drain connection
 3. Qty 1 ¼” NPT sensor port.
 4. Qty 1 ½” NPT temperature gauge port.
 5. Qty 1 1” NPT air vent connection
D. Steam Heating Coil:
 1. 2-pass fabricated steel coil head, steel between-the-bolt tube sheet, 3/4" OD x 19 BWG copper tubes and non-asbestos gaskets.

E. Accessories:
 1. 12”x16” manhole
 2. Filed installed pipe legs.

F. Controls:
 1. All controls shall be the responsibility of the Temperature Controls Contractor. See Section 230900 “HVAC Controls” and the drawings for more information. Provide all labor and materials required to achieve the specified sequence of operations.

G. Capacities and Characteristics:
 1. See Drawings.

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.

B. Install balancing valves at each branch connection to return main. See drawings for type.

C. Install balancing valves in the return pipe of each heating or cooling terminal. See drawings for type.

D. Install check valves at each pump discharge and elsewhere as required to control flow direction.

E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

3.2 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install piping from air separator to expansion tank with a 2 percent upward slope toward tank.

C. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 and larger.

D. Use manual vent for initial fill to establish proper water level in tank.
 1. Install tank fittings that are shipped loose.
2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.

E. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure that tank is properly charged with air to suit system Project requirements.

3.3 BUFFER TANK INSTALLATION

A. Equipment Mounting:
 1. Install buffer tank on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete" and Section 033053 "Miscellaneous Cast-in-Place Concrete."
 2. Comply with requirements for vibration-isolation and seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

B. Install piping adjacent to buffer tank to allow space for service and maintenance.

C. All condenser water piping connections shall comply with 232113 “Hydronic Piping” and 232116 “Hydronic Piping Specialties”

D. All steam and condensate piping connections shall comply with 232213 “Steam and Condensate Heating Piping” and 232216 “Steam and Condensate Heating Piping Specialties”.

E. Testing:
 1. Verify condenser water flow rate to buffer tank.
 2. Verify all controls are operating properly.
 3. Blow down tank to remove contaminants and or debris.

END OF SECTION 232116
SECTION 232123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Wet rotor, cartridge circulators.
2. Wet rotor, cartridge circulators with ecm motor and integral control.
4. Separately coupled, base-mounted, end-suction centrifugal pumps.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 WET ROTOR, CARTRIDGE CIRCULATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong Pumps, Inc.
2. ITT Corporation.
3. Grundfos Pumps Corporation, USA.
4. TACO Comfort Solutions, Inc.

B. Description: Cartridge type, wet rotor circulator for closed loop hydronic systems.

C. Casing: Cast Iron with flanged connections.

D. Stator housing: Aluminum, Stainless Steel or cast Iron

E. Cartridge: Stainless Steel

F. Impeller: Non-metallic or Stainless Steel

G. Shaft: Ceramic or Stainless Steel

H. Bearings, Carbon

I. O-Ring & Gaskets: EPDM
J. Capacity and Performance: See Drawings

2.2 WET ROTOR, CARTRIDGE CIRCULATORS, WITH ECM MOTOR AND INTEGRAL CONTROL

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alpha and Magna Series by Grundfos Pumps Corporation, USA.
 2. Viridian Series by TACO Comfort Solutions, Inc.
 3. Compass Series by Armstrong Pumps, Inc.

B. Description: The pumps shall be single stage, canned-rotor type, in-line design. The pump shall have integral controls that allow:
 1. Constant pressure control
 2. Variable differential pressure control
 3. Proportional pressure control
 4. Constant speed operation

C. Casing: ASTM-A 48 Class 35 cast iron. The pump casing / volute shall be rated for 175psi working pressure. The pump flanges shall be matched to suit the working pressure of the piping components on the job, with ANSI Class 125 flanges. The pump and motor form an integral unit without a mechanical seal. The bearings are lubricated by the pumped liquid.

D. Impeller: The impeller and shaft shall be stainless steel or composite.

E. Motor: The pump must be driven by an electrically commutated electrical motor (ECM) with permanent magnet rotor. The electrically commuted electrical motor shall be driven by a frequency converter with an integrated PFC filter.

F. Electrical: The pumps shall be electronically protected, be rated for continuous duty and have a built-in startup circuit. The pump electronics shall provide overcurrent, line surge and current limit protection, thermal monitoring, heat sink status and over temperature protection.

G. User Interface: The pump shall have either a user control panel that allows review, and or adjustment of all pump parameters and settings or a data port to allow review, and or adjustment of all pump parameters with a lap-top computer.

H. Controls and Communication:
 1. The pumps shall be able to operate as single or parallel variable speed pumps the speed is regulated by an on-board electronic device.
 2. The onboard electronics shall allow these pumps to run in parallel, standby or alternating modes with auto change over for redundancy.
 3. The pump shall have a sufficient input and output terminals and communication protocols to achieve the sequence of operations specified on the drawings. Where specified the pumps shall have BACnet communication capability to allow integration into the building management system.

I. Capacities and Performance: See Drawings.
2.3 SEPARATELY COUPLED, VERTICALLY MOUNTED, IN-LINE CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong Pumps, Inc.
2. ITT Corporation.
3. Grundfos Pumps Corporation, USA.
4. TACO Comfort Solutions, Inc.

B. Description: The pumps shall be single stage vertical inline design. The seal shall be serviceable without disturbing the piping connections.

C. Casing: Shall be constructed of ASTM A48 class 30 cast iron. The pump casing/volute shall be rated for 250 psi working pressure. The pump flanges shall be ANSI Class 125. The pump casing shall be drilled and tapped for gauge ports on both the suction and discharge connections and for a drain port at the bottom of the casing.

D. Impeller: The impeller shall be ASTM B584-836/875 bronze and hydraulically balanced. The impeller shall be dynamically balanced to ANSI Grade G6.3.

E. Shaft: The pump shall be manufactured with AISI 416 Stainless Steel shaft.

F. Seal: The pump shall be fitted with a single mechanical seal, with EPT elastomers and Carbon/Ceramic faces, rated up to 250°F.

G. Couplings: The pump shall be coupled via a high tensile aluminum split style coupling. The design must permit easy replacement of the mechanical shaft seal without removal of the motor. The motor mount must be designed to accept several different motor frame standards.

H. Motor: The motor shall be a TEFC, inverter rated motor with class F insulation and shaft grounding ring.

I. Pumps specified to have “self-sensing” capability must comply with part 2.5.

J. Capacity and Performance: See Drawings.

2.4 SEPARATELY COUPLED, BASE-MOUNTED, END-SUCTION CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong Pumps, Inc.
2. ITT Corporation.
3. Grundfos Pumps Corporation, USA.
4. TACO Comfort Solutions, Inc.

B. Description: Factory-assembled and -tested, centrifugal, separately coupled, end-suction pump, designed for base mounting, with pump and motor shafts horizontal.
C. Casing: Pump casing shall be constructed of ASTM A48 class 30 cast iron. The pump casing/volute shall be rated for 250 psi working pressure. The pump flanges shall be ANSI Class 125 flanges. The pump casing shall be drilled and tapped for gauge ports on both the suction and discharge connections and for a drain port at the bottom of the casing. The pump volute shall be foot mounted. Overhung cantilevered design not allowable.

D. Base: All pumps to be provided with a fully welded, rigid structural steel base. The base shall include closed ends and top openings to allow for grouting. The base shall include an integral drain pan and shall contain an integral ¾” drain connection.

E. Impeller: The impeller shall be ASTM B584-836/875 bronze and hydraulically balanced. The impeller shall be dynamically balanced to ANSI Grade G6.3 and shall be fitted to the shaft with a key.

F. Shaft: The pump shaft shall be AISI 1045 carbon steel with field replaceable bronze SAE 660 shaft sleeve.

G. Seal: The pump shall be fitted with a single mechanical seal, with EPT elastomers and Carbon/Ceramic faces, rated up to 250°F. The pump bearing frame shall incorporate maintenance free permanently lubricated and sealed bearings with an L10 life of 60,000 hours.

H. Couplings: The coupling shall be equal to a Woods Dura-Flex coupler. The coupler shall be suitable for across the line starting as well as variable speed conditions associated with variable frequency drives. The coupling and shafts shall be covered by a metal guard. Pump shall be aligned upon receipt at job, during installation, and after system fill by contractor.

I. Motor: The pump shall be flexibly coupled to a NEMA standard T frame motor. The motor shall be a TEFC, inverter rated motor with class F insulation and shaft grounding ring.

J. Pumps specified to have “self-sensing” capability must comply with part 2.5.

K. Capacity and Performance: See Drawings.

2.5 PUMP SPECIALTY FITTINGS

A. Suction Diffuser:

 1. Angle pattern.
 2. 175-psig pressure rating, ductile-iron body and end cap, pump-inlet fitting.
 3. Bronze startup and bronze or stainless-steel permanent strainers.
 4. Bronze or stainless-steel straightening vanes.
 5. Drain plug.
 6. Factory-fabricated support.

2.6 SELF-SENSING PUMPS

A. Where specified provide a pump of the specified configuration and in compliance with this specification that consists of a factory prepackaged and preprogrammed pump, drive, motor, and integral controls package.
B. The drive shall be mounted and integral to the motor. It shall be mounted with rubber vibration mounts. The mounting and packing of the drive shall be done in a manner that transmitted acceleration levels will be three times below the allowable limits published by the drive manufacturer. These limits will apply to a frequency range of 0-10,000 HZ.

C. Field coordinate the mounting position of the drive to ensure access for operation and maintenance and to maintain all code required clearances.

D. VFD and Controls:
 1. VFD: The integral VDF shall be a standard HVAC drive that has been upgraded and modified by pump experts for hydronic applications. It is set up with a closed loop internal control sequence that will optimize life cycle, system comfort, and minimize energy consumption. The VFD shall include an integral electrical disconnect.
 2. Controls: The pump’s integral controller operation shall operate the system using a tested and proven program that safeguards against undesirable or damaging conditions including:
 a. Motor overload.
 b. Pump flow surges.
 c. Hydraulic cycling (hunting).
 d. End of curve unstable operation: The pump logic controller, through a factory pre-programmed algorithm, shall be capable of protecting the pumps from hydraulic damage due to operation beyond their published end-of-curve.
 3. The pump logic controller shall be capable of starting, unloading, and stopping pumps based on a system performance program that will minimize energy consumption, provide reliable performance and smooth transitions.
 4. The integrated logic controller shall be capable of running in four different hydronic modes:
 a. Variable Flow: This mode shall allow the pump package to track a quadratic system curve and will optimize a distribution loop without the need for an eternal flow or pressure sensor. It shall use a technology that allows the pump, drive, and motor package to translate the hydronic data from both a pump and system curve and translate it to electrical data.
 b. Constant Flow: This mode shall allow the package to run in a customer defined flow rate. The package will always seek to run at the user defined flow even with fouling causing system changes. It shall use a technology that allows the pump, drive, and motor package to translate the hydronic data from both a pump and system curve and translate it to electrical data. This allows the drive to know exactly where it is in the hydronic world.
 c. Constant Pressure: This mode shall incorporate a traditional external sensing and control platform. It shall allow the option of controlling the pumps with three zones of differential pressure or central plant differential temperature. This optional setup shall allow the owner the option of external sensing without adding an external controller.
 d. Standby: This mode shall allow two pumps to run as backup for each other and shall alternate the pumps based on a real time clock.
PART 3 - EXECUTION

3.1 PUMP INSTALLATION

A. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.

B. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

C. All pump suctions to be fitted with a multifunction inlet suction diffuser. The suction diffuser body and cover plate shall be ductile iron and be rated for 250 psi. The suction diffusers flange’s shall be ANSI class 125 flanges. The suction diffuser shall include the following components:
 1. full length S.S. straightening vanes, permanent S.S. strainer, disposable 16 mesh bronze start up strainer
 2. Blow down ports,
 3. Metering ports.
 4. For those pumps where an inlet suction diffuser is not installed, there should be five pipe diameters of straight undisturbed flow going into the pump suction.

D. All pumps shall be fitted with one pressure gauge piped to the inlet and outlet pump flanges and on the inlet to the suction diffuser. The gauges are to be isolated from each flange via ¼” ball valve. This gauge is to be used to take the differential across the pump and/or the suction diffuser, unless otherwise indicated.

E. Contractor shall install pump in accordance with the manufacturer’s instructions. Contractor shall level each pump.

F. Pipe connections to pumps shall be made in such a manner so as not to exert any stress on pump housings. If necessary to meet this requirement, provide additional pipe supports and flex connectors.

G. Pumps shall NOT be run dry to check rotation.

H. Change start-up strainers to permanent strainer upon acceptance of the job. Provide a blowdown valve on each strainer and terminate with hose thread or extend blowdown line to nearest floor drain.

3.2 ALIGNMENT

A. Engage a factory-authorized service representative to perform alignment service.

B. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.

C. Comply with pump and coupling manufacturers' written instructions.
D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.3 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to pump, allow space for service and maintenance.

C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

E. Install check, shutoff, and throttling valves on discharge side of pumps.

F. Install suction diffuser and shutoff valve on suction side of pumps.

G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.

H. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.

I. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

J. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 START-UP

A. Engage and factory authorized agent to start-up “self-sensing” pumps and wet rotor circulators with integral controls. Coordinate start-up with the Engineer, Temperature Controls Contractor and Commissioning Agent to ensure the correct set points and control mode are implemented.

END OF SECTION 232123
SECTION 232213 - STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes pipe and fittings for LP steam less than 50 psig and condensate piping.
 1. Steel pipe and fittings.
 2. Joining materials.
 B. Related Requirements:
 1. Section 232216 "Steam and Condensate Heating Piping Specialties" for strainers, flash tanks, special-duty valves, steam traps, thermostatic air vents and vacuum breakers, and steam and condensate meters.

1.2 SUBMITTALS
 A. See Section 220000 “General Conditions of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Components and installation shall be capable of withstanding the following minimum working pressures and temperatures unless otherwise indicated:
 1. LP Steam Piping: 50 psig.
 2. Condensate Piping: 50 psig at 250 deg F.
 3. Makeup-Water Piping: 80 psig at 150 deg F.
 4. Blowdown-Drain Piping: Equal to pressure of the piping system to which it is attached.
 5. Air-Vent and Vacuum-Breaker Piping: Equal to pressure of the piping system to which it is attached.
 6. Safety-Valve-Inlet and -Outlet Piping: Equal to pressure of the piping system to which it is attached.
2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, plain ends, welded and seamless, Grade B, and Schedule as indicated in piping applications articles.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125, 150, and 300 as indicated in piping applications articles.

C. Malleable-Iron Threaded Fittings: ASME B16.3; Classes 150 and 300 as indicated in piping applications articles.

D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in piping applications articles.

E. Cast-Iron Threaded Flanges and Flanged Fittings: ASME B16.1, Classes 125 and 250 as indicated in piping applications articles; raised ground face, and bolt holes spot faced.

2.3 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.

 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

PART 3 - EXECUTION

3.1 LP STEAM PIPING APPLICATIONS

A. LP Steam Piping: Schedule 40, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.

B. Condensate Piping above Grade: Schedule 80, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.

3.2 ANCILLARY PIPING APPLICATIONS

A. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

B. Vacuum-Breaker Piping: Outlet, same as service where installed.
C. Safety-Valve-Inlet and -Outlet Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless otherwise indicated.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping free of sags and bends.

G. Install fittings for changes in direction and branch connections.

H. Install piping to allow application of insulation.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

K. Install drains, consisting of a tee fitting, NPS 3/4 full port-ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

L. Install steam supply piping at a minimum uniform grade of 0.2 percent downward in direction of steam flow.

M. Install condensate return piping at a minimum uniform grade of 0.4 percent downward in direction of condensate flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side down.

O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to top of main pipe.

P. Install valves according to the following Sections or other Sections as needed:

1. Section 220523 “General Duty Valves for Plumbing and HVAC”
Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

S. Install shutoff valve immediately upstream of each dielectric fitting.

T. Install strainers on supply side of control valves, pressure-reducing valves, traps, and elsewhere as indicated. Install NPS 3/4 nipple and full port ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.

U. Comply with requirements in Section 220500 “General Provisions of Plumbing and HVAC” for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.

V. Comply with requirements in Section 220500 “General Provisions of Plumbing and HVAC” for identifying piping.

W. Install drip legs at low points and natural drainage points such as ends of mains, bottoms of risers, and ahead of pressure regulators, and control valves.

1. On straight runs with no natural drainage points, install drip legs at intervals not exceeding 100 feet.
2. Size drip legs same size as main. In steam mains NPS 6 and larger, drip leg size can be reduced, but to no less than NPS 4.

X. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220500 “General Provisions of Plumbing and HVAC”.

Y. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220500 “General Provision of Plumbing and HVAC”.

Z. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220500 “General Provisions of Plumbing and HVAC”.

3.4 STEAM AND CONDENSATE PIPING SPECIALTIES INSTALLATION

A. Comply with requirements in Section 232216 "Steam and Condensate Heating Piping Specialties" for installation requirements for strainers, flash tanks, special-duty valves, steam traps, thermostatic air vents and vacuum breakers, and steam and condensate meters.

3.5 HANGERS AND SUPPORTS

A. Comply with requirements in Section 220529 “Hangars and Supports for Plumbing and HVAC Piping and Equipment” for installation of hangers and supports. Comply with requirements below for maximum spacing.
B. Comply with requirements in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment" for seismic restraints.

C. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.

D. Install hangers for steel steam supply piping with the following maximum spacing:

1. NPS 3/4: Maximum span, 9 feet.
2. NPS 1: Maximum span, 9 feet.
3. NPS 1-1/2: Maximum span, 12 feet.
4. NPS 2: Maximum span, 13 feet.
5. NPS 2-1/2: Maximum span, 14 feet.
6. NPS 3 and Larger: Maximum span, 15 feet.

E. Install hangers for steel steam condensate piping with the following maximum spacing:

1. NPS 3/4: Maximum span, 7 feet.
2. NPS 1: Maximum span, 7 feet.
3. NPS 1-1/2: Maximum span, 9 feet.
4. NPS 2: Maximum span, 10 feet.
5. NPS 2-1/2: Maximum span, 11 feet.
6. NPS 3 and Larger: Maximum span, 12 feet

F. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.6 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Size for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install traps and control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, the bypass is not required.

D. Install vacuum breakers downstream from control valve, close to coil inlet connection.

E. Install a drip leg at coil outlet.

3.8 FIELD QUALITY CONTROL

A. Prepare steam and condensate piping according to ASME B31.1, "Power Piping," and ASME B31.9, "Building Services Piping," and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush system with clean water. Clean strainers.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
2. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength.
3. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

END OF SECTION 232213
SECTION 232216 - STEAM AND CONDENSATE HEATING PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes the following piping specialties for steam and condensate piping:

1. Strainers.
2. Flash tanks.
4. Safety valves.
5. Pressure-reducing valves.
6. Steam traps.
7. Thermostatic air vents and vacuum breakers.
8. Flexible connectors.

B. Related Requirements:

1. Section 220523 “General Duty Valves for Plumbing and HVAC” for specification and installation requirements valves.

1.2 ACTION SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressures and temperatures unless otherwise indicated:

1. MP Steam Piping: 50 psig.
2. LP Steam Piping: 15 psig.
3. Condensate Piping: 50 psig at 250 deg F.
4. Makeup-Water Piping: 80 psig at 150 deg F.
5. Blowdown-Drain Piping: Equal to pressure of the piping system to which it is attached.
6. Air-Vent and Vacuum-Breaker Piping: Equal to pressure of the piping system to which it is attached.
7. Safety-Valve-Inlet and -Outlet Piping: Equal to pressure of the piping system to which it is attached.

2.2 STRAINERS

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B cast iron, with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for strainers NPS 2 and smaller; flanged ends for strainers NPS 2-1/2 and larger.
 3. Strainer Screen: Stainless-steel, 40-mesh strainer or perforated stainless-steel basket.
 4. Tapped blowoff plug.
 5. CWP Rating: 250-psig working steam pressure.

2.3 FLASH TANKS

A. Flash Tanks and Separators shall be constructed in accordance with ASME Code Sec. VII, Div 1 for: 150 psig at 450 F.

B. Connections:
 1. Safety relief valve connection
 2. Drain
 3. Inlet
 4. Cleanout
 5. Vent
 6. Gauge tapping

C. Accessories:
 1. Angle Legs – field verify mounting height prior to ordering.

D. Capacities and Characteristics: See Drawings.

2.4 STEAM SAFETY VALVES

A. Bronze or Brass Steam Safety Valves: ASME labeled.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Hoffman Specialty.
 c. Spirax Sarco, Inc.
 2. Disc Material: Forged copper alloy.
 3. End Connections: Threaded inlet and outlet.
 4. Spring: Fully enclosed steel spring with adjustable pressure range and positive shutoff; factory set and sealed.
 5. Pressure Class: 250.
6. Drip-Pan Elbow: Cast iron and having threaded inlet and outlet, with threads complying with ASME B1.20.1.
7. Size and Capacity: As required for equipment according to ASME Boiler and Pressure Vessel Code.

2.5 PRESSURE-REDUCING VALVES

A. Manufacturers: Provide the following:
 1. Fisher Model 92B Self Powered Control Valve

 Capacities and Characteristics: See Drawings.

C. ASME labeled.

D. Size, Capacity, and Pressure Rating: Factory set for inlet and outlet pressures indicated.

E. Description: Pilot-actuated diaphragm type, with adjustable pressure range and positive shutoff.

F. Body: Cast iron.

G. End Connections: Threaded connections for valves NPS 2 and smaller and flanged connections for valves NPS 2-1/2 and larger.

H. Trim: Hardened stainless steel.

2.6 STEAM TRAPS

A. Thermostatic Steam Traps:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Hoffman Specialty.
 c. Spirax Sarco, Inc.

 2. Body: Bronze angle-pattern body with integral union tailpiece and screw-in cap.

 3. Trap Type: Balanced pressure.
 4. Bellows: Stainless steel or monel.
 5. Head and Seat: Replaceable, hardened stainless steel.
 6. Pressure Class: 125.

B. Float and Thermostatic Steam Traps:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Hoffman Specialty.
c. Spirax Sarco, Inc.

2. Body and Bolted Cap: ASTM A 126 cast iron.

6. Trap Type: Balanced pressure.
7. Thermostatic Bellows: Stainless steel or monel.
8. Thermostatic air vent capable of withstand 45 deg F of superheat and resisting water hammer without sustaining damage.

C. Inverted Bucket Steam Trap:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Hoffman Specialty.
 c. Spirax Sarco, Inc.
2. Body and Cover: Cast Iron
3. Valve Pin and Seat: Hardened Stainless Steel
4. Bucket: Stainless Steel
5. Lever Assembly: Stainless Steel
6. Strainer: Stainless Steel
7. Cover Gasket: Non-asbestos Fiber
8. Cover Bolts: Grade 8
9. Maximum Operating Pressure: 150 psi
10. Maximum Temperature: 450F

2.7 THERMOSTATIC AIR VENTS AND VACUUM BREAKERS

A. Thermostatic Air Vents:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Hoffman Specialty.
 c. Spirax Sarco, Inc.
2. Body: Cast iron, bronze, or stainless steel.
5. Thermostatic Element: Phosphor bronze bellows in a stainless-steel cage.
7. Maximum Temperature Rating: 350 deg F.

B. Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Hoffman Specialty.
 c. Spirax Sarco, Inc.
2. Body: Cast iron, bronze, or stainless steel.
5. O-Ring Seal: Ethylene propylene rubber.
7. Maximum Temperature Rating: 350 deg F.

2.8 FLEXIBLE CONNECTORS

A. Stainless-Steel Bellows, Flexible Connectors:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hyspan Precision Products, Inc.
 b. Mason Industries, Inc.
 c. Metraflex Company (The).
 d. Twin City Hose, Inc.
3. End Connections: Threaded or flanged to match equipment connected.
5. CWP Rating: 150 psig.
6. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

A. Install shutoff duty valves at branch connections to steam supply mains, at steam supply connections to equipment, and at the outlet of steam traps.
B. Install safety valves on pressure-reducing stations and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install safety-valve discharge piping, without valves, to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

3.2 PIPING INSTALLATION

A. Install piping to permit valve servicing.

B. Install drains, consisting of a tee fitting, NPS 3/4 full-port ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

C. Install valves according to:

1. Section 220523 “General Duty Valves for Plumbing and HVAC”.

D. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment and elsewhere as indicated.

E. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

F. Install shutoff valve immediately upstream of each dielectric fitting.

G. Install strainers on supply side of control valves, pressure-reducing valves, traps, and elsewhere as indicated. Install NPS 3/4 nipple and full-port ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.

3.3 FLASH TANK INSTALLATION

A. Install flash tanks to allow gravity drainage of condensate.

B. Install float and thermostatic trap on outlet.

C. Install safety relief valve – coordinate pressure relief setting with steam system operating pressure.

D. Install pressure gauge on tank. See section 220519 “Meters and Gauges for Plumbing and HVAC” for additional information.

E. Support flash tank per section 220529 “Hangars and Supports for Plumbing Piping and Equipment” and section 220548 “Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment”.

3.4 STEAM-TRAP INSTALLATION

A. Install steam traps in accessible locations as close as possible to connected equipment.
B. Install full-port ball valve, strainer, and union upstream from trap; install union, check valve, and full-port ball valve downstream from trap unless otherwise indicated.

3.5 PRESSURE-REDUCING VALVE INSTALLATION

A. Install pressure-reducing valves in accessible location for maintenance and inspection.

B. Install bypass piping around pressure-reducing valves, with globe valve equal in size to area of pressure-reducing valve seat ring, unless otherwise indicated. Where parallel pressure reducing valves are installed and bypass is not required.

C. Install gate valves on both sides of pressure-reducing valves.

D. Maintain manufacturers required straight pipe length on inlet and outlet of pressure reducing valves.

E. Install unions or flanges on both sides of pressure-reducing valves having threaded- or flanged-end connections, respectively.

F. Install pressure gages on low-pressure side of pressure-reducing valves after the bypass connection according to Section 220519 "Meters and Gages for Plumbing and HVAC Piping."

G. Install strainers upstream for pressure-reducing valve.

H. Install safety valve downstream from pressure-reducing valve station.

3.6 SAFETY VALVE INSTALLATION

A. Install safety valves according to ASME B31.1, "Power Piping," and ASME B31.9, "Building Services Piping."

B. Pipe safety-valve discharge without valves to atmosphere outside the building.

C. Install drip-pan elbow fitting adjacent to safety valve and pipe drain connection to nearest floor drain.

D. Install exhaust head with drain to waste, on vents equal to or larger than NPS 2-1/2.

3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Install traps and control valves in accessible locations close to connected equipment.

B. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

C. Install vacuum breakers downstream from control valve, close to coil inlet connection.

END OF SECTION 232216
SECTION 232223 - STEAM CONDENSATE PUMPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes steam condensate pumps.

1.2 SUBMITTALS
A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 SINGLE-STAGE, CENTRIFUGAL PUMPS WITH FLOOR-MOUNTED RECEIVER
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ITT Corporation.
 2. Skidmore Pump.
 3. Spirax Sarco, Inc.

B. Description: Factory-fabricated, packaged, electric-driven pumps; with receiver, pumps, controls, and accessories suitable for operation with steam condensate.
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. ASME Compliance: Fabricate and label steam condensate receivers to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

C. Configuration: Duplex, floor-mounted pump with receiver and float switches; rated to pump 200 deg F steam condensate.

D. Receiver:
 1. Floor mounted.
 2. Close-grained cast iron.
 3. Externally adjustable float switches.
 4. Flanges for pump mounting.
 5. Water-level gage and dial thermometer.
 6. Pressure gage at pump discharge.
 7. Bronze fitting isolation valve between pump and receiver.
 8. Lifting eyebolts.
9. Inlet vent and an overflow.

E. Pumps:
1. Centrifugal, close coupled, vertical design.
2. Suction isolation valves for each pump.
3. Permanently aligned.
4. Bronze fitted.
5. Replaceable bronze case ring.
6. Mechanical seals rated at 250 deg F.
7. Mounted on receiver flange.

F. Motor:
1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
2. Enclosure: Open, dripproof.

G. Control:
1. Factory wired between pumps and float switches, for single external electrical connection.
2. Motor controller for each pump.
3. Electrical pump alternator to operate pumps in lead-lag sequence and allow both pumps to operate on receiver high level.
5. Disconnect switch.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install pumps according to HI 1.1-1.2, HI 1.3, and HI 1.4.

B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.

C. Support pumps and piping separately so piping is not supported by pumps.

D. Install thermometers and pressure gages.

E. Equipment Mounting:
1. Install pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete." and or Section 033053 "Miscellaneous Cast-in-Place Concrete."
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment"

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 232213 "Steam and Condensate Heating Piping" and Section 232216 "Steam and Condensate Heating Piping Specialties."

B. Where installing piping adjacent to machine, allow space for service and maintenance.

C. Pipe drain to nearest floor drain for overflow and drain piping connections.

D. Install full-size vent piping to outdoors, terminating in 180-degree elbow at point above highest steam system connection or as indicated.

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 232223
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Rectangular ducts and fittings.
 2. Round ducts and fittings.
 4. Sealants and gaskets.
 5. Hangers and supports.

B. Related Sections:
 1. Section 220529 “Hangars and Supports for Plumbing and HVAC Piping and Equipment.”
 2. Section 220548 “Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment”
 3. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 4. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ANSI/ASHRAE 62.1.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

B. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."
PART 2 - PRODUCTS

2.1 RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 24 in Diameter: Flanged.

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger Than 90 inches in diameter with butt-welded longitudinal seams.
D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.

F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

C. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

E. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
H. Trapeze and Riser Supports:

3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.

B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 20 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.

C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts at a minimum to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.5 **HANGER AND SUPPORT INSTALLATION**

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-acted fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-acted concrete fasteners after concrete is placed and completely cured.
3. Use powder-acted concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-acted concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-acted concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 **SEISMIC-RESTRAINT-DEVICE INSTALLATION**

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems." And ASCE/SEI 7.

3.7 **CONNECTIONS**

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.8 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

1. Underground Ducts: Concrete-encased, PVC-coated, galvanized sheet steel with thicker coating on duct exterior.

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 16.
 d. SMACNA Leakage Class for Round and Flat Oval: 8.

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 16.
 d. SMACNA Leakage Class for Round and Flat Oval: 8.

3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 8.
 d. SMACNA Leakage Class for Round and Flat Oval: 4.

4. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 16.
 d. SMACNA Leakage Class for Round and Flat Oval: 8.

C. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
b. Minimum SMACNA Seal Class: C.
c. SMACNA Leakage Class for Rectangular: 16.
d. SMACNA Leakage Class for Round and Flat Oval: 8.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 16.
 d. SMACNA Leakage Class for Round and Flat Oval: 8.

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 16.

D. Exhaust Ducts:
 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 16.
 d. SMACNA Leakage Class for Round and Flat Oval: 8.

 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 8.
 d. SMACNA Leakage Class for Round and Flat Oval: 4.

 a. Pressure Class: Positive or negative 2-inch wg.
 b. Airtight/Watertight.

 4. Ducts Connected to Dishwasher Hoods:
 a. Type 304, stainless-steel sheet.
 b. Exposed to View: No. 4 finish.
 c. Concealed: No. 2D finish.
 d. Welded seams and flanged joints with watertight EPDM gaskets.
 e. Pressure Class: Positive or negative 2-inch wg.
 f. Airtight/Watertight.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 16.
 d. SMACNA Leakage Class for Round and Flat Oval: 8.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 8.
 d. SMACNA Leakage Class for Round and Flat Oval: 4.

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 8.
 d. SMACNA Leakage Class for Round and Flat Oval: 4.

F. Intermediate Reinforcement:

2. PVC-Coated Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Galvanized.
3. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.

G. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

c. Velocity 1500 fpm or Higher:

1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."

a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."

a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.

1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
4) Radius-to-Diameter Ratio: 1.5.

b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

H. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."

a. Rectangular Main to Rectangular Branch: 45-degree entry.
b. Rectangular Main to Round Branch: Spin in.
2. Round: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.

 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113
SECTION 233114 - TRANSPRIED SOLAR COLLECTORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes engineered solar air heating system that uses solar energy to pre-heat ventilation air prior to entering the HVAC systems. The system is comprised of perforated metal wall panels, metal framing to create an air plenum and metal duct connections to the HVAC systems.

B. Related Requirements:
 1. Section 076200 “Sheet Metal Flashing and Trim”
 2. Section 079005 “Joint Sealers”
 3. Section 233113 “Metal Ducts”

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

B. Shop Drawings: Submit installation drawings that show the arrangement and orientation of panels, framing components, flashings, trim and all accessories.

C. Delegated Design Submittal: The manufacturer of the transpired solar collector shall provide calculations that indicate the anticipated air temperature rise at design conditions and considering airflow, absorptivity, location and construction.

D. Samples: Provide two (2) 12” x 12” samples of the wall panel to illustrate the finish, color, sheen, profile and texture.

1.3 QUALITY ASSURANCE

A. The transpired solar collector shall be certified and rated by SAHWIA and bear the “Solar A Mark Certificate” to demonstrate that the system has been tested and the performance has been independently verified.

B. The transpired solar collector shall be SRCC OG 100 certified for the specified air flow rates and velocity.

1.4 References:

A. 1. ASTM A653 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.
1.5 WARRANTY

A. Warranty Period:
 1. Entire System: 1 year from date of substantial completion.
 2. Exterior panels: Correct defective work of products within 1 year from the date of substantial completion.
 3. Paint: 40 years for finish against pealing, chipping or fading.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Provide Single Stage “SolarWall” from Conserval Systems Inc. or prior approved equal.

2.2 PERFORMANCE REQUIREMENTS

A. Provide a SolarWall Single-Stage solar heating panel system that will provide heating for 10 cubic feet per minute of fresh air per square foot of solar panel. The total area of the system shall be 270 sqft with length of 15 ft and height of 18 ft.

B. The anticipated air temperature rise under design conditions is: 8.3 degrees F.

C. See drawings for additional information.

2.3 MATERIALS

A. Metal: Galvanized steel, 26 gauge, ASTM A653 and ASTM A755.

B. Configuration: Standard roll-formed corrugated metal panels with high & low flats

C. Standard Finish: Silicon modified polyester (SMP) with inorganic and ceramic pigmentation.

D. Standard 26 Gauge “Hot Colors”: Black

E. Solar Reflectance (SR) value: Black to have SR of 0.06 or less or Solar Absortivity of 0.94 or greater.

2.4 ACCESSORIES

A. SolarDuct Components: Provide galvanized steel components to support the panels in a manner as recommended by the manufacturer.

B. Flashing: Provide pre-painted flashing materials to match the metal and finish of the solar panels.

C. Fasteners: Provide corrosion resistant self-drilling screws and rivets as recommended by the manufacturer. Exposed fasteners must be finished to match the panels.
PART 3 - EXECUTION

3.1 INSTALLATION
A. Comply with manufacturer’s product data, including product technical bulletins, product catalog installation drawings and instructions.
B. Coordinate with mechanical to ensure SolarWall system is connected to fan inlet and ventilation system.
C. Coordinate with controls or building automation system to ensure sequence of operation of solar heater, fans and associated dampers

3.2 EXAMINATION
A. Verify that substrate conditions for substrates that have been previously installed under other sections, are acceptable for product installation in accordance with manufacturer’s instructions.

3.3 PREPARATION
A. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

END OF SECTION 233114
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
3. Control dampers.
4. Fire dampers.
5. Smoke dampers.
6. Flange connectors.
7. Turning vanes.
8. Duct-mounted access doors.
10. Duct accessory hardware.

B. Related Requirements:

1. Section 233723 "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
2. Section 283111 "Digital, Addressable Fire-Alarm System" for duct-mounted fire and smoke detectors.

1.2 SUBMITTALS

A. See section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
2. Exposed-Surface Finish: Mill phosphatized.

B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a 2D finish for concealed ducts and 2BA finish for exposed ducts.

C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cesco Products; a division of MESTEK, Inc.
 2. Nailor Industries Inc.
 3. Ruskin Company.

B. Description: Gravity balanced.

C. Maximum Air Velocity: 1000 fpm.

D. Maximum System Pressure: 4.5 inch wg.

E. Frame: Hat-shaped, 0.063-inch-thick extruded aluminum, with welded corners or mechanically attached and mounting flange.

F. Blades: Multiple single-piece blades, end pivoted, maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Extruded vinyl, mechanically locked.

I. Blade Axles:
 1. Material: Nonmetallic.
 2. Diameter: 0.20 inch.

J. Bearings: synthetic pivot bushings.

K. Accessories:
1. Adjustment device to permit setting for varying differential static pressure.
2. Counterweights and spring-assist kits for vertical airflow installations.
3. Electric actuators.
4. Chain pulls.
5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20 gage minimum.
 b. Sleeve Length: 6 inches minimum.
6. Screen Mounting: Rear mounted.
7. Screen Material: Aluminum.
8. Screen Type: Bird.
9. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cesco Products; a division of MESTEK, Inc.
 b. Nailor Industries Inc.
 c. Ruskin Company.
 2. Standard leakage rating.
 3. Suitable for horizontal or vertical applications.
 4. Frames:
 a. Frame: 16 Gauge galvanized steel, 5 in deep
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. 16 gauge galvanized steel with V groove for stiffness.
 7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 8. Tie Bars and Brackets: Galvanized steel.
2.5 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cesco Products; a division of MESTEK, Inc.
2. Nailor Industries Inc.
3. Ruskin Company.

B. Frames:

1. U shaped.
2. 16 gage galvanized steel.
3. Interlocking, gusseted corners.

C. Blades:

1. Multiple blade with maximum blade width of 6 inches.
2. Parallel- and opposed-blade design.
3. 14 gage Galvanized-steel.
5. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.

D. Blade Axles: 1/2-inch-diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.

1. Operating Temperature Range: From minus 40 to plus 200 deg F.

E. Bearings:

1. Oil-impregnated stainless-steel sleeve.
2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cesco Products; a division of MESTEK, Inc.
2. Nailor Industries Inc.
3. Ruskin Company.

B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000 ft/min velocity.

D. Fire Rating: 1-1/2 and 3 hours as required by the wall, floor or ceiling assembly rating.
E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
1. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Galvanized curtain type.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

J. Heat-Responsive Device: Replaceable, 212 deg F rated, fusible links.

2.7 COMBINATION SMOKE & FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Cesco Products; a division of MESTEK, Inc.
2. Nailor Industries Inc.
3. Ruskin Company.

B. General Requirements: Label according to UL 555S by an NRTL.

C. Smoke Detector: Shall be provided by the fire alarm contractor and shall be addressable type for integration into addressable fire alarm system. The smoke detector that be provided with a keyed remote test switch, field verify the installation location with owner and engineer.

D. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel, with mechanically attached corners and mounting flange.

F. Blade Seals: Inflatable silicone fiberglass material to maintain smoke leakage rating to a minimum of 450F and galvanized steel for flame seal to 1,900F.

G. Bearings: Self-lubricating stainless steel sleeve, turning in extruded hole in frame.

H. Axels: Minimum ½ inch diameter plated steel, hex-shaped, mechanically attached to blade.

I. Linkage: Concealed in frame.

J. Leakage: Class II.

K. Rated pressure and velocity to exceed design airflow conditions.
L. Mounting Sleeve: Factory-installed, 20 gage galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

M. Damper Motors: two-position action.

N. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors.

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC"
3. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
4. Electrical Connection: 115 V, single phase, 60 Hz.

O. Accessories:

2. Keyed, damper test and reset switches, remote mounted.

2.8 FLANGE CONNECTORS

A. Description: Roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

B. Material: Galvanized steel.

C. Gage and Shape: Match connecting ductwork.

2.9 TURNING VANES

A. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

B. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Double wall.
2.10 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cesco Products; a division of MESTEK, Inc.
2. Ductmate Industries, Inc.
3. Flexmaster U.S.A., Inc.
4. Nailor Industries Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Continuous and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.

C. Pressure Relief Access Door:

1. Door and Frame Material: Galvanized sheet steel.
2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
4. Factory set at 3.0- to 8.0-inch wg.
5. Doors close when pressures are within set-point range.
6. Hinge: Continuous piano.
7. Latches: Cam.
8. Seal: Neoprene or foam rubber.

2.11 FLEXIBLE CONNECTORS

A. Materials: Flame-retardant or noncombustible fabrics.
B. Coatings and Adhesives: Comply with UL 181, Class 1.

C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

2.12 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

E. Set dampers to fully open position before testing, adjusting, and balancing.
F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream and downstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links.
 Access doors for access to fire or smoke dampers having fusible links shall be pressure
 relief access doors and shall be outward operation for access doors installed upstream
 from dampers and inward operation for access doors installed downstream from dampers.
7. At each change in direction and at maximum 50-foot spacing.
8. Control devices requiring inspection.
9. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Section 230553 "Identification for HVAC Piping and
 Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible
duct. Do not use flexible ducts to change directions.

N. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch lengths of
 flexible duct clamped or strapped in place.

O. Connect flexible ducts to metal ducts with draw bands.

P. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.

END OF SECTION 233300
SECTION 233346 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes: Insulated flexible ducts.

1.2 SUBMITTALS
A. See section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION
B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."

2.2 INSULATED FLEXIBLE DUCTS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flexmaster U.S.A., Inc.
 2. McGill AirFlow LLC.
 3. Thermaflex; a Flex-Tek Group company.
B. Insulated, Flexible Duct: UL 181, Class 1, two-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 10 to plus 160 deg F.
2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.

C. Connect terminal units to supply ducts with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

D. Connect diffusers or light troffer boots to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

E. Install duct test holes where required for testing and balancing purposes.

F. Installation:
 1. Install ducts fully extended.
 2. Do not bend ducts across sharp corners.
 3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
 4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
 5. Install flexible ducts in a direct line, without sags, twists, or turns.

G. Supporting Flexible Ducts:
 1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.
 2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
 3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.
 4. Vertically installed ducts shall be stabilized by support straps at a maximum of 72 inches o.c.

END OF SECTION 233346
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Centrifugal roof ventilators.
2. Centrifugal wall ventilators.
3. Ceiling-mounted ventilators.
4. In-line centrifugal fans.
5. Propeller fans.
6. Utility Sets

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acme Engineering & Manufacturing Corp.
2. Aerovent; a division of Twin City Fan Companies, Ltd.
3. Loren Cook Company.

B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.

1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.
2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:
 1. Resiliently mounted to housing.
 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 5. Fan and motor isolated from exhaust airstream.

E. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 2. Overall Height: 16 inches.
 3. Sound Curb: Curb with sound-absorbing insulation.
 5. Metal Liner: Galvanized steel.
 6. Mounting Pedestal: Galvanized steel with removable access panel.
 7. Vented Curb: Unlined with louvered vents in vertical sides.
 8. Hinged Curb Kit: to allow the fan to be tilted to access inlet dampers and inspect the fan wheel.

G. Capacities and Characteristics: See Drawings

2.2 CENTRIFUGAL WALL VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Acme Engineering & Manufacturing Corp.
 2. Aerovent; a division of Twin City Fan Companies, Ltd.
 3. Loren Cook Company.
B. Housing: Heavy-gage, removable, spun-aluminum, dome top and outlet baffle; venturi inlet cone.

C. Fan Wheel: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:
 1. Resiliently mounted to housing.
 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 5. Fan and motor isolated from exhaust airstream.

E. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through internal aluminum conduit.
 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 4. Wall Grille: Ring type for flush mounting.
 5. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in wall sleeve; factory set to close when fan stops.
 6. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

F. Capacities and Characteristics: See Drawings.

2.3 CEILING-MOUNTED VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Loren Cook Company.
 2. Panasonic.

B. Housing: Steel, lined with acoustical insulation.

C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.

D. Grille: Plastic, louvered grille with spring clip or flange on intake and thumbscrew attachment to fan housing.

E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
4. Motion Sensor: Motion detector with adjustable shutoff timer.
5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless-steel springs, and fusible link.
7. Manufacturer's standard roof jack or wall cap, and transition fittings.

G. Capacities and Characteristics: See Drawings

2.4 IN-LINE CENTRIFUGAL FANS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acme Engineering & Manufacturing Corp.
2. Greenheck Fan Corporation.
3. Loren Cook Company.

B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing; with wheel, inlet cone, and motor on swing-out service door.

D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

F. Accessories:

1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
3. Companion Flanges: For inlet and outlet duct connections.
4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

G. Capacities and Characteristics: See Drawings

1. Vibration Isolators:
 a. Type: Elastomeric hangers.
 b. Static Deflection: 1 inch.
2.5 PROPELLER FANS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acme Engineering & Manufacturing Corp.
2. Aerovent; a division of Twin City Fan Companies, Ltd.
3. Loren Cook Company.

B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.

C. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.

D. Fan Wheel: Replaceable, cast-aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades.

E. Fan Drive: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.

F. Fan Drive:

1. Resiliently mounted to housing.
2. Statically and dynamically balanced.
3. Selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.
4. Extend grease fitting to accessible location outside of unit.
5. Service Factor Based on Fan Motor Size: 1.4.
6. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 a. Ball-Bearing Rating Life: ABMA 9, L_{10} of 100,000 hours.
8. Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory.
9. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
10. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.

G. Accessories:

1. Gravity Shutters: Aluminum blades in aluminum frame; interlocked blades with nylon bearings.
3. Wall Sleeve: Galvanized steel to match fan and accessory size.
4. Weathershield Hood: Galvanized steel to match fan and accessory size.
5. Weathershield Front Guard: Galvanized steel with expanded metal screen.
6. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
7. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.

2.6 UTILITY SETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acme Engineering & Manufacturing Corp.
2. Aerovent; a division of Twin City Fan Companies, Ltd.
3. Loren Cook Company.

B. Description: Fan shall be a single width, single inlet backward inclined airfoil blade steel wheel, belt driven centrifugal blower.

C. Construction: The fan shall be of bolted and welded construction utilizing corrosion resistant fasteners. The scroll wrapper and scroll side panels shall be a minimum 12 gauge steel. The entire fan housing shall have continuously welded seams for leakproof operation and shall have a minimum 1-1/2” outlet discharge flange. A performance cut-off shall be furnished to prevent the recirculation of air in the fan housing. Bearing support shall be minimum 10 ga. welded steel. Lifting eyes shall be provided for ease of installation. Unit shall bear an engraved aluminum nameplate. Nameplate shall indicate design CFM, static pressure, and maximum fan RPM.

D. Coating: All steel fan components shall be coated with an electrostatically applied, baked polyester powder coating.

E. Fan Wheel: Wheel shall be steel, non-overloading, centrifugal backward inclined, airfoil type. Blades on all sizes shall be continuously welded to the backplate and deep spun inlet shroud. All sizes shall be keyed and securely attached to the fan shaft. Wheel shall overlap an aerodynamic aluminum inlet cone to provide maximum performance and efficiency. Wheel shall be balanced in accordance with AMCA Standard 204-05, Balance Quality and Vibration Levels for Fans.

F. Motor: Motor shall be NEMA Design B with Class B insulation rated for continuous duty and furnished at the specified voltage, phase and enclosure.

G. Blower Shaft: Blower shaft shall be AISI C-1045 hot rolled and accurately turned, ground and polished. Shafting shall be sized for a critical speed of at least 125 percent of maximum RPM.

H. Bearings: Bearings shall be designed and tested specifically for use in air handling applications. Construction shall be heavy duty regreaseable ball or roller type in a cast iron pillow block housing and selected for a minimum L50 life in excess of 200,000 hours at maximum cataloged operating speed.
I. Belts and Drives: Belts shall be oil and heat resistant, static conducting. Drives shall be precision machined cast iron type, keyed and securely attached to the wheel and motor shafts. Drives shall be sized for 150 percent of the installed motor horsepower. The variable pitch motor drive must be factory set to the specified fan RPM.

2.7 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

B. Enclosure Type: Totally enclosed, fan cooled.

2.8 SOURCE QUALITY CONTROL

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting:

1. Install power ventilators on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."

2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.

C. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

D. Support suspended units from structure using threaded steel rods and elastomeric hangers or spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in
Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

E. Install units with clearances for service and maintenance.

F. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.
C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 233423
SECTION 233424 - KITCHEN EXHAUST POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Direct drive, roof mounted, up-blast, kitchen, exhaust ventilators
 2. Belt drive, roof mounted, up-blast, kitchen, exhaust ventilators
 3. Roof mounted, up-blast, kitchen, utility exhaust ventilators
 4. Belt drive, roof mounted, kitchen, utility exhaust ventilators
 5. Direct drive, in-line, kitchen, exhaust ventilators
 6. Roof curbs
 7. Controls

1.2 Submittals

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

PART 2 - PRODUCTS

2.1 DIRECT DRIVE, ROOF MOUNTED, UP-BLAST, KITCHEN EXHAUST VENTILATOR

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire
 2. Prior Approved Equal

B. Certifications: Fans shall be ETL Listed and comply with UL705 (electrical) and UL762 Standards and CSA Std C22.2, No 113. Fan shall bear the AMCA certified ratings seal for sound and air performance.

C. Description: Fan shall be a spun aluminum and G90 Galvanized, roof or wall mounted, direct drive, up-blast centrifugal exhaust ventilator. Exhaust ventilator shall be engineered to discharge grease laden vapors, fumes and other contaminants vertically away from the building.
D. Housing: The fan windband shall be constructed of heavy gauge aluminum or G90 Galvanized.

E. Base: The base shall be constructed of galvanized steel for improved rigidity. Base corners shall be welded to provide strength and support for hinging and cleaning and to prevent leakage into the building.

F. Fan Wheel: The fan wheel shall be centrifugal backward inclined and non-overloading. Wheels shall be balanced in two planes and done in accordance with AMCA standard 204-96, Balance Quality and Vibration Levels for Fans. The wheel blades shall be welded to the wheel inlet cone. In the event that balancing weights are required they shall be riveted to the blades or wheel. The wheel shall be firmly attached to the motor shaft with two set screws.

G. Motor and Motor Housing: Standard 115 volt, open drip motors shall be permanently lubricated, rated for continuous duty and thermally protected. Motors shall be mounted out of the airstream and furnished at the specified voltage, phase and enclosure. Motor mounting plate shall be constructed of heavy gauge galvanized steel. The motor compartment shall be cooled by outside air drawn through an extruded aluminum conduit tube. The motor compartment shall be of a two-piece construction with the cap having quick release clips to provide quick and easy access to the motor compartment.

H. Grease Spout: A grease spout made of aluminum tubing shall be welded to the fan housing. The weld shall be factory tested to ensure it will not leak.

I. Electrical Disconnect: A safety disconnect switch shall be provided and factory installed. Switches shall be installed in a NEMA3R enclosure and mounted to exterior of windband for easy access.

J. Capacities and Characteristics: See Drawings.

2.2 BELT DRIVE, ROOF MOUNTED, UP-BLAST, KITCHEN EXHAUST VENTILATOR

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire
 2. Prior Approved Equal

B. Certifications: Fans shall be ETL Listed and comply with UL705 (electrical) and UL762 Standards and CSA Std C22.2, No 113. Fan shall bear the AMCA certified ratings seal for sound and air performance.

C. Description: Fan shall be a spun aluminum and G90 Galvanized, roof or wall mounted, belt drive, up-blast centrifugal exhaust ventilator. Exhaust ventilator shall be engineered to discharge grease laden vapors, fumes and other contaminants vertically away from the building.

D. Housing: The fan windband shall be constructed of heavy gauge aluminum or G90 Galvanized.

E. Base: The base shall be constructed of galvanized steel for improved rigidity. Base corners shall be welded to provide strength and support for hinging and cleaning and to prevent leakage into the building.
F. Fan Wheel: The fan wheel shall be centrifugal backward inclined and non-overloading. Wheels shall be balanced in two planes and done in accordance with AMCA standard 204-96, Balance Quality and Vibration Levels for Fans. The wheel blades shall be welded to the wheel inlet cone. In the event that balancing weights are required they shall be riveted to the blades or wheel. The wheel shall be firmly attached to the motor shaft with two set screws.

G. Motor and Motor Housing: Motors shall be heavy duty ball bearing type, mounted out of the airstream and furnished at the specified voltage, phase and enclosure. Motor mounting plate shall be constructed of heavy gauge galvanized steel and isolated from the fan structure with vibration isolators. The motor compartment shall be cooled by outside air drawn through an extruded aluminum conduit tube. The motor compartment shall be of a two-piece construction with the top cap having quick release clips to provide quick and easy access to the motor compartment.

H. Shaft and Bearings: Shafts shall be precision ground and polished. Heavy duty, pre-lubricated bearings shall be selected for a minimum (L10) life in excess of 200,000 hours of operation at maximum cataloged operating speed. They shall be designed for and individually tested specifically for use in air handling applications.

I. Belts and Drives: Belts shall be oil and heat resistant, non-static type. Drives shall be cast type, precision machined and keyed and secured attached to the fan and motor shafts. Drives shall be sized for a minimum of 150% of the installed motor horsepower. Fan operating speed shall be factory set using adjustable pitch motor pulleys; motors over 2 HP will come standard with double groove pulleys.

J. Electrical Disconnect: A safety disconnect switch shall be provided and factory installed. Switches shall be installed in a NEMA3R enclosure and mounted to exterior of windband for easy access.

2.3 ROOF MOUNTED UP-BLAST KITCHEN UTILITY EXHAUST VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire
 2. Prior Approved Equal

B. Certifications: All models shall be ETL Listed and comply with UL705 (electrical) and UL762 Standards and CSA Std C22.2, No 113. Fan shall bear the AMCA certified ratings seal for sound and air performance.

C. Description: Fan shall be aluminized and or galvanized steel, roof mounted, belt driven, centrifugal up blast restaurant utility exhaust ventilator.

D. Housing: The fan shall be constructed of aluminized steel. Fan scroll shall be continuously sealed with a list intumescent to prevent grease leakage. The fan discharge scoop shall be fully weld and have a 2” fully welded drain to prevent grease leakage and blockage of the drain. Fan shall include integral hinge at the base of the fan power pack to allow the wheel to tilt out of the fan housing for easy cleaning of the duct in compliance with NFPA-96.
E. Base: The base shall be constructed of heavy gauge galvanized steel with pre-punched mounting holes for fasteners. Base corners shall be welded and painted to provide strength and support for hinging and cleaning and to prevent leakage into the building.

F. Fan Wheel: The fan wheel shall be centrifugal backward inclined and non-overloading. Wheels shall be balanced in two planes and done in accordance with AMCA standard 204-96, Balance Quality and Vibration Levels for Fans. The wheel shall be heavy gauge welded aluminum. In the event that balancing weights are required they shall be riveted or welded to the blades or wheel. The wheel inlet shall overlap the fan base inlet for maximum performance and efficiency. The wheel shall be firmly attached to the motor shaft with set screws.

G. Motor and Motor Housing: Motors shall be heavy duty ball bearing type, mounted out of the airstream and furnished at the specified voltage, phase and enclosure. Motor mounting plate shall be constructed of heavy gauge steel and isolated from the fan structure with vibration isolators or gasket material. The motor compartment shall be cooled by outside air drawn through louvers in the motor cover. The motor compartment shall be completely removable to provide unobstructed access to the motor and drives. The fan shall have a tilt open top cover assembly that allows the wheel to be tilted back for easy access during cleaning and maintenance. The motor cover assembly shall have wing bolts to secure the assembly to the housing.

H. Shaft & Bearings: Shafts shall be precision ground and polished. Heavy duty, per-lubricated bearings shall be selected for a minimum life (L10) life in excess of 200,000 hours of operation at cataloged operating speed. They shall be designed and individually tested specifically for use in air handling applications.

I. Belts and Drives: Belts shall be oil and heat resistant, non-static type. Drives shall be cast type, precision machined and keyed and secured attached to the fan and motor shafts. Drives shall be sized for a minimum of 150% of the installed motor horsepower. Fan operating speed shall be factory set using adjustable pitch motor pulleys; motors over 2 HP will come standard with double groove pulleys.

J. Grease Spout: The 2" grease drain is fully welded in the discharge scoop, a removable grease trough is attached to the scoop to collect grease.

K. Electrical: A safety disconnect switch shall provided and factory installed. Switches shall be installed in a NEMA3R enclosure and mounted to exterior of the fan for easy access. The safety disconnect switch shall be interlocked with the fan. The fan motor cover and (or) wheel compartment shall not be accessible unless the safety disconnect is in the off position.

L. Capacities and Characteristics: See Drawings.

2.4 BELT DRIVE, ROOF MOUNTED, KITCHEN, UTILITY EXHAUST VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire
 2. Prior Approved Equal
B. Certifications: All models shall be ETL Listed and comply with UL705 (electrical) and UL762 Standards and CSA Std C22.2, No 113. Fan shall bear the AMCA certified ratings seal for sound and air performance.

C. Description: Fan shall be centrifugal up blast restaurant utility exhaust ventilator, engineered to discharge grease laden vapors, fumes and other contaminants vertically away from the building. The fan shall be specifically intended for high temperature and heavy grease applications.

D. Housing: The fan shall be constructed of aluminized and galvanized steel. Fan scroll shall be continuously sealed with a listed intumescent to prevent grease leakage. The fan scroll shall be tack welded and have a 2" fully welded drain to prevent grease leakage and blockage of the drain.

E. Base: The base shall be constructed of galvanized steel for improved rigidity. Bolt patterns shall be provided in the base to allow connection to a pollution control unit.

F. Fan Wheel: The fan wheel shall be centrifugal backward inclined and non-overloading. Wheels shall be balanced in two planes and done in accordance with AMCA standard 204-96, Balance Quality and Vibration Levels for Fans. The wheel shall be heavy gauge welded aluminum. In the event that balancing weights are required they shall be riveted or welded to the blades or wheel. The wheel inlet shall overlap the fan inlet for maximum performance and efficiency. The wheel shall be firmly attached to the motor shaft with set screws.

G. Motor and Motor Housing: Motors shall be heavy duty ball bearing type, mounted out of the airstream and furnished at the specified voltage, phase and enclosure. Motor mounting plate shall be constructed of heavy gauge steel. The motor compartment shall be cooled by outside air drawn through louvers in the motor cover. The motor compartment shall be completely removable to provide unobstructed access to the motor and drives. The motor cover assembly shall have wing bolts to secure the assembly to the housing.

H. Shaft & Bearings: Shafts shall be precision ground and polished. Heavy duty, per-lubricated bearings shall be selected for a minimum life (L10) life in excess of 200,000 hours of operation at cataloged operating speed. They shall be designed and individually tested specifically for use in air handling applications.

I. Belts and Drives: Belts shall be oil and heat resistant, non-static type. Drives shall be cast type, precision machined and keyed and secured attached to the fan and motor shafts. Drives shall be sized for a minimum of 150% of the installed motor horsepower. Fan operating speed shall be factory set using adjustable pitch motor pulleys; motors over 2 HP will come standard with double groove pulleys.

J. Grease Spout: The 2” grease drain is fully welded in the discharge scroll, a removable grease trough is attached to the scroll to collect grease.

K. Electrical Disconnect: A safety disconnect switch shall be provided and factory installed. Switches shall be installed in a NEMA3R enclosure and mounted to exterior of the fan for easy access.

L. Capacities and Characteristics: See Drawings.
2.5 DIRECT DRIVE, IN-LINE, KITCHEN, EXHAUST VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire
 2. Prior Approved Equal

B. Description: Fan shall be of the "Square in-line" type with a square inlet and outlet. Fan shall be designed for floor mount or hung installations in-line with ducting, and have a direct driven centrifugal wheel. Fan shall be a corrosion resistant steel, direct driven, square inline blower. Fans shall be approved for horizontal or vertical Installation.

C. Certifications: Square In-line Duct Blower(s) shall be licensed to bear the AMCA Certified Ratings Seal for Air and Sound Performance and be ETL Listed to UL705 Standards.

D. Housing: The blower shell shall be constructed of heavy-gauge galvanized steel. Side panels shall be removable for service access.

F. Motor and Motor Housing: Motor shall have permanently lubricated ball bearings and be of voltage, phase, and enclosure as specified. A motor cover shall be supplied as standard.

G. Electrical Disconnect: A safety disconnect switch shall be provided and factory installed. Switches shall be installed in an enclosure appropriate for indoor installations and mounted to exterior of the fan for easy access.

2.6 ROOF CURBS

A. Constructions: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.

B. Configuration: Self-flashing without a cant strip, with mounting flange.

C. Overall Height: 16 inches.

D. Pitch Mounting: Manufacture curb for roof slope where required.

E. Metal Liner: Galvanized steel.

F. Vented Curb: Unlined with louvered vents in vertical sides.

G. Hinged Curb Kit: to allow the fan to be tilted to access/inspect the fan wheel.

2.7 CONTROLS
A. See Sections 233813 “Commercial-Kitchen Hoods” and 230900 “HVAC Controls” for additional information.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting:

1. Install power ventilators on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.

C. Install units with clearances for service and maintenance.

D. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.

3. Verify that cleaning and adjusting are complete.

4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.

5. Adjust belt tension.

6. Verify lubrication for bearings and other moving parts.

7. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.

8. Shut unit down and reconnect automatic temperature-control operators.

9. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safety. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust belt tension.

B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

C. Replace fan and motor pulleys as required to achieve design airflow.

D. Lubricate bearings.

END OF SECTION 233424
SECTION 233425 - MECHANICAL DRYER VENTING SYSTEM

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes Mechanical Clothes Dryer Venting Systems
 B. Related Requirements:
 1. Section 233113 “Metal Ducts”
 2. Section 233300 “Air Duct Accessories”

1.2 SUBMITTALS
 A. See Section 220000 “General Requirement of Plumbing and HVAC” for submittal requirements.
 B. Shop Drawings:
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, and required clearances, method of field assembly, components, and location and size of each field connection.
 3. Detail fabrication and assembly of ductwork.
 4. Include diagrams for power, signal, and control wiring.

1.3 QUALITY ASSURANCE
 A. Unit shall be UL certified.
 1. UL 705 Standard for Power Ventilators, with special consideration for venting lint-laden air from multiple dryers.
 B. Unit shall comply with AMCA Standard 99-0401 classification for Spark Resistant Construction.

1.4 WARRANTY
 A. Warranty: Manufacturer and Installer agree to repair or replace components of that fail(s) in materials or workmanship within specified warranty period.
 1. Warranty Period: 2 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide the following:
 1. Enervex.
 2. Prior approved Equal.

B. Description: The system shall be designed to provide exhaust for multiple dryer in a multi-story commercial building. The system shall consist of an exhaust ventilator with ECM motor, and package control system.

C. Exhaust Ventilator:
 1. The cabinet shall be galvanized steel while the impeller is welded aluminum.
 2. The aluminum fan wheel shall be statically and dynamically balanced with permanently attached balancing weights.
 3. The motor is an air cooled, maintenance-free variable speed permanent magnet motor with pre-lubricated and sealed ball bearings. The motor with controller is rated at 92% efficiency and able to operate as low as 50 RPM. It shall have protection against overloading, blocking over and under voltage and overheating. The motor shaft in internally isolated to eliminate the need for external shaft grounding. It is rated for outdoor installation.
 4. The fan shall be designed to exhaust lint-laden air from single or multiple Type I and Type II residential and commercial clothes dryers.
 5. The design meets Type B, Spark Resistant Construction, and is completely insulated against fire, noise, condensation and heat with 2" fiberglass insulation. A service door is provided to allow easy access to the impeller.
 6. The fan shall be able to operate with exhaust temperatures within 10°F and 175°F, and at ambient temperatures within -20°F and 120°F.

D. Controls:
 1. The unit shall have a controller to maintain constant pressure in the common exhaust duct. The controller shall have a self-cleaning pressure sensing tube. The fan shall run continuously at low speed to maintain negative pressure downstream of the dryers. Once a dryer turn on the fan will ramp up to maintain the duct static pressure setpoint.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting:
 1. Exhaust ventilators on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete" and Section 033053 "Miscellaneous Cast-in-Place Concrete."

B. Comply with requirements for vibration-isolation and seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."
C. Suspend exhaust ventilators from structure with all-thread hanger rods and elastomeric hangers. Vibration hangers shall comply with Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

D. Install electrical devices furnished by manufacturer but not specified to be factory mounted.

E. Install all ductwork in accordance with section 233113 “Metal Ducts.”

F. Duct connections to the exhaust ventilator shall comply with section 233300 “Air Duct Accessories”

G. Install Mechanical Dryer Venting Systems in accordance with the manufacturers written instructions.

3.2 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections:
 1. After installing the exhaust ventilator and controls and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Dryer Exhaust Systems will be considered defective if they do not pass tests and inspections.

END OF SECTION 233425
SECTION 233533 - LISTED KITCHEN VENTILATION SYSTEM EXHAUST DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Listed grease ducts.
 2. Access doors.

1.2 SUBMITTALS

A. See Section 220000 “General Provisions of Plumbing and HVAC” for submittal requirements.
B. Shop Drawings: For listed grease ducts.
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, location of access doors and cleanouts, components, and location and size of each field connection.
 3. Detail fabrication and assembly of hangers and seismic restraints.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

PART 2 - PRODUCTS

2.1 LISTED GREASE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Prior Approved Equal

B. Description: Furnish double wall, factory built grease duct for use with Type I kitchen hoods, which conforms to the requirements of NFPA-96. Products shall be ETL listed to UL-1978 and UL-2221 for venting air and grease vapors from commercial cooking operation. Models DW-2R, 3R and 3Z are used for grease duct applications when installed in accordance with these instructions and National Fire Protection Association "NFPA 96"; Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations. Double wall grease ducts are listed for a continuous internal temperature of 500 degrees F and intermittent temperatures of 2000 degrees F.

C. Construction: The duct sections shall be constructed of an inner duct wall and an outer wall with insulation in between. The inner duct wall shall be constructed of .036 inch thick, 430 type stainless steel and be available in diameters 8" through 24". The outer wall shall be constructed of stainless steel at a minimum of .024 inch thickness. The duct, based on model number, shall include layers of Super Wool 607 Plus insulation between the inner and outer wall. Grease duct joints shall be held together by means of formed V clamps and sealed with 3M Fire Barrier 2000+. The duct wall assembly shall be tested and listed at ¾" or zero inch clearance, according to classifications.

2.2 ACCESS DOORS

A. Description: Factory-fabricated, -listed, and -labeled, double-wall personnel and maintenance access doors tested according to UL 1978 and rated for 500 deg F continuously, or 2000 deg F for 30 minutes; with positive or negative duct pressure and complying with NFPA 211.

1. Construction: 0.0625 inch ASTM A 666, Type 316 stainless-steel inner shell and stainless-steel outer cover with two handles.
2. Fasteners: Stainless-steel bolts and wing nuts.
 a. Ensure that bolts do not penetrate interior of duct space.
5. Door Label: Mark door with uppercase lettering as follows: "ACCESS PANEL. DO NOT OBSTRUCT."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Coordinate installation of roof curbs, equipment supports, and roof penetrations. Comply with requirements in Section 077200 "Roof Accessories."

B. Coordinate connections to kitchen exhaust hoods with requirements in Section 233813 "Commercial-Kitchen Hoods."
C. Coordinate connections to exhaust fans with requirements in Section 233424 “Kitchen Exhaust Power Ventilators”.

D. Coordinate firestopping where grease ducts penetrate fire separations with requirements in Section 078413 "Penetration Firestopping."

E. Comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211 and UL 2221, whichever is most stringent.

F. Install airtight personnel and maintenance access doors where required by code.

G. Seal between sections of grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

H. Connections: Make grease duct connections according to the International Mechanical Code.
 1. Grease duct to exhaust fan connections: Connect grease ducts to inlet side of fan using flanges, gaskets, and bolts.
 2. Grease duct to hood connections:
 a. Make grease duct to hood joints connections using internal or external continuously welded or brazed joints.
 b. Make watertight grease duct to hood joints connections using flanges, gaskets, and bolts.

I. Support ducts at intervals recommended by manufacturer to support weight of ducts and accessories, without applying loading on kitchen hoods.
 1. Securely attach supports and bracing to structure.

J. Grease Duct Enclosures: Comply with requirements of the International Building Code and ASTM E 2336.

K. Coordinate fire-rated enclosure construction with Section 092116.23 "Gypsum Board Shaft Wall Assemblies."

L. Repair damage to adjacent materials caused by listed kitchen ventilation system exhaust ducts installation.

3.2 FIELD QUALITY CONTROL

A. Perform air leakage test in presence of the owner and commissioning agent before concealment of any portion of the grease duct system.
 1. Notify Owner a minimum of 2 days before test is performed.

END OF SECTION 233533
SECTION 233713 - GRILLES, REGISTERS AND DIFFUSERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Grilles, Registers and Diffusers.

B. Related Requirements:

1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 GRILLES, REGISTERS AND DIFFUSERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Krueger.
2. Nailor Industries Inc.

B. See the “Grilles Registers and Diffusers Schedule” on the drawings for grille, register or diffuser type, mounting, capacities, characteristics, finish, etc.

C. Coordinate the color and finish of all grilles registers and diffusers with the architect if not specifically listed in the “Grilles Registers and Diffusers Schedule”.

D. Substituted grilles, registers and diffusers must meet or exceed the performance of the schedules diffuser.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install grilles, registers and diffusers level and plumb.
B. Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install grilles, registers and diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

D. Provide all duct transitions and duct fittings required for a complete installation.

3.2 ADJUSTING

A. After installation, adjust grilles, registers and diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
SECTION 233813 - TYPE I COMMERCIAL-KITCHEN HOODS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Type I Kitchen Hoods with Integrated Self Cleaning System and Water Based Fire Suppression
 2. Type I, Kitchen Hoods
 3. Wet-Chemical Fire-Suppression Systems

B. Related Requirements:
 1. Section 230901 “Commercial Kitchen Demand Ventilation Controls”.
 2. Section 233424 “Kitchen Exhaust Power Ventilators” for exhaust fans that serve kitchen hoods.
 3. Section 233533 "Listed Kitchen Ventilation System Exhaust Ducts" for fire-rated ducts connecting to kitchen hoods.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

B. Shop Drawings: Generated by the Hood Manufacturer specifically for the Project.
 1. Show plan view, elevation view, sections, roughing-in dimensions, service requirements, duct connection sizes, and attachments to other work.
 2. Show cooking equipment plan and elevation to confirm minimum code-required overhang.
 3. Indicate performance, exhaust and makeup air airflow, and pressure loss at actual Project-site elevation.
 4. Show control cabinets and all sensors and devices.
 5. Show fire-protection cylinders, piping, actuation devices, and manual control devices.
 6. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 7. Include diagrams for power, signal, and control wiring.
 8. Duct Connections: Detail connections between ducts and hoods, including access doors and panels.
 9. Piping Diagrams: Detail fire-suppression piping and components and differentiate between manufacturer-installed and field-installed piping. Show cooking equipment plan and elevation to illustrate fire-suppression nozzle locations.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 1. down below appliance cooking surfaces.

2.2 TYPE I KITCHEN HOODS WITH INTEGRATED SELF CLEANING SYSTEM AND WATER BASED FIRE SUPRESSION

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire
 2. Prior Approved Equal

B. Hood Certifications: The hood shall be a Type I exhaust hood with factory installed spray and manifold assembly. Assemblies shall be ETL Sanitation listed and ETL listed to conform to UL710, ULC710, and UL508A.

C. Hood Construction: The hood shall be constructed of 100% Stainless steel, either 304 or 430. All welds in the plenum shall be dye-penetrante tested for leaks. High efficiency baffle filters shall be installed in hood, and the sprayers located inside the plenum will clean the back of the filters. All plumbing shall be standard brass pipefitting except for penetrations, which shall be stainless steel. All nozzles shall be wide-angle, full-cone with internal strainer and pressure sensitive check valve.

D. Water Wash System: The water inlet shall be a 3/4" NPT pipefitting. Drains shall consist of one 1 1/2" NPT pipe, unless exhaust hood is over 10' long or 30" tall, in which case two drains shall be installed. A ball valve shall be installed with the manifold for servicing the self-cleaning system. All surfactant injection shall be done after a vacuum breaker backflow prevention valve. Timers shall be factory set for a three minute wash cycle with a one second surfactant injection before a delay of one minute.

E. Water Base Fire Protection System: The fire protection system can be mounted in the integral cabinet on the end of the hood or in a wall-mount package as indicated on the drawings. The system is capable of automatic detection and actuation and/or remote manual actuation. The detection portion of the fire suppression system shall allow for automatic detection by means of an electric thermal detector(s) located in the hood duct connection. The Fenwal Firestat is a device installed in the hood’s duct connection that measures temperature. If a temperature higher than the set point is sensed, the Firestat contacts will close and energize the fire system. The pull station is provided to allow for manual activation of the fire system. A microprocessor-based control board provides all necessary monitoring, timing and supervision functions required for the reliable operation of the system. All devices that are critical for proper operation are supervised and includes the electric thermal detector(s), manual pull station(s) and electric water solenoids. The control board also detects faults within the system and will alert the user of the specific fault. With the electric fire detection, a battery backup system is provided. The battery powers the automatic detection and pull station circuits, as well as monitoring those devices. The basic system consists of Total Flood Protection for appliance
coverage and Duct & Plenum Coverage. The plenum protection spray bar extends the full length of the hood immediately behind the filters offering the water-based protection for the duct and plenum. The plenum bar is ¼" brass fittings with nozzles that spray directly toward the back of the hood. Nozzle(s) covering the riser(s) will be ¼" NPT and is a wide angle, high flow nozzle. All fittings and pipe used in the manifold and plenum coverage will be brass. This system is listed for unlimited duct protection for up to a 100-inch perimeter duct. The Total Flood Protection line runs the entire length of the hood and is aligned with the hazard zone of the appliances. The Total Flood Protection line runs the entire length of the hood and is aligned with the hazard zone of the appliances. The Total Flood Protection line is ¾” black iron fittings with 3/8” drops. Fittings and pipe used for the total flood will be either black iron, stainless steel, or chrome plated steel. The extinguishing agent for the fire protection system is water injected with surfactant. Upon fire system activation, water is sprayed along the length of the plenum and into the duct as well as along the appliance hazard zone underneath the hood. Flow rate for the hood, when in a fire condition, would be 1.5 gallons per minute per foot of hood. Operating pressure for water lines, both hot water and dedicated line, is 30 to 70 psi.

F. Fire Protection System Certifications: The water based fire protection system shall be ETL listed to UL Standard 300 and ULC/ORD-C1254.6-1995.

G. Lighting: LED light fixtures and cleanable, vapor proof globes shall be installed and pre-wired to a junction box. The light fixtures shall be provide 50 foot candles minimum at the cooking surface.

H. Controls: See Section 230901 “Commercial Kitchen Demand Ventilation Controls”.

2.3 TYPE I KITCHEN HOODS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire
 2. Prior Approved Equal

B. Hood Certifications: The hood shall be ETL Listed as "Exhaust Hood Without Exhaust Damper", ETL Sanitation Listed and built in accordance with NFPA 96. The hood shall be listed for 450°F cooking surfaces at 269 CFM/ft, 600°F cooking surfaces at 300 CFM/ft, and 700°F cooking surfaces at 350 CFM/ft.

C. Hood Construction: Construction shall be type 430 stainless steel with a #3 or #4 polish where exposed. Individual component construction shall be determined by the manufacturer and ETL. Construction shall be dependent on the structural application to minimize distortion and other defects. All seams, joints and penetrations of the hood enclosure to the lower outermost perimeter that directs and captures grease-laden vapor and exhaust gases shall have a liquid-tight continuous external weld in accordance with NFPA 96. Hood shall be wall or island type with a minimum of four connections for hanger rods. Corner hanging angles have a 5/8" x 1-1/2" slot pre-punched at the factory, allowing hanging rods to be used for quick and safe installation. Exhaust duct collar to be 4" high with 1" flange. Duct sizes, CFM and static pressure requirements shall be as shown on drawings. Static pressure requirements shall be precise and accurate; air velocity and volume information shall be accurate within 1-ft increments along the length of the ventilator.
D. Filters: The hood shall be furnished with U.L. classified filters, supplied in size and quantity as required by ventilator.

E. Lighting: LED light fixtures and cleanable, vapor proof globes shall be installed and pre-wired to a junction box. The light fixtures shall be provide 50 foot candles minimum at the cooking surface.

F. Accessories and Features:
1. A double wall insulated front to eliminate condensation and increase rigidity. The insulation shall have a flexural modulus of 475 EI, meet UL 181 requirements and be in accordance with NFPA 90A and 90B.
2. An integral front baffle to direct grease laden vapors toward the exhaust filter bank.
3. A built-in wiring chase provided for outlets and electrical controls on the hood face and shall not penetrate the capture area or require an external chaseway.
4. Removable grease cup for easy cleaning.

G. Fire Protection System: The hood shall have a wet-chemical fire suppression system.

H. Controls: See Section 230901 “Commercial Kitchen Demand Ventilation Controls”.

2.4 WET-CHEMICAL FIRE-SUPPRESSION SYSTEM

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Ansul Incorporated; Tyco International.

B. System Description:
1. The system shall be an automatic fire suppression system using a wet chemical agent for grease related fires.
2. The system shall be capable of suppressing fires in the following areas associated with cooking equipment: ventilating equipment including hoods, ducts, plenums, and filters; fryers; griddles and range tops; upright, natural charcoal, or chain-type broilers; electric, lava rock, mesquite or gas-radiant char-broilers.
3. The system shall be the pre-engineered type having minimum and maximum guidelines established by the manufacturer and listed by Underwriters Laboratories, Inc. (UL).
4. The system shall be installed and serviced by personnel trained by the manufacturer.
5. The system shall be capable of protecting cooking appliances by utilizing either dedicated appliance protection and/or overlapping appliance protection.

C. Quality Control:
1. Manufacturer: The R-102™ Restaurant Fire Suppression System shall be manufactured by a company that is ISO 9001 registered.
2. Certificates: The wet agent shall be a specially formulated, aqueous solution of organic salts with a pH range between 7.7 – 8.7, designed for flame knockdown and foam securement of grease-related fires.

D. Warranty:
1. The pre-engineered restaurant fire suppression system components shall be warranted for five years from date of delivery against defects in workmanship and material.

E. Operating Conditions:
1. The R-102 system shall be capable of operating in a temperature range of 32 °F to 130 °F (0 °C to 54 °C).

F. Components
1. The basic system shall consist of an ANSUL® AUTOMAN® regulated release assembly which includes a regulated release mechanism and a wet chemical storage tank housed within a single enclosure. Nozzles, blow-off caps, detectors, cartridges, agent, fusible links, and pulley elbows shall be supplied in separate packages in the quantities needed for fire suppression system arrangements. Additional equipment shall include remote manual pull station, mechanical and electrical gas valves, pressure switches, and electrical switches for automatic equipment and gas line shut-off.
2. Wet Chemical Agent: The extinguishing agent shall be a specially formulated, aqueous solution of organic salts with a pH range between 7.8 – 8.2, designed for flame knockdown and foam securement of grease related fires.
3. Agent Tank: The agent tank shall be installed in a stainless steel enclosure or wall bracket. The tank shall be constructed of stainless steel. Tanks shall be available in two sizes; 1.5 gallon (5.7 L) and 3.0 gallon (11.4 L). The tanks shall have a working pressure of 110 psi (7.6 bar), a test pressure of 330 psi (22.8 bar), and a minimum burst pressure of 600 psi (41.4 bar). The tank shall include an adaptor/tube assembly containing a burst disc union.
4. Regulated Release Mechanism: The regulated release mechanism shall be a spring-loaded, mechanical/pneumatic type capable of providing the expellant gas supply to one or two agent tanks depending on the capacity of the gas cartridge used. It shall contain a factory installed regulator deadset at 110 psi (7.6 bar) with an external relief of approximately 180 psi (12.4 bar). It shall have the following actuation capabilities: automatic actuation by a fusible link detection system and remote manual actuation by a mechanical pull station. The regulated release mechanism shall contain a release assembly, regulator, expellant gas hose, and agent storage tank housed in a stainless steel enclosure with cover. The enclosure shall contain knock-outs for 1/2 in. conduit. The cover shall contain an opening for a visual status indicator. It shall be compatible with mechanical gas shut-off devices; or, when equipped with a field or factory-installed switch, it shall be compatible with electric gas line or appliance shutoff devices.
5. Regulated Actuator Assembly: When more than two agent tanks are required, the regulated actuator shall be available to provide expellant gas for additional tanks. It shall be connected to the cartridge receiver outlet of the regulated release mechanism providing simultaneous agent discharge. The regulator shall be deadset at 110 psi (7.6 bar) with an external relief of approximately 180 psi (12.4 bar). The regulated actuator assembly shall contain a regulated actuator, regulator, expellant gas hose, and agent tank housed in a stainless steel enclosure with cover. The enclosure shall contain knockouts to permit installation of the expellant gas line.
6. Discharge Nozzles: Each discharge nozzle shall be tested and listed with the R-102 system for a specific application. Nozzles tips shall be stamped with the flow number designation (1/2, 1, 2, and 3). Each nozzle shall have a metal or rubber blow-off cap to keep the nozzle tip orifice free of cooking grease build-up.
G. Distribution Piping: Distribution piping shall be Schedule 40 black iron, chrome-plated, or stainless steel pipe conforming to ASTM A120, A53, or A106.

H. Detectors: The detectors shall be the fusible link style designed to separate at a specific temperature.

I. Cartridges: The cartridge shall be a sealed steel pressure vessel containing either carbon dioxide or nitrogen gas. The cartridge seal shall be designed to be punctured by the releasing device supplying the required pressure to expel wet chemical agent from the storage tank.

J. Agent Distribution Hose: Kitchen appliances manufactured with or resting on casters (wheels/rollers), which have the Fire Suppression System hard piped, shall include a UL Listed agent distribution hose as a component of the suppression system. This shall allow the appliance to be moved for cleaning purposes without disconnecting the appliance fire suppression protection. Hose assembly shall include a restraining cable kit to limit the appliance movement within the range (length) of the flexible hose.

K. Flexible Conduit: The manufacturer supplying the Restaurant Fire Suppression System shall offer flexible conduit as an option to rigid EMT conduit for the installation of pull stations and/or mechanical gas valves. The flexible conduit shall be UL Listed and include all approved components for proper installation.

L. Pull Station Assembly: The Fire Suppression System shall include a remote pull station for manual system actuation. The pull station shall be designed to include a built-in guard to protect the pull handle. The pull station shall also be designed with a pull handle to allow for three finger operation and shall be red in color for quick visibility.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Coordinate equipment layout and installation with adjacent Work, including luminaires, HVAC equipment, plumbing, and fire-suppression system components.

B. Complete field assembly of hoods where required.
 1. Make closed butt and contact joints that do not require filler.
 2. Grind field welds on stainless-steel equipment smooth, and polish to match adjacent finish.

C. Install hoods and associated services with clearances and access for maintaining, cleaning, and servicing hoods, filters/baffles, grease extractor, and fire-suppression systems according to manufacturer's written instructions and requirements of authorities having jurisdiction.

D. Make cutouts in hoods where required to run service lines and to make final connections, and seal openings according to UL 1978.
E. Securely anchor and attach items and accessories to walls, floors, or bases with stainless-steel fasteners unless otherwise indicated.

F. Install hoods to operate free from vibration.

H. Install trim strips and similar items requiring fasteners in a bed of sealant. Fasten with stainless-steel fasteners at 48 inches o.c. maximum.

I. Install sealant in joints between equipment and abutting surfaces with continuous joint backing unless otherwise indicated. Provide airtight, watertight, vermin-proof, sanitary joints.

J. Install lamps, with maximum recommended wattage, in equipment with integral lighting.

K. Set initial temperatures, and calibrate sensors.

L. Set field-adjustable switches.

M. Connect ducts according to requirements in Section 233300 "Air Duct Accessories." Install flexible connectors on makeup air supply duct. Weld exhaust-duct connections with continuous liquid tight joint.

N. Install fire-suppression piping for remote-mounted suppression systems according to NFPA 17A, "Wet Chemical Extinguishing Systems" and the per the manufacturer’s listed instruction manual.

O. The installation any field installed components of the wet chemical extinguishing system shall be completed by the commercial-kitchen hood supplier.

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Test each equipment item for proper operation. Repair or replace equipment that is defective, including units that operate below required capacity or that operate with excessive noise or vibration.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Perform hood performance tests required by authorities having jurisdiction.
4. Perform fire-suppression system performance tests required by authorities having jurisdiction.

B. Commercial-kitchen hoods will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.
END OF SECTION 233813
SECTION 233814 - TYPE II COMMERCIAL-KITCHEN HOODS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Type II, Kitchen Hoods

B. Related Requirements:
 1. Section 233424 “Kitchen Exhaust Power Ventilators” for exhaust fans that serve kitchen hoods.
 2. Section 233113 "Metal Ducts" for ducts connecting to Type II kitchen hoods.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

B. Shop Drawings: The hood manufacture shall supply complete submittal shop drawings including hood section views(s) and hood plan view(s). These drawings must be made available to the engineer, architect and owner for their use in construction, operation and maintenance.

PART 2 - PRODUCTS

2.1 TYPE II KITCHEN HOODS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CaptiveAire
 2. Prior Approved Equal

B. Description: Heat/Condensate hood used for non-grease applications for the removal of heat, vapor, etc.

C. Hood Construction: Finish shall be #3 or #4 polish where exposed. Hood shall be wall or island type with fully welded 10-gauge corner hanging angles. Corner hanging angles have a .625 x 1.500 slot pre-punched at the factory; this allows hanging rods to be used for quick and safe installations. Hanging rod and connection is provided by and installed by others. Exhaust duct collar to be 4” high with 1” flanges.

D. Capacities and Characteristics: See Drawings
E. Controls: The mechanical contractor shall coordinate with the electrical contractor to provide a wall switch to energize the exhaust fan that serves the Type II hood. The location of the wall switch shall be field coordinated with the owner, architect and engineer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Coordinate equipment layout and installation with adjacent Work, including luminaires, HVAC equipment, plumbing, and fire-suppression system components.

B. Complete field assembly of hoods where required.
 1. Make closed butt and contact joints that do not require filler.
 2. Grind field welds on stainless-steel equipment smooth, and polish to match adjacent finish.

C. Install hoods and associated services with clearances and access for maintaining, cleaning, and servicing hoods, filters/baffles, grease extractor, and fire-suppression systems according to manufacturer's written instructions and requirements of authorities having jurisdiction.

D. Make cutouts in hoods where required to run service lines and to make final connections, and seal openings according to UL 1978.

E. Securely anchor and attach items and accessories to walls, floors, or bases with stainless-steel fasteners unless otherwise indicated.

F. Install hoods to operate free from vibration.

H. Install trim strips and similar items requiring fasteners in a bed of sealant. Fasten with stainless-steel fasteners at 48 inches o.c. maximum.

I. Install sealant in joints between equipment and abutting surfaces with continuous joint backing unless otherwise indicated. Provide airtight, watertight, vermin-proof, sanitary joints.

J. Connect ducts according to requirements in Section 233300 "Air Duct Accessories."

END OF SECTION 233814
SECTION 235534 - GAS-FIRED RADIANT HEATERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes Gas-Fired Radiant Heater.
B. Related Requirements:
 1. Section 231123 “Facility Natural Gas Piping”

1.2 SUBMITTALS
A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Gas-Fired Infrared Radiant Tube Heaters shall be Design Certified by CSA to ANSI Z83.20. The supplier shall provide the CSA Certification Number and the heaters shall bear the CSA Seal of Certification.
C. Heaters shall comply with current Occupational Safety and Health (OSHA) Requirements.
D. Heaters shall be furnished and installed in accordance with NFPA 54, local codes, building drawings and manufacturer's recommendations.
E. Natural or mechanical means shall be provided to supply and exhaust at least 4 CFM per 1000 Btu/hour input of installed heaters.
F. In locations used for the storage of combustible materials, signs shall be posted to specify the maximum permissible stacking height to maintain required clearances from the heater to the combustibles.

1.4 WARRANTY
A. Manufacturer agrees to repair or replace components of gas-fired radiant heater that fails in materials or workmanship within specified warranty period.
 1. Warranty Period: Ten (10) years on the heater's burner core, five (5) years on the heat exchanger, and combustion chamber tubes; and two (2) years on all the heater control assembly components.
2. In the event of problems with the unit during the first one year of operation, provide a factory trained and certified technician to troubleshoot the equipment on-site.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the following:
 1. Solaronics
 2. Reverberray
 3. Reznor

B. Description:
 1. Factory assembled, piped, and wired, and complying with ANSI Z83.20/CSA 2.34.

C. Fuel Type:
 1. Design burner for natural gas having characteristics same as those of gas available at Project site.

D. Combustion Tubing:
 1. 4-inch- diameter steel with high-emissivity, high-temperature, corrosion-resistant external finish.
 2. Stainless-steel couplings or flared joints with stainless-steel draw bolts.

E. Reflector:
 1. Polished aluminum, 97 percent minimum reflectivity, with end caps. Shape to control radiation from tubing for uniform intensity at floor level with 100 percent cutoff above centerline of tubing. Provide for rotating reflector or heater around a horizontal axis for minimum 30-degree tilt from vertical.
 a. Reflector Extension Shields: Same material as reflectors, arranged for fixed connection to lower reflector lip and rigid support to provide 100 percent cutoff of direct radiation from tubing at angles greater than 30 degrees from vertical.
 b. Include hanger kit.

F. Burner and Emitter:
 1. Gravity-vented power burner, with the following features:
 a. Emitter Tube: 4-inch- diameter, aluminized-steel tubing with sight glass for burner and pilot flame observation.
 b. Venting: Connector at exit end of emitter tubing for vent-pipe connection.
 1) Vent Terminal: Vertical.
 d. Burner/Ignition: Stainless-steel burner cup and head with balanced-rotor draft fan and direct-sensing, hot-surface ignition or spark ignition with electronic flame supervision.
 e. Combustion-Air Connection: Duct connection for combustion air to be drawn directly from outdoors by burner fan.

G. Burner Safety Controls
1. Gas Control Valve: Single-stage, regulated redundant 24-V ac gas valve containing pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
2. Blocked Vent Safety: Differential pressure switch in burner safety circuit to stop burner operation with high discharge or suction pressure.
3. Control Panel Interlock: Stops burner if panel is open.

H. Capacities and Characteristic:
1. See Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install and connect gas-fired radiant heaters and associated fuel and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written installation instructions.

B. Suspended Units: Suspend from substrate using chain hanger kits and building attachments.

C. Maintain manufacturers' recommended clearances to combustibles.

D. Install piping adjacent to gas-fired radiant heaters to allow service and maintenance.

E. Gas Piping: Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.

F. Vent Connections: Comply with manufacturer’s written installation instructions.

G. Electrical Connections: Comply with applicable requirements in electrical Sections.

H. Install electrical devices furnished with heaters but not specified to be factory mounted.

I. Adjust initial temperature set points.

J. Adjust burner and other unit components for optimum heating performance and efficiency.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections: Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

END OF SECTION 235534
SECTION 235700 - HEAT EXCHANGERS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes shell-and-tube and plate heat exchangers.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of domestic-water heat exchangers that fail in materials or workmanship within specified warranty period.

 1. Warranty Periods: From date of Substantial Completion.

 a. Shell-and-Tube, Domestic-Water Heat Exchangers:

 1) Tube Coil: One year(s).
 2) Other Components: One year(s).

PART 2 - PRODUCTS

2.1 SHELL-AND-TUBE HEAT EXCHANGERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Armstrong Pumps, Inc.
 2. ITT Corporation.
 3. TACO Comfort Solutions, Inc.

B. Description: Packaged assembly of tank, heat-exchanger coils, and specialties.

C. Construction: Fabricate and label heat exchangers to comply with ASME Boiler and Pressure Vessel Code, Section VIII, "Pressure Vessels," Division 1.

D. Configuration: U-tube with removable bundle.

E. Shell Materials: Steel.
F. Head:
 1. Materials: Cast iron.
 2. Flanged and bolted to shell.

G. Tube:
 1. Seamless copper tubes.
 2. Tube diameter is determined by manufacturer based on service.

H. Tubesheet Materials: Steel.

I. Baffles: Steel.

J. Support Saddles:
 1. Fabricated of material similar to shell.
 2. Fabricate foot mount with provision for anchoring to support.
 3. Fabricate attachment of saddle supports to pressure vessel with reinforcement strong enough to resist heat-exchanger movement during seismic event when heat-exchanger saddles are anchored to building structure.

K. Working Pressure: 150 psig

L. Max Temperature: 375 F

M. Capacities and Characteristics: See Drawings.

2.2 SOURCE QUALITY CONTROL

B. Hydrostatically test heat exchangers to minimum of one and one-half times pressure rating before shipment.

C. Heat exchangers will be considered defective if they do not pass tests and inspections.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting:
 1. Install heat exchangers on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete" and Section 033053 "Miscellaneous Cast-in-Place Concrete."
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

B. Install shell-and-tube heat exchangers on saddle supports.

C. Comply with requirements for piping specified in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.

D. Comply with requirements for steam and condensate piping specified in Section 232213 "Steam and Condensate Heating Piping" and Section 232216 "Steam and Condensate Heating Piping Specialties."

E. Maintain manufacturer's recommended clearances for tube removal, service, and maintenance.

F. Install piping adjacent to heat exchangers to allow space for service and maintenance of heat exchangers. Arrange piping for easy removal of heat exchangers.

G. Install shutoff valves at heat-exchanger inlet and outlet connections.

H. Install relief valves on heat-exchanger heated-fluid connection and install pipe relief valves, full size of valve connection, to floor drain.

I. Install vacuum breaker at heat-exchanger steam inlet connection.

J. Install hose end valve to drain shell.

K. Install thermometer on heat-exchanger and inlet and outlet piping, and install thermometer on heating-fluid inlet and outlet piping. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing and HVAC Piping."

L. Install pressure gages on heat-exchanger and heating-fluid piping. Comply with requirements for pressure gages specified in Section 220519 "Meters and Gages for Plumbing and HVAC Piping."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Heat exchanger will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.
3.3 CLEANING

A. After completing system installation, including outlet fitting and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

END OF SECTION 235700
SECTION 236513 - COOLING TOWERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Factory-assembled, closed-circuit, forced-draft cooling towers.

B. Related Requirements:
 1. 220548 “Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment”
 2. 230900 “HVAC Controls”

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by CTI.

B. ASME Compliance: Fabricate and label heat-exchanger coils to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

C. CTI Certification: Cooling tower thermal performance according to CTI STD 201.

1.4 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace the following components of cooling towers that fail in materials or workmanship within specified warranty period.

 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 2. EVAPCO, Inc.
2.2 PERFORMANCE REQUIREMENTS

A. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Vibration:
 1. Rotating assemblies shall be dynamically balanced to achieve a balance level of "good" while complying with industry-standard requirements for cooling towers.
 2. Critical speed shall be at least 115 percent of design speed.

2.3 DESIGN ARRANGEMENT

A. Low-profile design with counterflow pattern, with inlet airflow from one side and forced-draft, side-mounted, centrifugal fans to reduce overall height; and with pressurized pipe distribution near top.

2.4 CASING AND FRAME

A. The closed circuit cooling tower shall be constructed of heavy-gauge steel utilizing double-brake flanges for maximum strength and rigidity and reliable sealing of water-tight joints. All sheared edges shall be protected with a coating of zinc-rich compound.

B. The closed circuit cooling tower shall include a coil casing section consisting of a serpentine coil, spray water distribution system, and drift eliminators, as indicated by the manufacturer. PVC drift eliminators shall be removable in easily handled sections. They shall incorporate a minimum of three changes in air direction.

2.5 COILS

A. The cooling coil shall be fabricated of continuous lengths of all prime surface steel and hot-dip galvanized after fabrication. The cooling coil shall be pneumatically tested at 375 psig. The cooling coil shall be designed for low pressure drop with sloping tubes for free drainage of fluid and shall be ASME B31.5 compliant. Maximum allowable working pressure shall be 300 psig.

2.6 WATER DISTRIBUTION SYSTEM

A. Water shall be distributed evenly over the coil to ensure complete wetting of the coil at all times. The distribution system shall consist of plastic distribution nozzles spaced across the coil face area in Schedule 40 PVC spray branches.

2.7 SPRAY WATER PUMP

A. The closed circuit cooling tower shall include a close-coupled, centrifugal pump equipped with a mechanical seal, mounted on the basin and piped to the suction strainer and water distribution
system. It shall be installed so that it can be drained when the basin is drained. The pump assembly shall include a metering valve and bleed line to control the bleed rate from the pump discharge to the overflow connection. The pump motor shall be totally enclosed fan cooled (TEFC) type.

2.8 COLLECTION BASIN

A. The combination basin/fan section shall be constructed of heavy-gauge G-235 galvanized steel. The basin shall be provided with large area lift out strainers with perforated openings sized smaller than the water distribution nozzles and an anti-vortexing device to prevent air entrainment. The strainer and vortex device shall be constructed of the same material as the cold water basin to prevent dissimilar metal corrosion.

2.9 COLLECTION BASIN HEATER

A. The cooling tower cold water basin shall be provided with electric heater(s) to prevent freezing in low ambient conditions. The heater(s) shall be selected to maintain 40°F pan water temperatures at 0°F ambient. The heater(s) shall be provided with low water cutout and thermostat.

2.10 BASIN WATER LEVEL CONTROL

A. The cooling tower shall include an electric water level control system. The system shall consist of water level sensing and control units. Each water level sensing and control unit shall consist of the following: NEMA 4 enclosure with gasketed access cover; solid state controls including all necessary relays and contacts to achieve the specified sequence of operation; stainless steel water level sensing electrodes with brass holder; Schedule 40 PVC standpipe assembly with vent holes, and all necessary stainless steel mounting hardware. Provide PVC union directly below the control enclosure to facilitate the removal and access of electrodes and control enclosure.

B. The number and position of water level sensing electrodes shall be provided to sense the following: high water alarm level, high water level (make-up valve closes), low water level (make-up valve opens), low water alarm, and heater safety cutout.

2.11 DRIFT ELIMINATORS

A. Material: PVC.

B. UV Treatment: Inhibitors to protect against damage caused by UV radiation.

C. Arrangement: Multiple, easily removable sections.

D. Configuration: Multipass, designed and tested to reduce water carryover to 0.001 percent of design flow rate indicated.

E. Hardware: Galvanized or stainless steel.
2.12 FAN AND DRIVE ASSEMBLY

A. The forwardly curved centrifugal fans shall be heavy-duty centrifugal flow type, statically and dynamically balanced prior to shipment. Fan housings shall have curved inlet rings for efficient air entry and rectangular discharge cowls shall extend into the basin to increase fan efficiency and prevent water from entering the fans.

B. Fans shall be mounted on a steel fan shaft supported by heavy-duty self-aligning, relubricatable bearings with cast iron housings and designed for a minimum L10 life of 40,000 hours (280,000 hrs average life).

C. Fan motor(s) shall be totally enclosed fan cooled (TEFC) type with a 1.15 service factor, and shall be mounted on an easily adjusted, heavy-duty motor base. V-belt drives shall be designed for not less than 150% of motor nameplate horsepower.

2.13 SOUND ATTENUATION

A. The unit shall be equipped with intake sound attenuators consisting of fiberglass acoustical baffles encased in steel to further reduce sound levels.

B. The unit shall be equipped with a tapered hood lined with sound absorbing fiberglass acoustical baffles to reduce sound levels from the top of the unit.

C. The maximum sound pressure levels (dB) measured 50 ft (15,240 mm) from the closed circuit cooling tower operating at full fan speed shall not exceed the sound levels detailed below.

<table>
<thead>
<tr>
<th>Location</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
<th>dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>61</td>
<td>61</td>
<td>54</td>
<td>53</td>
<td>50</td>
<td>50</td>
<td>47</td>
<td>43</td>
<td>57</td>
</tr>
<tr>
<td>Air Inlet</td>
<td>69</td>
<td>64</td>
<td>60</td>
<td>49</td>
<td>52</td>
<td>50</td>
<td>46</td>
<td>35</td>
<td>58</td>
</tr>
<tr>
<td>Cased Face</td>
<td>67</td>
<td>64</td>
<td>57</td>
<td>55</td>
<td>48</td>
<td>39</td>
<td>40</td>
<td>32</td>
<td>56</td>
</tr>
</tbody>
</table>

2.14 VIBRATION CUTOUT SWITCH

A. Provide electronic remote reset vibration switch with contact for BAS monitoring. Wiring shall be by the installing contractor. The electronic vibration cut out switch shall be set to trip at a point so as not to cause damage to the cooling tower. The trip point will be 0.45 in/sec.

2.15 SERVICE ACCESS

A. Doors:

1. Large enough for personnel to access cooling tower internal components.
2. Doors shall be hinged with handles operable from both sides of the door.
3. Door materials shall match casing.
4. Hinges and handles shall be corrosion-resistant.
2.16 ELECTRICAL

A. Wiring and conduit inside of unit shall be provided by unit manufacturer meeting requirements of appropriate specification sections of Division 26. Cooling Tower manufacturer shall provide and mount an external junction box with motor leads extended through conduit for field wiring.

B. Variable frequency drives shall be provided by the temperature control contractor and installed and wired by the electrical contractor. The electrical contractor shall provide all materials and labor required for a complete installation.

C. The electrical contractor shall provide and install all combination starter/disconnects required for cooling towers. The electrical contractor shall provide all materials and labor required for a complete installation.

D. Motors shall be premium efficiency and rated for operation with a variable frequency drive. Electrical characteristics shall be as shown in schedule and the electrical coordination schedule.

2.17 ACCESSORIES

A. Provide discharge hood with positive closure dampers to prevent convective heat loss when the fan and spray pump is off. The dampers shall have electric actuators provided by the T.C. contractor and be interlocked to open when the cooling tower is enabled.

2.18 CONTROLS

A. All controls are the responsibility of the Temperature Controls Contractor. See Section 230900 “HVAC Controls” and the drawings for requirements. Provide all material and labor required to achieve the specified sequence of operations.

2.19 CAPACITIES AND CHARACTERISTICS

1. See Drawings

2.20 SOURCE QUALITY CONTROL

A. Performance Test: Factory test and certify cooling tower performance according to CTI STD 201.

B. Factory Functional Tests:

1. Test collection and distribution basins after assembly, and prove free of leaks.
2. Test factory-installed electric/electronic water-level controls for proper operation.
3. Test factory-installed electric basin heaters for proper operation.
4. Test factory-installed fan and drive assemblies for proper operation.
5. Test factory-installed control package for proper operation.
6. Test access doors to ensure smooth operation and proper fit.

C. Heat-Exchanger Factory Pressure and Leak Tests:
 1. Pneumatically test heat-exchanger assembly while submerged under water and prove to be free of leaks.
 2. Test pressure equal to 1.5 times rated pressured, but not less than.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Examine cooling towers before installation. Reject cooling towers that are damaged.
 B. Install cooling towers on support structure.
 C. Equipment Mounting:
 1. Install cooling towers on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete" AND Section 033053 "Miscellaneous Cast-in-Place Concrete."
 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 2320548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."
 D. Install anchor bolts to elevations required for proper attachment to supported equipment.
 E. Maintain manufacturer's recommended clearances for service and maintenance.
 F. Maintain clearances required by governing code.

3.2 PIPING CONNECTIONS
 A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
 B. Where installing piping adjacent to cooling towers, allow space for service and maintenance.
 C. Install flexible pipe connectors at pipe connections of cooling towers mounted on vibration isolators.
 D. Connect cooling tower overflows and drains, and piping drains to sanitary sewage system.
 E. Makeup-Water Piping:
 1. Comply with applicable requirements in Section 221116 "Domestic Water Piping."
 2. Connect to makeup-water connections with shutoff valve, plugged tee with pressure gage, flow meter, and drain connection with valve and union.
F. Supply and Return Piping:

1. Comply with applicable requirements in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties."
2. Connect to entering-cooling-tower connections with shutoff valve, strainer, balancing valve, thermometer, plugged tee with pressure gage, flow meter, and drain connection with valve.
3. Connect to leaving-cooling-tower connection with shutoff valve thermometer, plugged tee with full port ball valve for portable field instruments, and drain connection with valve.
4. Make connections to cooling tower with a flange.

3.3 ELECTRICAL POWER CONNECTIONS

A. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.
B. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding connections.
C. Install nameplate for each electrical connection indicating electrical equipment designation and circuit number feeding connection. Nameplate shall be laminated phenolic layers of black with engraved white letters at least 1/2 inch high. Locate nameplate where easily visible.

3.4 CONTROLS CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.
B. Connect control wiring between cooling towers and other equipment to interlock operation as required to achieve a complete and functioning system.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections with the assistance of a factory-authorized service representative.
B. Tests and Inspections: Comply with CTI ATC 105.
C. Cooling towers will be considered defective if they do not pass tests and inspections.
D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
B. Inspect field-assembled components, equipment installation, and piping; controls; and electrical connections for proper assemblies, installations, and connections.
C. Obtain performance data from manufacturer.

1. Complete installation and startup checks according to manufacturer's written instructions and perform the following:

 a. Clean entire unit, including basins.
 b. Verify that accessories are properly installed.
 c. Verify clearances for airflow and for cooling tower servicing.
 d. Check for vibration isolation and structural support.
 e. Lubricate bearings.
 f. Verify fan rotation for correct direction and for vibration or binding and correct problems.
 g. Verify pump rotation for correct direction, vibration, cavitation, and flow, and correct problems.
 h. Adjust belts to proper alignment and tension.
 i. Operate variable-speed fans through entire operating range and check for harmonic vibration imbalance. Set motor controller to skip speeds resulting in abnormal vibration.
 j. Check vibration switch setting. Verify operation.
 k. Verify water level in tower basin. Fill to proper startup level. Check makeup-water-level control and valve.
 l. Verify operation of basin heater and control.
 m. Verify that cooling tower air discharge is not recirculating air into tower or HVAC air intakes. Recommend corrective action.
 n. Replace defective and malfunctioning units.

D. Start cooling tower and associated water pumps. Follow manufacturer's written starting procedures.

E. Prepare a written startup report that records the results of tests and inspections. Include daily pH level readings for four weeks or as long as recommended by the manufacturer for proper passivation of the galvanized portions of the tower.

3.7 ADJUSTING

A. Set and balance water flow to each tower inlet.

B. Adjust water-level control for proper operating level.

C. Adjust basin heater control for proper operating setpoint.

END OF SECTION 236513
SECTION 237200 - AIR-TO-AIR ENERGY RECOVERY EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
1. Fixed-plate total heat exchangers.

1.2 PERFORMANCE REQUIREMENTS

1.3 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ARI Compliance:

C. ASHRAE Compliance:
1. Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
2. Capacity ratings for air-to-air energy recovery equipment shall comply with ASHRAE 84, "Method of Testing Air-to-Air Heat Exchangers."

D. UL Compliance:
1. Packaged heat recovery ventilators shall comply with requirements in UL 1812, "Ducted Heat Recovery Ventilators".
2. Electric coils shall comply with requirements in UL 1995, "Heating and Cooling Equipment."
1.5 Warranty

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of air-to-air energy recovery equipment that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Fixed-Plate Total Heat Exchangers: 10 years.
2. In the event of problems with the unit during the first one year of operation, provide a factory trained and certified technician to troubleshoot the equipment on-site.

PART 2 - PRODUCTS

2.1 FIXED-PLATE TOTAL HEAT EXCHANGERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. RenewAire LLC.
2. Prior Approved Equal

B. General:

1. Unit shall be a packaged unit and shall transfer both heat and humidity using static plate core technology. Latent energy transfer shall be accomplished by direct water vapor transfer from one airstream to the other, without exposing transfer media in succeeding cycles directly to the exhaust air and then to the fresh air.
2. The unit shall perform without condensing or frosting under normal operating conditions (defined as outside temperatures above -10°F and inside relative humidity below 40%). Occasional more extreme conditions shall not affect the usual function, performance or durability of the core. No condensate drains will be allowed.

C. Cabinet:

1. The unit case shall be constructed of G90 galvanized, 20-gauge steel, with lapped corners and zinc plated screw fasteners. Provide double wall construction with 24-gauge galvanized steel liner.
2. Access doors shall provide easy access to blowers, ERV cores, and filters. Doors shall have an airtight compression seal using closed cell foam gaskets. Pressure taps, with captive plugs, shall be provided allowing cross-core pressure measurement allowing for accurate airflow measurement.
3. Case walls and doors shall be insulated with 1 inch, 4 pound density, foil/scrim faced, high-density fiberglass board insulation, providing a cleanable surface and eliminating the possibility of exposing the fresh air to glass fibers, and with minimum R-value of 4.3 (hr·ft²·°F/BTU).

D. Energy Recovery Core:

1. The energy recovery core shall be of fixed-plate cross-flow construction, with no moving parts.

E. Filters:

1. The energy recovery cores shall be protected by a MERV-8 rated, 2” nominal, pleated, disposable filter in both airstreams.
F. Fans:
 1. Fans shall be forward curve type with belt drive. Belt drive motors shall be provided with adjustable pulleys and motor mounts allowing for blower speed adjustment, proper motor shaft orientation and proper belt tensioning.

G. Fan Motors:
 1. Fan motors shall be Premium Efficiency, EISA compliant for energy efficiency. The blower motors shall be totally enclosed (TEFC) and be shall be supplied with factory installed motor starters.
 2. Provide factory installed Variable Frequency Drives allowing either preset or variable speed operation with appropriate 0-10 volt DC or DDC control signal.

H. Dampers:
 1. Provide factory installed isolation dampers for both air streams. The insulated dampers shall be of a low leakage design and shall not restrict the airstream, reducing airflow, in any way. The dampers shall be opened with a motor actuator powered by the standard unit transformer package and have a spring return for low off-position power consumption.

I. Electrical:
 1. Unit shall have single-point power connection and a single-point 24 VAC contactor control connection. The unit electrical box shall include a factory installed, non-fused disconnect switch and a 24 VAC, Class II transformer/relay package.

J. Controls:
 1. See Section 230900 “HVAC Controls” and the drawings for additional information. Provide all materials and labor required to achieve the specified sequence of operations.

K. Capacities and Characteristics:
 1. See Drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General: Install unit in accordance with the manufacturers written instructions.

B. Unit Location:

 1. Locate and orient unit to provide the shortest and most straight duct connections. Provide service clearances as indicated on the plans. Locate units distant from sound critical occupancies.
 2. Provide a poured concrete equipment pad for all floor mounted units. The pad thickness and floor plan dimensions to be determined based on the unit selected, and site structural considerations. At a minimum the pad shall be the same size as the units foot print. Field coordinate the size of the pad in the field with the architect and engineer.
3. Provide a structurally suitable support for the base of any wall mounted or hung units.

C. Vibration Isolation:
 1. Provide rubber or spring type isolators appropriately sized for corner weights of the specific unit.
 2. Provide flexible duct connections at unit duct flanges.

D. Duct Work:
 1. All ductwork shall be constructed, supported and sealed in accordance with SMACNA HVAC Duct Construction Standards and pressure classifications.

E. Sound Control:
 1. To control sound radiated from the unit: Provide acoustic treatment in mechanical room walls and ceilings.
 2. To control sound associated with the two blower outlets:
 3. Provide straight, gradual transition ductwork for a minimum of 2-1/2 duct diameters downstream from the blower outlet for air velocities of less than 2,500 feet per minute.
 4. Provide continuous acoustic insulation treatment of the duct until after the first elbow or tee.

F. Testing and Balancing:
 1. Inspect installation
 2. Verify motor rotation.
 3. Verify operation of dampers and damper actuators.
 4. Verify sequence of operations.
 5. See section 23 0593 “Testing Adjusting and Balancing”

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 2. After installing units and after electrical circuitry has been energized, test for compliance with requirements.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

END OF SECTION 237200
SECTION 237423 - MAKEUP-AIR UNITS

PART 1 - GENERAL

1.1 GENERAL DESCRIPTION
A. This section includes design, controls and installation requirements for Makeup-Air units.

1.2 SUBMITTALS
A. See section 220000 “General Requirements of HVAC and Plumbing” for submittal requirements.

1.3 QUALITY ASSURANCE
A. Unit shall be certified in accordance with UL Standard 1995/CSA C22.2 No. 236, Safety Standard for Heating and Cooling Equipment.
B. Unit and refrigeration system shall comply with ASHRAE 15, Safety Standard for Mechanical Refrigeration.
C. Unit Energy Efficiency Ratio (EER) shall be equal to or greater than prescribed by ASHRAE 90.1, Energy Efficient Design of New Buildings except Low-Rise Residential Buildings.
D. Unit shall be safety certified by ETL and be ETL US and ETL Canada listed. Unit nameplate shall include the ETL/ETL Canada label.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Unit shall be shipped with doors bolted shut and panels covering air intake and discharge openings to prevent damage during transport and thereafter while in storage awaiting installation.
B. Follow Installation, Operation and Maintenance manual instructions for rigging, moving, and unloading the unit at its final location.
C. Unit shall be stored in a clean, dry place protected from construction traffic in accordance with the Installation, Operation and Maintenance manual.
D. Unit shall be plastic shrink-wrapped prior to shipment to prevent damage during transport and thereafter while in storage awaiting installation.

1.5 WARRANTY
A. Manufacturer shall provide a limited “parts only” warranty for a period of 12 months from the date of equipment startup or 18 months from the date of original shipment from the factory, whichever is less. Warranty shall cover material and workmanship that prove defective, within the specified warranty period, provided manufacturer’s written instructions for installation, operation, and maintenance have been followed. Warranty excludes parts associated with routine maintenance, such air filters.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AAON
 2. Equipment from other manufacturers may be considered for approval but must include at a minimum:
 a. Variable airflow, direct drive supply fans.
 b. Variable capacity compressor with 10-100% capacity.
 c. Water source heat pump operation.
 d. Hot-water preheat.
 e. All other provisions of the specifications must be satisfactorily addressed.

2.2 MAKEUP-AIR UNITS: MAU-1, 2, 3, 4

A. General Description
 1. Unit shall include compressors, evaporator coils, filters, supply fans, water-cooled condensers, hot water coils and unit controls.
 2. Unit shall be factory assembled and tested including leak testing of the coils, pressure testing of the refrigeration circuit, and run testing of the completed unit. Run test report shall be supplied with the unit in the controls compartment’s literature pocket.
 3. Unit components shall be labeled, including pipe stub outs, refrigeration system components, and electrical and controls components.

B. Construction
 1. Unit shall be the configuration and orientation shown on the drawings.
 2. All cabinet walls, access doors, and roof shall be fabricated of double wall, impact resistant, rigid polyurethane foam panels.
 3. Unit insulation shall have a minimum thermal resistance R-value of 13. Foam insulation shall have a minimum density of 2 pounds/cubic foot.
 4. Unit construction shall be double wall with G90 galvanized steel on both sides and a thermal break.
 5. Panel deflection shall not exceed L/240 ratio at 125% of design static pressure, at a maximum 8 inches of positive or negative static pressure. Continuous sealing shall be included between panels and between access doors and openings to reduce air leakage.
Refrigerant piping and electrical conduit through cabinet panels shall include sealing to reduce air leakage.

6. Access to filters, compressors, supply fans, and electrical and controls components shall be through hinged access doors. Full length stainless steel piano hinges shall be included on the doors. Access doors shall include metal, lockable handles.

7. Unit shall include exterior paint that is capable of withstanding at least 2,500 hours, with no visible corrosive effects, when tested in accordance with ASTM B 117-95 test procedure.

8. Unit shall include an acoustically insulated perforated liner in the fan plenum assembly for sound attenuation.

9. Unit shall include a base with forklift slots.

C. Electrical
1. Unit shall be provided with standard power block for connecting power to the unit.
2. Unit shall be provided with phase and brownout protection which shuts down all motors in the unit if the electrical phases are more than 10% out of balance on voltage, the voltage is more that 10% under design voltage, or on phase reversal.
3. Unit shall be provided with remote stop/start terminals which require contact closure for unit operation. When these contacts are open the low voltage circuit is broken and the unit will not operate.

D. Supply Fans
1. Unit shall include direct drive, unhoused, backward curved, plenum supply fans.
2. Fan assemblies shall be dynamically balanced and the entire assembly shall be mounted on unhoused 1 inch deflection spring isolators.
3. Motors shall be premium efficiency ODP with ball bearings rated for 200,000 hours service with external lubrication points.
4. Variable frequency drives shall be factory wired and mounted in the unit. Fan motors shall be premium efficiency.

E. Evaporator Coils
1. Coils shall be designed for use with R-410A refrigerant and constructed of copper tubes with aluminum fins mechanically bonded to the tubes and 304 stainless steel end casings. Fin design shall be sine wave rippled.
2. Coils shall be helium leak tested.
3. Coils shall be furnished with a factory installed thermostatic expansion valves.

F. Refrigeration System
1. Unit shall be factory charged with R-410A refrigerant.
2. Compressors shall be R-410A scroll type with thermal overload protection and independently circuited.
3. Unit shall be configured as a water-source heat pump. Each refrigeration circuit shall each be equipped with a factory installed liquid line filter drier with check valve, reversing valve, and thermal expansion valves on both the indoor coil and refrigerant-to-
water heat exchanger. Reversing valve shall energize during the heat pump heating mode of operation.

4. Unit shall include variable capacity scroll compressor on the lead refrigeration circuits which shall be capable of modulation from 10-100% of its capacity.

5. Each refrigeration circuit shall be equipped with suction and discharge compressor isolation valves.

6. Each refrigeration circuit shall be provided with an adjustable temperature sensor freeze stat which shuts down the cooling circuits when the evaporator coil tubing falls below the setpoint.

8. Compressor shall carry a 5 year non-prorated warranty, from the date of original equipment shipment from the factory.

9. Compressors shall be mounted in an isolated service compartment which can be accessed without affecting unit operation. Lockable hinged compressor access doors shall be fabricated of double wall, rigid polyurethane foam insulated panels to prevent the transmission of noise outside the cabinet.

10. Compressors shall be isolated from unit with the compressor manufacturer’s recommended rubber vibration isolators, to reduce any transmission of noise from the compressor into the building area.

11. Each refrigeration circuit shall be equipped with thermostatic expansion valve type refrigerant flow control.

12. Each refrigeration circuit shall be equipped with automatic reset low pressure and manual reset high pressure refrigerant safety controls, Schrader type service fittings on both the high pressure and low pressure sides, and factory installed liquid line filter driers.

G. Water-Cooled Condenser

1. All field installed piping shall be hydrostatically tested before being put into service. Test pressure shall be 300 psi for a two hour duration. Leaks and loss in test pressure constitute defects. If test fails, corrections shall be made to the system and the test shall then be repeated to make certain all defects were corrected. All testing shall be performed to ASTM Standards.

2. Water-cooled condensing section shall contain shell and tube heat exchangers. The shell shall be fabricated form carbon steel with the inside tubes made of seamless copper. Heat exchangers shall be circuited in a counter flow arrangement to the refrigerant system. Each heat exchanger shall be provided with a removable and cleanable type, basket filter on the waterside circuit. Field piping connections shall be made at each heat exchanger within the condensing section of the self contained unit. Maximum operating pressure on the water side of the condenser shall be 300 psi.

3. Each heat exchanger circuit shall have a flow switch that shuts down the compressors if water flow to the condenser is interrupted.

4. Each heat exchanger circuit shall have a factory installed motorized shutoff valve.

5. Unit shall include factory installed head pressure control module and each heat exchanger shall include factory installed head pressure control valve which modulates the condenser water flow based on head pressure and allows cooling operation below 65°F condenser water temperature.

H. Hot Water Heating Coils

1. Coils shall be certified in accordance with AHRI Standard 410 and be leak tested.

2. Coil shall be constructed of copper tubes with aluminum fins mechanically bonded to the tubes and galvanized steel end casings. Fin design shall be sine wave rippled.

3. Coil shall be located in the preheat position upstream of the evaporator coil.
I. Filters
1. Unit shall include 4 inch thick, pleated panel filters with an ASHRAE efficiency of 85% and a MERV rating of 13, upstream of the cooling coil. Unit shall also include 2 inch thick, pleated panel pre filters with an ASHRAE efficiency of 30% and MERV rating of 8, upstream of the 4 inch standard filters.
2. Unit shall include a clogged filter switch.
3. Unit shall include a factory installed Magnehelic gauge mounted in the controls compartment.

J. Controls
1. Field Installed DDC Controls by Others
 a. Controls shall be field provided and field installed by others.
 b. Standard Terminal Block
 1) Unit shall be provided with a terminal block for field installation of controls.
 2) Isolation relays shall be factory installed.
2. Accessories
 a. Unit shall be provided with a smoke detector sensing the supply air of the unit, wired to shut off the unit’s control circuit. Smoke detectors shall be addressable type to allow integration into addressable fire alarm system.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting:
 1. Install air-handling units on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Arrange installation of units to provide access space around makeup-air units for service and maintenance.

C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.

D. Install filter gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

E. Comply with requirements for piping specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

F. Install piping adjacent to air-handling unit to allow service and maintenance.

G. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.
H. Connect condensate drain pans using ASTM B 88, Type M copper tubing. Extend to nearest floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

I. Hot-water Piping: Comply with applicable requirements in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

J. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

3.2 STARTUP SERVICE

A. A factory trained and authorized agent shall start-up each unit. The agent shall provide a start-up report to the architect/engineer at the completion of their work. The agent shall coordinate all work with the mechanical contractor, plumbing contractor, temperature controls contractor, commissioning agent and construction manager.

3.3 DEMONSTRATION

A. See sections 220000 “General Requirements of Plumbing and HVAC” and 017900 Demonstration and Training for requirements.

END OF SECTION 237423
SECTION 238146 - WATER-SOURCE UNITARY HEAT PUMPS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes unitary heat pumps with refrigerant-to-water heat exchangers, refrigeration circuits, and refrigerant compressor(s).

1.2 SUBMITTALS
A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

1.3 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of water-source unitary heat pumps that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, refrigeration components.
 2. Warranty Period: Four years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. ASHRAE Compliance:
 1. ASHRAE 15.
B. Comply with NFPA 70.
C. Comply with safety requirements in UL 484 for assembly of free-delivery, water-source heat pumps.

2.2 WATER-SOURCE UNITARY HEAT PUMPS
A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Daikin.
 2. FHP Manufacturing Inc.
B. Description: Packaged water-source unitary heat pump with temperature controls; factory assembled, piped, wired, tested, and rated according to ASHRAE/ARI/ISO-13256-1.
1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Configuration:
1. Units shall be the configuration shown on the drawings.

D. Cabinet and Chassis: Galvanized-steel casing with the following features:

1. Access panel for access and maintenance of internal components.
2. Knockouts for electrical and piping connections.
4. Sided filter rack capable of accepting two inch filters.

E. Water Circuits:

1. Refrigerant-to-Water Heat Exchangers:
 a. Refrigerant to water heat exchangers shall be coaxial type with copper inner water tube and steel outer refrigerant tube design rated to withstand 600 PSIG working refrigerant pressure and 400 PSIG working water pressure.

F. Refrigerant Circuit Components:

2. Filter-Dryer: Factory installed to clean and dehydrate the refrigerant circuit.
3. Charging Connections: Service fittings on suction and liquid for charging and testing on each circuit.
4. Reversing Valve: Four-way, solenoid-activated valve designed to be fail-safe in heating position with replaceable magnetic coil.
5. Compressor:
 a. Scroll.
 b. Single stage or two stage as indicated on the drawings.
 c. Installed on vibration isolators and mounted on a structural steel base plate and full-length channel stiffeners.
 d. Exterior of compressor shall be wrapped with a high-density sound-attenuating blanket and housed in an acoustically treated enclosure.
 e. Factory-Installed Safeties:
 1) Anticycle timer.
 2) High-pressure cutout.
 3) Low-pressure cutout or loss of charge switch.
 4) Internal thermal-overload protection.
 5) Freezestat to stop compressor if water-loop temperature in refrigerant-to-water heat exchanger falls below 35 deg F.
 6) Water-coil, low-temperature switch.
7. Pipe Insulation: Refrigerant minimum 3/8-inch-thick, flexible elastomeric insulation on piping exposed to airflow through the unit. Maximum 25/50 flame-spread/smoke-developed indexes according to ASTM E 84.

8. Reversing Valve: Reversing valves shall be four-way solenoid activated refrigerant valves which shall fail to the heating operation should the solenoid fail to function. Reversing valves which fail to the cooling operation shall not be allowed.

G. Controls: Control equipment and sequence of operation are specified in Section 230900 “HVAC Control” and on the drawings.

H. Controls:

1. Basic Unit Control Modes and Devices:
 a. Unit shutdown on high or low refrigerant pressures.
 b. Unit shutdown on low water temperature.
 c. Low- and high-voltage protection.
 d. Overcurrent protection for compressor.
 e. Random time delay, three to 10 seconds, start on power-up.
 f. Time delay override for servicing.
 g. Control voltage transformer.
 h. Water-coil freeze protection (selectable for water or antifreeze).
 i. Automatic intelligent reset. Unit shall automatically reset five minutes after trip if the fault has cleared. Should a fault reoccur three times sequentially, lockout requiring manual reset occurs.
 j. Ability to defeat time delays for servicing.
 k. Digital display to indicate high pressure, low pressure, low voltage, and high voltage.
 l. The low-pressure switch shall not be monitored for the first 90 seconds after a compressor start command to prevent nuisance safety trips.
 m. Remote fault-type indication at thermostat.
 n. Selectable 24-V dc or pilot duty dry contact alarm output.
 o. 24-V dc output to cycle a motorized water valve with compressor contactor.
 p. Service test mode for troubleshooting and service.
 q. Unit-performance sentinel warns when heat pump is running inefficiently.
 r. Compressor soft start.

I. Electrical: A control box shall be located within the unit and shall contain a transformer, controls for the compressor, reversing valve and fan motor operation and shall have a terminal block for low voltage field wiring connections. The transformer shall be rated for a minimum 75VA. All units shall be nameplated for use with time delay fuses or HACR circuit breakers. Unit controls shall be 24 volts.

J. Capacities and Characteristics: See Drawings

2.3 ACCESSORIES

A. Extra Quiet Construction that includes compressor sound blankets.

B. Water Differential Pressure Switch: Prevents unit operation without water flow.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting:

1. Install water-source, unitary heat pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete" and Section 033053 "Miscellaneous Cast-in-Place Concrete."

2. Comply with requirements for vibration-isolation and seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

B. Suspend water-source, unitary heat pumps from structure with all-thread hanger rods and elastomeric hangers. Vibration hangers shall comply with Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

C. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:

1. Connect supply and return hydronic piping to heat pump with unions and shutoff valves.

D. Install electrical devices furnished by manufacturer but not specified to be factory mounted.

E. Install piping adjacent to machine to allow space for service and maintenance.

3.2 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections:

1. After installing water to water heat pumps and after electrical circuitry has been energized, test units for compliance with requirements.

2. Inspect for and remove shipping bolts, blocks, and tie-down straps.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Heat pumps will be considered defective if they do not pass tests and inspections.

END OF SECTION 238146
SECTION 238216 - HYDRONIC AIR COILS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes hydronic heating air coils.

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 DESCRIPTION

A. ASHRAE Compliance: Comply with applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

2.2 COILS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Daikin.
2. Johnson Controls.
3. Luvanta.
4. Temtrol.

B. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.

C. Minimum Working-Pressure/Temperature Ratings: 200 psig, 325 deg F.

D. Source Quality Control: Factory tested to 300 psig.

E. Tubes: ASTM B 743 copper, minimum 0.020 inch thick.

F. Fins: Aluminum, minimum 0.006 inch thick.

G. Headers: Seamless copper tube with brazed joints, prime coated.

H. Frames: Galvanized-steel channel frame, minimum 0.052 inch thick for slip-in or flanged mounting.
I. Hot-Water Coil Capacities and Characteristics: See Drawings

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install coils level and plumb.

B. Install coils in metal ducts and casings constructed according to SMACNA's "HVAC Duct Construction Standards, Metal and Flexible."

C. Straighten bent fins on air coils.

D. Clean coils using materials and methods recommended in writing by manufacturers, and clean inside of casings and enclosures to remove dust and debris.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to coils to allow service and maintenance.

C. Connect water piping with unions and shutoff valves to allow coils to be disconnected without draining piping. Piping specialties are specified in Section 232116 "Hydronic Piping Specialties."

END OF SECTION 238216
SECTION 238230 - PROPELLER UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes propeller unit heaters with hot-water coils.

1.2 SUBMITTALS
 A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Modine.
 2. Sigma.

2.2 DESCRIPTION
 A. Assembly including casing, coil, fan, and motor in vertical and horizontal discharge configuration with adjustable discharge louvers.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 PERFORMANCE REQUIREMENTS
 A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
 B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."
2.4 HOUSINGS

A. Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heaters before shipping.

B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

C. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.

2.5 COILS

A. General Coil Requirements: Test and rate hot-water propeller unit-heater coils according to ASHRAE 33.

B. Hot-Water Coil: Copper tube, minimum 0.025-inch wall thickness, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 325 deg F, with manual air vent. Test for leaks to 350 psig underwater.

2.6 FAN AND MOTOR

A. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

B. Motor: Permanently lubricated, multispeed.

2.7 CONTROLS

A. See Section 230900 “HVAC Controls” and the Drawings for additional information. Provide all required materials and labor required to achieve the specified sequence of operations.

2.8 CAPACITIES AND CHARACTERISTICS

A. See Drawings

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive propeller unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping and electrical connections to verify actual locations before unit-heater installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install propeller unit heaters to comply with NFPA 90A.

B. Install propeller unit heaters level and plumb.

C. Suspend propeller unit heaters from structure with all-thread hanger rods and spring hangers. Hanger rods and attachments to structure are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers shall comply with Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."

D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

3.3 CONNECTIONS

A. Piping installation requirements are specified in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect piping to propeller unit heater's factory, hot-water piping package. Install the piping package if shipped loose.

D. Comply with safety requirements in UL 1995.

E. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of propeller unit heater. Hydronic specialties are specified in Section 232116 "Hydronic Piping Specialties."

F. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
B. Units will be considered defective if they do not pass tests and inspections.

END OF SECTION 238230
SECTION 238231 - HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Electric Wall and Ceiling Heaters
 2. Hot Water Cabinet Heaters

1.2 SUBMITTALS

A. See Section 220000 “General Requirements of Plumbing and HVAC” for submittal requirements.

PART 2 - PRODUCTS

2.1 ELECTRIC WALL AND CEILING HEATERS

A. Manufacturers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Berko; Marley Engineered Products.
 b. Markel Products; TPI Corporation.
 c. QMark; Marley Engineered Products.

B. Description

 1. Assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.
 2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Cabinet

 1. Front Panel: Extruded-aluminum bar grille, with removable panels fastened with tamperproof fasteners.
 2. Finish: Baked enamel over baked-on primer with manufacturer's standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.
 3. Surface-Mounted Cabinet Enclosure: Steel with finish to match cabinet.

D. Coil

 1. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in corrosion-

E. Fan and Motor
1. Fan: Aluminum propeller directly connected to motor.

F. Controls
1. Controls: Unit-mounted thermostat.
2. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.
3. See Section 230900 “HVAC Controls” for additional information.

G. Capacities and Characteristics: See Drawings

2.2 HOT WATER CABINET HEATERS

A. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
1. Envirotec.
2. Sigma.

B. Description: Factory-assembled and -tested unit complying with AHRI 440.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Performance Requirements
1. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
2. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

E. Cabinet
1. Material: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.
 a. Vertical Unit, Exposed Front Panels: Minimum 0.0528-inch- thick galvanized sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
 b. Horizontal Unit, Exposed Bottom Panels: Minimum 0.0528-inch- thick galvanized sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
 c. Recessed Flanges: Steel, finished to match cabinet.
 d. Control Access Door: Key operated.
 e. Base: Minimum 0.0528-inch-thick steel, finished to match cabinet, 4 inches high with leveling bolts.
 f. Extended Piping Compartment: 8-inch- wide piping end pocket.
 g. False Back: Minimum 0.0428-inch-thick steel, finished to match cabinet.
F. Coils
 1. Hot-Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain.

G. Filters
 1. Provide with 1” pleated, 90 percent arrestance, and MERV 7.

H. Fans
 2. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 4. Wiring Termination: Connect motor to chassis wiring with plug connection.

I. Controls
 1. All controls shall be the responsibility of the Temperature Controls Contractor. See Section 230900 “HVAC Controls” and the drawings for additional requirements. Provide all material and labor required to achieve the specified sequence of operations.

J. Capacities and Characteristics:
 1. See Drawings

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine areas to receive hot water cabinet heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for piping and electrical connections to verify actual locations before installation.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2

3.3 INSTALLATION
 A. Install wall and ceiling unit heaters to comply with NFPA 90A.
 B. Install wall and ceiling unit heaters level and plumb.
 C. Suspend cabinet unit heaters from structure with elastomeric hangers. Vibration isolators shall comply with Section 220548 "Vibration and Seismic Controls for Plumbing and HVAC Piping and Equipment."
D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

G. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

H. Piping installation requirements are specified in Section 232113 "Hydronic Piping," Section 232116 "Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.

I. Install piping adjacent to machine to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

B. Units will be considered defective if they do not pass tests and inspections.

END OF SECTION 238231
SECTION 26 0523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. RS-232 cabling.
 3. RS-485 cabling.
 4. Low-voltage control cabling.
 5. Control-circuit conductors.
 6. Identification products.

1.02 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

B. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).

1.03 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.04 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.05 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.06 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of an NRTL.

B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
B. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.01 PATHWAYS

A. Support of Open Cabling: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 2. Lacing bars, spools, J-hooks, and D-rings.
 3. Straps and other devices.

B. Conduit and Boxes: Comply with requirements in Section 26 0533 "Raceways and Boxes for Electrical Systems."
 1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.

2.02 BACKBOARDS

A. Description: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels in Section 06 1000 "Rough Carpentry."

2.03 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Belden CDT Inc.; Electronics Division.
 2. Berk-Tek; a Nexans company.
 3. CommScope, Inc.
 4. Draka USA.
 5. Genesis Cable Products; Honeywell International, Inc.
 6. KRONE Incorporated.
 7. Mohawk; a division of Belden CDT.
 8. Nordex/CDT; a subsidiary of Cable Design Technologies.
 9. Superior Essex Inc.
 10. SYSTIMAX Solutions; a CommScope, Inc. brand.
 11. 3M.
 12. Tyco Electronics/AMP Netconnect; Tyco International Ltd.

B. Description: 100-ohm, four-pair UTP.
 1. Comply with ICEA S-90-661 for mechanical properties.
 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 3. Comply with TIA/EIA-568-B.2, Category 5e.
 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, General Purpose: Type CM or Type CMG.
 b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 d. Communications, Limited Purpose: Type CMX.
 e. Multipurpose: Type MP or Type MPG.
f. Multipurpose, Plenum Rated: type MPP, complying with NFPA 262.
g. Multipurpose, Riser Rated: type MPR, complying with UL 1666.

2.04 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Dynacom Corporation.
 3. Hubbell Premise Wiring.
 4. KRONE Incorporated.
 5. Leviton Voice & Data Division.
 8. Panduit Corp.
 10. Tyco Electronics/AMP Netconnect; Tyco International Ltd.

B. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.

C. Connecting Blocks: 110 style for Category 5e 110 style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare; integral with connector bodies, including plugs and jacks where indicated.

2.05 RS-232 CABLE

A. Standard Cable: NFPA 70, Type CM.
 1. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 2. Polypropylene insulation.
 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 4. PVC jacket.
 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire.

B. Plenum-Rated Cable: NFPA 70, Type CMP.
 1. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 2. Plastic insulation.
 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire.
2.06 **RS-485 CABLE**

 A. Standard Cable: NFPA 70, Type CM.
 1. Paired, two pairs, twisted, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with UL 1581.

 B. Plenum-Rated Cable: NFPA 70, Type CMP.
 1. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 2. Fluorinated ethylene propylene insulation.
 3. Unshielded.
 4. Fluorinated ethylene propylene jacket.

2.07 **LOW-VOLTAGE CONTROL CABLE**

 A. Paired Cable: NFPA 70, Type CMG.
 1. One pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with UL 1581.

 B. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 1. One pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with NFPA 262.

 C. Paired Cable: NFPA 70, Type CMG.
 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with UL 1581.

 D. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned-copper conductors.
 2. Fluorinated ethylene propylene insulation.
 3. Unshielded.

2.08 **CONTROL-CIRCUIT CONDUCTORS**

 A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway, complying with UL 83.
B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway, complying with UL 83.

C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or Type TF, complying with UL 83.

2.09 IDENTIFICATION PRODUCTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Brady Corporation.
 2. HellermannTyton.
 3. Kroy LLC.
 4. Panduit Corp.

B. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

C. Comply with requirements in Section 26 0553 "Identification for Electrical Systems."

PART 3 - EXECUTION

3.01 INSTALLATION OF PATHWAYS

A. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

B. Comply with requirements in Section 26 0533 "Raceways and Boxes for Electrical Systems" for installation of conduits and wireways.

C. Install manufactured conduit sweeps and long-radius elbows if possible.

D. Pathway Installation in Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard if a single piece of plywood is installed or in the corner of room if multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard if entering room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

E. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.

3.02 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
5. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
7. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
8. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
2. Install 110-style IDC termination hardware unless otherwise indicated.
3. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

D. Installation of Control-Circuit Conductors:
1. Install wiring in raceways. Comply with requirements specified in Section 26 0533 "Raceways and Boxes for Electrical Systems."

E. Open-Cable Installation:
1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

F. Separation from EMI Sources:
1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.

5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.

3.03 REMOVAL OF CONDUCTORS AND CABLES

A. Remove abandoned conductors and cables.

3.04 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits, No 14 AWG.
 2. Class 2 low-energy, remote-control, and signal circuits, No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm, and signal circuits, No 12 AWG.

3.05 FIRESTOPPING

A. Comply with requirements in Section 07 8413 "Penetration Firestopping."

B. Comply with TIA/EIA-569-A, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.06 GROUNDING

B. For low-voltage wiring and cabling, comply with requirements in Section 26 0526 "Grounding and Bonding for Electrical Systems."

3.07 IDENTIFICATION

A. Identify system components, wiring, and cabling according to TIA/EIA-606-A. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.08 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.
C. Tests and Inspections:
1. Visually inspect UTP cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not after cross connection.
 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes: Grounding systems and equipment.

1.03 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.04 INFORMATIONAL SUBMITTALS

A. Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rods.

B. Field quality-control reports.

1.05 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 1. Instructions for periodic testing and inspection of grounding features based on NETA MTS .
 a. Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 b. Include recommended testing intervals.

1.06 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.
PART 2 - PRODUCTS

2.01 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

2.02 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.03 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet in diameter.

PART 3 - EXECUTION

3.01 APPLICATIONS

A. Conductors: Install solid conductor for No. 10 AWG and smaller, and stranded conductors for No. 8 AWG and larger unless otherwise indicated.
B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches below grade.

C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.02 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. System grounding assemblies shall be installed at all transformers, switchgear and manhole locations.
 1. Grounding assemblies shall consist of 2 - 8 foot copperclad ground rods driven in undisturbed soil. A direct buried, 1/0 copper ground wire shall connect ground rods to the primary cable neutral wires, the secondary neutral, and all groundable parts of the equipment. The ground wire shall be routed so as to provide a ground plane for personnel operating the equipment. Bury ground ring not less than 6 inches from the foundation.
 2. A five pound magnesium sacrificial anode shall be installed for passive, cathodic protection of the ground rods. Electrical connection of the anode to the ground system shall be made at the ground bus inside the equipment enclosure.

3.03 EQUIPMENT GROUNDING

A. Install green insulated equipment grounding conductors with all feeders and branch circuits.

B. Air-Duct Equipment Circuits: Bond equipment groundingconductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Bond equipment grounding conductor to heater units, piping, connected equipment, and components.

D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, where the equipment enclosure is isolated from the supply circuit with a nonmetallic raceway, install a fitting listed for the purpose, where raceway enters enclosure, and bond to the insulated equipment grounding conductor. Bond the conductor to the isolated equipment enclosure, and terminate at the equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
E. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.
 1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location, unless noted otherwise.
 2. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-4-by-12-inch grounding bus.
 3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

F. Poles Supporting Outdoor Lighting Fixtures: **DO NOT** install a grounding electrode and a separate insulated equipment grounding conductor at these locations. Bond the equipment grounding conductor installed with branch-circuit conductors to the grounding terminal at the pole base.

3.04 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. For grounding electrode system, install at least 2 rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

F. Ground Ring: Install a grounding conductor, electrically connected to each structure’s ground rod and to each indicated item, extending around the perimeter of area or item indicated.
 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 2. Bury ground ring not less than 24 inches from building's foundation.

G. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, and as detailed on drawings. If drawing does not provide Ufer ground detail install the grounding electrode as defined below:
 1. Use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
 2. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
 3. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

H. Structural Steel: When available, bond structural steel to grounding electrode system, according to NFPA 70.

3.05 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

C. Grounding system will be considered defective if it does not pass tests and inspections.
D. Report measured ground resistances that exceed 25 ohms to ground.

E. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

B. Related Sections include the following:
 1. Section 260548 “Vibration and Seismic Controls for Electrical Systems” for products and installation requirements necessary for compliance with seismic criteria.

1.03 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. IMC: Intermediate metal conduit.

C. RMC: Rigid metal conduit.

1.04 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.05 QUALITY ASSURANCE

A. Comply with NFPA 70.

1.06 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified together with concrete Specifications.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations.
PART 2 - PRODUCTS

2.01 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Channel Dimensions: Selected for applicable load criteria.

B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch- diameter holes at a maximum of 8 inches o.c., in at least 1 surface.
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Fabco Plastics Wholesale Limited.
 d. Seasafe, Inc.
 2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
 3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
 4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.02 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.01 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.02 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
 7. To Light Steel: Sheet metal screws.
 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.03 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
B. Field Welding: Comply with AWS D1.1/D1.1M.

3.04 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi), 28-day compressive-strength concrete.

C. Anchor equipment to concrete base.
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

END OF SECTION
SECTION 26 0533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.
 4. Nonmetal wireways and auxiliary gutters.
 5. Surface raceways.
 7. Handholes and boxes for exterior underground cabling.

1.03 DEFINITIONS

A. ARC: Aluminum rigid conduit.
B. GRC: Galvanized rigid steel conduit.
C. IMC: Intermediate metal conduit.

1.04 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

PART 2 - PRODUCTS

2.01 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AFC Cable Systems, Inc.
 3. Anamet Electrical, Inc.
 4. Electri-Flex Company.
 5. O-Z/Gedney; a brand of EGS Electrical Group.
 6. Picoma Industries, a subsidiary of Mueller Water Products, Inc.
 7. Republic Conduit.
 8. Robroy Industries.
10. Thomas & Betts Corporation.
11. Western Tube and Conduit Corporation.
12. Wheatland Tube Company; a division of John Maneely Company.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. ARC: Comply with ANSI C80.5 and UL 6A.

E. IMC: Comply with ANSI C80.6 and UL 1242.

F. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

G. EMT: Comply with ANSI C80.3 and UL 797.

H. FMC: Comply with UL 1; zinc-coated steel or aluminum.

I. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

J. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Setscrew.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

K. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.02 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AFC Cable Systems, Inc.
 2. Anamet Electrical, Inc.
 3. Arnco Corporation.
 4. CANTEX Inc.
 5. CertainTeed Corp.
7. Electri-Flex Company.
8. Kraloy.
9. Lamson & Sessions; Carlon Electrical Products.
10. Niedax-Kleinhuis USA, Inc.
11. RACO; a Hubbell company.
12. Thomas & Betts Corporation.

B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. ENT: Comply with NEMA TC 13 and UL 1653.

D. RNC: Type EPC-40-PVC or Type EPC-80-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

E. LFNC: Comply with UL 1660.

F. Rigid HDPE: Comply with UL 651A.

G. Continuous HDPE: Comply with UL 651B.

H. RTRC: Comply with UL 1684A and NEMA TC 14.

I. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

J. Fittings for LFNC: Comply with UL 514B.

2.03 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper B-Line, Inc.
 2. Hoffman; a Pentair company.
 4. Square D; a brand of Schneider Electric.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 Type 3R, Type 4, and Type 12 unless otherwise indicated, and sized according to NFPA 70.
 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type unless otherwise indicated.
E. Finish: Manufacturer’s standard enamel finish.

2.04 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Allied Moulded Products, Inc.
 2. Hoffman; a Pentair company.
 3. Lamson & Sessions; Carlon Electrical Products.
 4. Niedax-Kleinhuis USA, Inc.

B. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.

D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

2.05 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer’s standard enamel finish in color selected by Architect.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Mono-Systems, Inc.
 b. Panduit Corp.
 c. Wiremold / Legrand.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer’s standard colors. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Hubbell Incorporated; Wiring Device-Kellems Division.
 b. Mono-Systems, Inc.
 c. Panduit Corp.
 d. Wiremold / Legrand.
2.06 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper Technologies Company; Cooper Crouse-Hinds.
 2. EGS/Appleton Electric.
 4. Hoffman; a Pentair company.
 5. Hubbell Incorporated; Killark Division.
 7. Milbank Manufacturing Co.
 8. Mono-Systems, Inc.
 10. RACO; a Hubbell Company.
 11. Robroy Industries.
 12. Stahlin Non-Metallic Enclosures; a division of Robroy Industries.
 14. Wiremold / Legrand.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

F. Metal Floor Boxes:
 1. Material: Cast metal.
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Nonmetallic Floor Boxes: Nonadjustable, round.
 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

H. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

I. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

J. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

K. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

L. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

M. Device Box Dimensions: 4 inches square by 2-1/8 inches deep. 4 inches square by 1-1/4 inches deep is permitted in shallow 2” framed walls.

N. Gangable boxes are allowed for 6 gang or larger.

O. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1, Type 3R, Type 4, and Type 12 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

P. Cabinets:
 1. NEMA 250, Type 1, Type 3R, and Type 12 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.07 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:
 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of polymer concrete.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
d. NewBasis.
e. Nordic Fiberglass, Inc.
f. Oldcastle Precast, Inc.; Christy Concrete Products.
g. Synertech Moulded Products; a division of Oldcastle Precast, Inc.
h. Quazite (Hubbell).

2. Standard: Comply with SCTE 77.
3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
6. Cover Legend: Molded lettering, "ELECTRIC." Or "COM" as indicated on drawings.
7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

PART 3 - EXECUTION

3.01 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: EMT.
3. Underground Conduit: RNC, Type EPC-40-PVC in fine bedded trench.
4. Under roadways and paved or concrete walkways: Type EPC-80-PVC in fine bedded trench.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
6. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
1. Exposed, Not Subject to Severe Physical Damage: EMT.
2. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 a. Exception: MC cable can be used downstream of load centers located in casework, for connections to kitchen equipment in casework only.
 1) Example: Connection from Load Center ‘EP1’ to Kitchen equipment #2.110 may be run with MC cable.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
5. Damp or Wet Locations: GRC.
6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 nonmetallic in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 3. EMT: Use setscrew, steel fittings. Comply with NEMA FB 2.10.
 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz, and for protecting bare grounding conductors. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

I. Data Raceway: Comply with MSU’s Standards for Telecommunications Wiring. The minimum diameter raceway and conduit is 1 inch diameter. Use B-Line cable tray products. No more than 2-90 degree bends are allowed and none are preferred. Use sweeping bend products. The number of cables that can be installed in a conduit is limited by the allowed maximum pulling tension of the cables. A minimum fill ratio of 40% is preferred for future additions of cable.
 1. No section of conduit shall be longer than 100 feet between pull points. No section of conduit shall contain more than two (2) 90-degree bends, or equivalent between pull points. For conduits with an internal diameter of 2 inches or less, the inside radius of a bend in conduit shall be at least 6 times the internal diameter. For conduits with an internal diameter of more than 2 inches, the inside radius of a bend in conduit shall be at least 10 times the internal diameter. Conduit sizing is directly related to the planned diameter of the cable and the maximum pull tension that can be applied to the cable without degradation of the cable transmission properties. Pull boxes shall be used for fishing the conduit run, installing a pull string, and pulling the cable to the box and then looping the cable to be pulled into the next length of conduit. Any single conduit run extending from a telecommunication rooms shall not serve more than three outlet boxes; it is preferred to only serve one box. Conduits shall be reamed to eliminate sharp edges. Pull string or rope shall be placed in installed conduits.
 2. Surface raceway systems shall not force cable into a bend radius less than 1 inch under condition of maximum fill.
J. J-hooks: hooks shall be attached to building members with fasteners appropriate for the material. Wood screws or lag bolts shall be used for wood, wood screws with plastic anchors shall be used for plaster and concrete, and self-tapping screws shall be used for sheet metal. Threaded metal hooks attached to threaded anchors are also acceptable.

3.02 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from RNC, Type EPC-40-PVC, to a GRC bend and thru slab stub before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or GRC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer’s written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

R. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer’s written instructions. Tape and glue are not acceptable support methods.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Where otherwise required by NFPA 70.

U. Comply with manufacturer’s written instructions for solvent welding RNC and fittings.

V. Expansion-Joint Fittings:
 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that
is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.

2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

W. Flexible Conduit Connections: Comply with NEMA RV 3. Acceptable use for kitchen equipment connections / outlets within food servery casework. Use a maximum of 72 inches of flexible conduit for recessed and semi-recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Locate boxes so that cover or plate will not span different building finishes.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
DD. Set metal floor boxes level and flush with finished floor surface.

EE. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.03 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:
 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified for pipe less than 6 inches in nominal diameter.
 2. Install backfill as specified.
 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified.
 4. Install manufactured duct elbows for stub-ups at poles and equipment unless otherwise indicated. Install manufactured rigid steel conduit elbows at building entrances through floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose.
 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
 5. Underground Warning Tape: Comply with requirements in Section 26 0553 “Identification for Electrical Systems.”

3.04 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.

D. Field-cut openings for conduits according to enclosure manufacturer’s written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.05 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies
3.06 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.07 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
SECTION 26 0548 - VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.01 SUMMARY

A. Section includes:
 1. Isolation pads.
 2. Channel support systems.
 3. Restraint cables.

1.02 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:
 1. Site Class as Defined in the IBC: See Structural Specifications
 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: See Structural Specifications
 a. Component Response Modification Factor: As per ASCE 7-08 Table 13.6-1, current edition
 b. Component Amplification Factor: As per ASCE 7-08 Table 13.6-1, current edition
 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): See Structural Specifications
 4. Design Spectral Response Acceleration at 1.0-Second Period: See Structural Specifications

1.03 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.01 VIBRATION ISOLATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Isolation Technology, Inc.
 3. Mason Industries.
 4. Vibration Eliminator Co., Inc.
 5. Vibration Isolation.
 6. Vibration Mountings & Controls, Inc.

B. Pads: Arrange in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
1. Resilient Material: Oil- and water-resistant neoprene.

2.02 SEISMIC-RESTRAINT DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 2. Hilti Inc.
 3. Mason Industries.
 4. Unistrut; Tyco International, Ltd.

B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Do not weld stiffeners to rods.

E. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.

F. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.

G. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

H. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

I. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.
2.03 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 1. Powder coating on springs and housings.
 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 3. Baked enamel or powder coat for metal components on isolators for interior use.
 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.03 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment and Hanger Restraints:
 1. Install restrained isolators on electrical equipment.
 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.04 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.05 ADJUSTING

A. Adjust isolators after isolated equipment is at operating weight.

B. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION
SECTION 26 08 00 - COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this section.

B. The OPR and BOD documentation are included by reference for information only.

1.2 SUMMARY

A. This section includes commissioning process requirements for Electrical systems, assemblies, and equipment.

B. Related Sections:
 1. Division 01 Section 019113 "General Commissioning Requirements" for general commissioning process requirements.

1.3 DESCRIPTION

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for the description of commissioning.

1.4 DEFINITIONS

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for definitions.

1.5 SUBMITTALS

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for CxA’s role.

B. Refer to Division 01 Section “Submittals” for specific requirements. In addition, provide the following:

C. In addition, provide the following:
 1. Certificates of readiness
 2. Certificates of completion of installation, prestart, and startup activities.
 3. O&M manuals
 4. Test reports

1.6 QUALITY ASSURANCE

A. Test Equipment Calibration Requirements: Contractors will comply with test manufacturer’s calibration procedures and intervals. Recalibrate test instruments immediately after instruments
have been repaired resulting from being dropped or damaged. Affix calibration tags to test instruments. Furnish calibration records to CxA upon request.

1.7 COORDINATION

A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for requirements pertaining to coordination during the commissioning process.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

A. All standard testing equipment required to perform startup, initial checkout and functional performance testing shall be provided by the Contractor for the equipment being tested. For example, the electrical contractor of Division 26 shall ultimately be responsible for all standard testing equipment for the electrical systems and controls systems in Division 26. A sufficient quantity of two-way radios shall be provided by each contractor.

B. Special equipment, tools and instruments (specific to a piece of equipment and only available from vendor) required for testing shall be included in the base bid price to the Owner and left on site, except for stand-alone data logging equipment that may be used by the CxA.

C. Proprietary test equipment and software required by any equipment manufacturer for programming and/or start-up, whether specified or not, shall be provided by the manufacturer of the equipment. Manufacturer shall provide the test equipment, demonstrate its use, and assist in the commissioning process as needed. Proprietary test equipment (and software) shall become the property of the Owner upon completion of the commissioning process.

D. Data logging equipment and software required to test equipment will be provided by the CxA, but shall not become the property of the Owner.

E. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5°F and a resolution of ±0.1°F. Pressure sensors shall have an accuracy of ± 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year.

PART 3 - EXECUTION

3.1 GENERAL DOCUMENTATION REQUIREMENTS

A. With assistance from the installing contractors, the CxA will prepare Pre-Functional Checklists for all commissioned components, equipment, and systems

B. Red-lined Drawings:
 1. The contractor will verify all equipment, systems, instrumentation, wiring and components are shown correctly on red-lined drawings.
 2. Preliminary red-lined drawings must be made available to the Commissioning Team for use prior to the start of Functional Performance Testing.
3. Changes, as a result of Functional Testing, must be incorporated into the final as-built drawings, which will be created from the red-lined drawings.

4. The contracted party, as defined in the Contract Documents will create the as-built drawings.

C. Operation and Maintenance Data:
 1. Contractor will provide a copy of O&M literature within 45 days of each submittal acceptance for use during the commissioning process for all commissioned equipment and systems.
 2. The CxA will review the O&M literature once for conformance to project requirements.
 3. The CxA will receive a copy of the final approved O&M literature once corrections have been made by the Contractor.

D. Demonstration and Training:
 1. Contractor will provide demonstration and training as required by the specifications.
 2. A complete training plan and schedule must be submitted by the Contractor to the CxA four weeks (4) prior to any training.
 3. A training agenda for each training session must be submitted to the CxA one (1) week prior the training session.
 4. The CA shall be notified at least 72 hours in advance of scheduled tests so that testing may be observed by the CA and Owner's representative. A copy of the test record shall be provided to the CA, Owner, and Architect.
 5. Engage a Factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specific equipment.
 6. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, trouble shooting, servicing, and maintaining equipment.
 7. Review data in O&M Manuals.

E. Systems manual requirements:
 1. The Systems Manual is intended to be a usable information resource containing all of the information related to the systems, assemblies, and Commissioning Process in one place with indexes and cross references.
 2. The GC shall include final approved versions of the following information for the Systems Manual:
 a. As-Built System Schematics
 b. Verified Record Drawings
 c. Test Results (not otherwise included in Cx Record)
 d. Periodic Maintenance Information for computer maintenance management system
 e. Recommendations for recalibration frequency of sensors and actuators
 f. A list of contractors, subcontractors, suppliers, architects, and engineers involved in the project along with their contact information
 g. Training Records, Information on training provided, attendees list, and any ongoing training
 3. This information shall be organized and arranged by building system, such as fire alarm, chilled water, heating hot water, etc.
 4. Information should be provided in an electronic version to the extent possible. Legible, scanned images are acceptable for non-electronic documentation to facilitate this deliverable.
3.2 CONTRACTOR’S RESPONSIBILITIES

A. Perform commissioning tests at the direction of the CxA.

B. Attend construction phase controls coordination meetings.

C. Participate in Electrical systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.

D. Provide information requested by the CxA for final commissioning documentation.

E. Include requirements for submittal data, operation and maintenance data, and training in each purchase order or sub-contract written.

F. Prepare preliminary schedule for Electrical system orientations and inspections, operation and maintenance manual submissions, training sessions, equipment start-up and task completion for owner. Distribute preliminary schedule to commissioning team members.

G. Update schedule as required throughout the construction period.

H. During the startup and initial checkout process, execute the related portions of the prefunctional checklists for all commissioned equipment.

I. Assist the CxA in all verification and functional performance tests.

J. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

K. Gather operation and maintenance literature on all equipment, and assemble in binders as required by the specifications. Submit to CxA 45 days after submittal acceptance.

L. Coordinate with the CxA to provide 48-hour advance notice so that the witnessing of equipment and system start-up and testing can begin.

M. Notify the CxA a minimum of two weeks in advance of the time for start of the testing and balancing work. Attend the initial testing and balancing meeting for review of the official testing and balancing procedures.

N. Participate in, and schedule vendors and contractors to participate in the training sessions.

O. Provide written notification to the CM/GC and CxA that the following work has been completed in accordance with the contract documents, and that the equipment, systems, and sub-system are operating as required.
 1. Electrical equipment including switchgear, panel boards, motor control centers, lighting, receptacles, dimmers and all other equipment furnished under this Division.
 2. Emergency generators, ATS switches and emergency power systems.
 3. Lightning protection
 4. UPS systems

P. The equipment supplier shall document the performance of his equipment.

Q. Provide a complete set of red-lined drawings to the CxA prior to the start of Functional Performance Testing.
R. Provide training of the Owner’s operating staff using expert qualified personnel, as specified.

S. Equipment Suppliers
 1. Provide all requested submittal data, including detailed start-up procedures and specific responsibilities of the Owner, to keep warranties in force.
 2. Assist in equipment testing per agreements with contractors.
 3. Provide information requested by CxA regarding equipment sequence of operation and testing procedures.

T. Refer to Division 01 Section “General Commissioning Requirements” for additional Contractor responsibilities.

3.3 OWNER’S RESPONSIBILITIES
 A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for Owner’s Responsibilities.

3.4 DESIGN PROFESSIONAL’S RESPONSIBILITIES
 A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for Design Professional’s Responsibilities.

3.5 CxA’S RESPONSIBILITIES
 A. Refer to Division 01 Section 019113 “General Commissioning Requirements” for CxA’s Responsibilities.

3.6 TESTING PREPARATION
 A. Certify in writing to the CxA that Electrical systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.
 B. Certify in writing to the CxA that Electrical instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.
 C. Certify in writing that testing procedures have been completed and that testing reports have been submitted, discrepancies corrected, and corrective work approved.
 D. Place systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).
 E. Inspect and verify the position of each device and interlock identified on checklists.
 F. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.
 G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.
3.7 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.

B. Scope of Electrical testing shall include the entire Electrical installation, from the incoming power equipment throughout the distribution system. Testing shall include measuring, but not limited to resistance, voltage, and amperage of system(s) and devices.

C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.

D. The CxA along with the Electrical contractor and other contracted subcontractors, including the fire alarm Subcontractor shall prepare detailed testing plans, procedures, and checklists for Electrical systems, subsystems, and equipment.

E. Tests will be performed using design conditions whenever possible.

F. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

G. The CxA may direct that set points be altered when simulating conditions is not practical.

H. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.

I. If tests cannot be completed because of a deficiency outside the scope of the Electrical system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.

J. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.8 ELECTRICAL SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

A. Equipment Testing and Acceptance Procedures: Testing requirements are specified in individual Division 26 sections. Provide submittals, test data, inspector record, infrared camera and certifications to the CA.

B. Emergency Generator Testing and Acceptance Procedures: Provide technicians, load banks, infrared cameras, instrumentation, tools and equipment to test performance of designated systems and devices at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.

C. Fire Detection and Alarm System Testing: Provide technicians, instrumentation, tools and equipment to test performance of designated systems and devices at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.
D. Electrical Distribution System Testing: Provide technicians, load banks, infrared cameras, instrumentation, tools and equipment to test performance of designated systems and devices at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.

E. Vibration and Sound Tests: Provide technicians, instrumentation, tools, and equipment to test performance of vibration isolation and seismic controls.

F. The work included in the commissioning process involves a complete and thorough evaluation of the operation and performance of all components, systems and sub-systems. The following equipment and systems shall be evaluated:

1. Coordination and functionality with the Building Automation System/Building Management Controls System
2. Lighting Controls
3. Power Monitoring/Metering System

3.9 DEFICIENCIES/NON-CONFORMANCE, COST OF RETESTING, FAILURE DUE TO MANUFACTURER DEFECT

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to deficiencies/non-conformance, cost of retesting, or failure due to manufacturer defect.

3.10 APPROVAL

A. Refer to Division 01 Section “General Commissioning Requirements” for approval procedures.

3.11 DEFERRED TESTING

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to deferred testing.

3.12 OPERATION AND MAINTENANCE MANUALS

A. The Operation and Maintenance Manuals shall conform to Contract Documents requirements as stated in Division 01.

B. Refer to Division 01 Section “General Commissioning Requirements” for the AE and CxA roles in the Operation and Maintenance Manual contribution, review and approval process.

3.13 TRAINING OF OWNER PERSONNEL

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to training.

B. Electrical Contractor. The electrical contractor shall have the following training responsibilities:

1. Provide the CA with a training plan two weeks before the planned training.
2. Provide designated Owner personnel with comprehensive training in the understanding of the systems and the operation and maintenance of each major piece of commissioned electrical equipment or system.

3. Training shall start with classroom sessions, if necessary, followed by hands on training on each piece of equipment, which shall illustrate the various modes of operation, including startup, shutdown, fire/smoke alarm, power failure, etc.

4. During any demonstration, should the system fail to perform in accordance with the requirements of the O&M manual or sequence of operations, the system will be repaired or adjusted as necessary and the demonstration repeated.

5. The appropriate trade or manufacturer’s representative shall provide the instructions on each major piece of equipment. This person may be the start-up technician for the piece of equipment, the installing contractor or manufacturer’s representative. Practical building operating expertise as well as in-depth knowledge of all modes of operation of the specific piece of equipment are required. More than one party may be required to execute the training.

6. The training sessions shall follow the outline in the Table of Contents of the operation and maintenance manual and illustrate whenever possible the use of the O&M manuals for reference.

7. Training shall include:
 a. Use the printed installation, operation and maintenance instruction material included in the O&M manuals.
 b. Include a review of the written O&M instructions emphasizing safe and proper operating requirements, preventative maintenance, special tools needed and spare parts inventory suggestions. The training shall include start-up, operation in all modes possible, shut-down, seasonal changeover and any emergency procedures.
 c. Discuss relevant health and safety issues and concerns.
 d. Discuss warranties and guarantees.
 e. Cover common troubleshooting problems and solutions.
 f. Explain information included in the O&M manuals and the location of all plans and manuals in the facility.
 g. Discuss any peculiarities of equipment installation or operation.

8. Hands-on training shall include start-up, operation in all modes possible, including manual, shut-down and any emergency procedures and preventative maintenance of all pieces of equipment.

9. The electrical contractor shall fully explain and demonstrate the operation, function and overrides of any local packaged controls, not controlled by the central control system.

10. Training shall occur after functional testing is complete, unless approved otherwise by the Owner's.
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Photosensors.
 2. Photoelectric switches.
 3. Indoor occupancy sensors.
 4. Lighting contactors
 5. Lighting control panels.

B. Related Requirements:

C. Substitutions:
 1. All proposed substitutions (clearly delineated as such) must be submitted in writing for approval by the design professional a minimum of 10 working days prior to the bid date and must be made available to all bidders. Proposed substitutes must be accompanied by a review of the specification noting compliance on a line-by-line basis.
 2. By using pre-approved substitutions, the contractor accepts responsibility and associated costs for all required modifications to circuitry, devices, and wiring. The contractor shall provide complete engineered shop drawings (including power wiring) with deviations for the original design highlighted in an alternate color to the engineer for review and approval prior to rough-in.

D. Spares:
 1. Provide a minimum of 10%, but no less than 2, of the devices on the job as spares.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show installation details for occupancy and light-level sensors.

 1. Interconnection diagrams showing field-installed wiring.
2. Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

1.5 WARRANTY

A. Provide a five year complete manufacturer’s warranty on all products to be free of manufacturers’ defects.

PART 2 - PRODUCTS

2.1 PHOTOSENSORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Cooper Industries, Inc.
2. Intermatic, Inc.
3. Invensys Controls.
5. NSi Industries LLC; TORK Products.
6. Tyco Electronics; ALR Brand.

B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Contact Configuration: SPST.
3. Contact Rating: 20-A ballast load, 120-/240-V ac.
4. Programs: Two on-off set points on a 24-hour schedule, allowing different set points for each day of the week and an annual holiday schedule that overrides the weekly operation on holidays.
5. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on selected channels.
6. Astronomic Time: All channels.
7. Automatic daylight savings time changeover.
8. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
1. Cooper Industries, Inc.
2. Intermatic, Inc.
3. NSi Industries LLC; TORK Products.
4. Tyco Electronics; ALR Brand.

B. Description: Solid state, with SPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.

 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Light-Level Monitoring Range: 1.5 to 10 fc (16.14 to 108 lux), with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 3. Time Delay: Fifteen second minimum, to prevent false operation.
 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

2.3 SINGLE / DUAL RELAY WALL SWITCH OCCUPANCY SENSORS

A. Type PW: Manual-ON, Automatic-OFF passive infrared (PIR) wall switch occupancy sensor Furnish the Company’s model which suits the electrical system parameters, and accommodates the square-foot coverage and wattage requirement for each area (and type of lighting) controlled; WattStopper PW-100, PW-200, PW-103, PW-203.

B. Type DW: Manual-ON, Automatic-OFF dual technology (passive infrared and ultrasonic) wall switch occupancy sensor Furnish the Company’s model which suits the electrical system parameters, and accommodates the square-foot coverage and wattage requirement for each area (and type of lighting) controlled; WattStopper DW-100, DW-200, DW-103, DW-203.

2.4 WALL OR CEILING MOUNTED OCCUPANCY SENSOR SYSTEM

A. Wall or ceiling mounted (to suit installation) passive infrared (PIR), ultrasonic or dual technology digital (passive infrared and ultrasonic) occupancy sensor. Furnish the Company’s system which accommodates the square-foot coverage requirements for each area controlled, utilizing room controllers, digital occupancy sensors and accessories which suit the lighting and electrical system parameters.

2.5 LIGHTING CONTACTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
4. General Electric Company; GE Consumer & Industrial - Electrical Distribution; Total Lighting Control.
5. Square D; a brand of Schneider Electric.

B. Description: Electrically operated and mechanically held, combination-type lighting contactors with non-fused disconnect, complying with NEMA ICS 2 and UL 508.

1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.

2.6 LIGHTING CONTROL PANEL

A. Lighting Control Panels shall include the following features:

1. Device Status LEDs to indicate:
 a. Data transmission
 b. Device has power
 c. Status for each load
 d. Configuration status

2. Manual override and LED indication for each load

3. Dual voltage (120/277 VAC, 60 Hz)

4. Zero cross circuitry for each load.

5. On/Off control shall include:
 a. Four, eight, or sixteen relay configuration
 b. Efficient 150 mA switching power supply
 c. Three RJ-45 local network ports
 d. Discrete model listed for connection to receptacles, for occupancy-based control of plug loads within the space.
 1) One relay configuration only
 2) Automatic-ON/OFF configuration

B. Lighting control panels shall be Hubbell CX, or prior approved equal, as shown on the plans.
2.7 **CONDUCTORS AND CABLES**

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 **INSTALLATION**

A. Install the work of this Section in accordance with manufacturer’s printed instructions unless otherwise indicated.

B. Calibrate all sensor time delays and sensitivity to guarantee proper detection of occupants and energy savings.

1. Adjust time delay so that controlled area remains lighted for 5 minutes after occupant leaves area.

C. Provide written or computer-generated documentation on the commissioning of the system including room by room description including:

1. Sensor parameters, time delays, sensitivities, and daylighting setpoints.
2. Sequence of operation, (e.g. manual ON, Auto OFF, etc.)

3.2 **WIRING INSTALLATION**

A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. All low voltage cabling shall meet manufactures requirements.

C. Low voltage cables do not require raceway in accessible ceilings. Cabling shall be cleanly organized and supported by J-Hooks or approved methods every 6 feet.

D. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

E. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
F. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections:

1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Lighting control devices will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Occupancy Adjustments: Provide one on-site visit eight months from date of substantial completion to assist in adjusting sensors to suit actual occupied conditions. In addition to the one required visit, when requested within 12 months from date of Substantial Completion, provide one additional on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.
3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.
 1. Commission and Train owners personnel at time of substantial completion.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:
 1. Distribution transformers.

1.03 ACTION SUBMITTALS

A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.04 INFORMATIONAL SUBMITTALS

A. Manufacturer Seismic Qualification Certification: Submit certification that transformers, accessories, and components will withstand seismic forces. Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control test reports.

1.05 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.
1.06 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.07 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

1.08 COORDINATION

A. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

B. Coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Federal Pacific Transformer Company; Division of Electro-Mechanical Corp.
5. Square D; Schneider Electric.

2.02 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Cores: Grain-oriented, non-aging silicon steel.

C. Coils: Continuous windings without splices except for taps.

1. Internal Coil Connections: Brazed or pressure type.
2. Coil Material: Copper.

2.03 DISTRIBUTION TRANSFORMERS

A. Comply with NEMA ST 20, and list and label as complying with UL 1561.
B. Provide transformers that are constructed to withstand seismic forces specified in Section 26 0548 "Vibration and Seismic Controls for Electrical Systems."

C. Cores: One leg per phase.

D. Indoor Enclosure: Ventilated, NEMA 250, Type 2.
 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.

E. Outdoor Enclosure: Ventilated, NEMA 250, Type 3R.
 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.

F. Transformer Enclosure Finish: Comply with NEMA 250.

G. Taps for Transformers Smaller Than 3 kVA: One 5 percent tap above normal full capacity.

H. Taps for Transformers 7.5 to 24 kVA: Two 5 percent taps below rated voltage.

I. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.

J. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.

K. Energy Efficiency for Transformers Rated 15 kVA and Larger:
 1. Complying with NEMA TP 1, Class 1 efficiency levels.
 2. Tested according to NEMA TP 2.

L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.
 3. Shield Effectiveness:
 a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz.
 c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz.

M. Wall Brackets: Manufacturer's standard brackets.

N. Low-Sound-Level Requirements: Comply with NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.
2.04 IDENTIFICATION DEVICES
 A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 26 0553 "Identification for Electrical Systems."

2.05 SOURCE QUALITY CONTROL
 A. Test and inspect transformers according to IEEE C57.12.91.
 B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.01 EXAMINATION
 A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
 B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
 C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
 D. Verify that ground connections are in place and requirements in Section 26 0526 "Grounding and Bonding for Electrical Systems" have been met.
 E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
 A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 1. Brace wall-mounting transformers as specified in Section 26 0548 "Vibration and Seismic Controls for Electrical Systems."
 B. Construct concrete bases and anchor floor-mounting transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 26 0529 "Hangers and Supports for Electrical Systems."

3.03 CONNECTIONS
 A. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."
 B. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
3.04 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Output Settings Report: Prepare a written report recording output voltage and tap settings.

3.05 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.

1.03 DEFINITIONS

A. SVR: Suppressed voltage rating.
B. TVSS: Transient voltage surge suppressor.

1.04 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 2. Engage a qualified factory representative to inspect the installation and wiring of the main GFP to ensure proper functionality.

1.05 ACTION SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 6. Include wiring diagrams for power, signal, and control wiring.
 7. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards.
8. Provide a Certified Arc Flash Report on each panel, and transformer shown on one-line. Per the IEEE 1584 IEEE Guide for Performing Arc-Flash Hazard Calculations. Submit report 30 days before energizing electrical equipment. Labels indicating PPE areas shall be affixed on all existing equipment and all new equipment prior to the new equipment being energized.
 a. As a minimum, include the following in the report:
 1) Equipment manufacturer’s information for the equipment installed.
 2) Assumptions made during the study.
 3) Reduced copy of the one line drawing.
 4) Arc flash evaluations summary spreadsheet.
 5) Bus detail sheets.
 6) Arc flash warning labels printed in color on adhesive backed labels.

9. Provide a coordination study.

1.06 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Section 26 0548 “Vibration and Seismic Controls for Electrical Systems.”.

B. Panelboard Schedules: For installation in panelboards.

1.07 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 “Operation and Maintenance Data,” include the following:
 1. Manufacturer’s written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.08 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.
 2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Two spares for each panelboard.

1.09 QUALITY ASSURANCE

A. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards.

B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.11 PROJECT CONDITIONS

A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.

1.12 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

PART 2 - PRODUCTS

2.01 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 26 0548 "Vibration and Seismic Controls for Electrical Systems."

B. Enclosures: Flush- and surface-mounted cabinets.
1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Kitchen and Wash-Down Areas: NEMA 250, Type 4X.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

2. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

3. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.

C. Incoming Mains Location: Top and bottom

D. Phase, Neutral, and Ground Buses:
 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

E. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Main and Neutral Lugs: Mechanical type.
 3. Ground Lugs and Bus-Configured Terminators: Mechanical type.
 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.

G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

2.02 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D; a brand of Schneider Electric.
B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Mains: As required on Drawings.

D. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

2.03 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: As required on Drawings.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.04 LOAD CENTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D; a brand of Schneider Electric.

B. Load Centers: Comply with UL 67.

C. Mains: As required on Drawings.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

E. Conductor Connectors: Mechanical type for main, neutral, and ground lugs and buses.

2.05 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 3. Square D; a brand of Schneider Electric.
B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.
 4. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
 5. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
 7. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 f. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.
 g. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 26 2813 "Fuses."
 2. Fused Switch Features and Accessories: Standard ampere ratings and number of poles.
 3. Auxiliary Contacts: One normally open and normally closed contact(s) that operate with switch handle operation.

2.06 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Install panelboards and accessories according to NEMA PB 1.1.

B. Equipment Mounting: When installing panelboards on concrete bases, they shall be 4-inch nominal thickness. Comply with requirements for concrete base specified.
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.
 2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to panelboards.
 5. Attach panelboard to the vertical finished or structural surface behind the panelboard.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

D. Comply with mounting and anchoring requirements specified in Section 26 0548 "Vibration and Seismic Controls for Electrical Systems."

E. Mount top of trim 90 inches above finished floor unless otherwise indicated.

F. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

G. Install overcurrent protective devices and controllers not already factory installed.

H. Install filler plates in unused spaces.

I. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

J. Comply with NECA 1.
3.03 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 26 0553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.04 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Coordinated Power System Protection:
 1. A study shall be prepared to demonstrate that the equipment and system constructed within the scope of these Contract Documents, meet the specified requirements for equipment ratings, coordination and protection.
 2. The studies shall be performed in accordance with IEEE 242 and IEEE 399
 3. Computer generated studies shall include the information about the software: name of the developer and software package and version number.
 a. The study shall begin at the main service disconnect switch and extend down the system through all new buses:
 1) A balanced three-phase fault, bolted line-to-line fault and line-to-ground fault study shall be performed.
 b. A one-line diagram shall be prepared to show the electrical system buses, transformers and all sources of fault current including generators and motors.
 c. Manufacturer's data for the actual proposed equipment shall be utilized (e.g., transformer impedance).
d. The available utility fault current shall be coordinated with the power utility company.

e. Input data shall include but is not limited to:
 1) Utility fault current or MVA and X/R ratio.
 2) Bus voltages.
 3) Conductor sizes and type of conduit.
 4) Generator and motor sizes and contributions.
 5) Transformer sizes and impedances.

f. Available fault current at each bus shall be shown in tabular form in the report and/or on the one-line diagram.

g. System protective coordination study report:
 1) The study shall begin at the main service disconnect switch and extend down the system through all buses as required to ensure a coordinated power system.
 2) The study shall demonstrate that the maximum possible degree of selectivity has been obtained between devices specified for the protection of equipment and conductors from damage from overloads and fault conditions:
 a) Where necessary an appropriate compromise shall be made between system protection and service continuity.
 b) System protection and service continuity shall be considered to be of equal importance.

h. A one-line diagram shall be prepared to show the electrical system buses, transformers and protective devices.

i. Manufacturer's data for the actual proposed protective devices shall be utilized.

j. Summarize the coordination study, conclusions and recommendations

4. Adjustable Circuit Breakers:
 a. Set all circuit breaker adjustable taps as defined in the coordination study, except motor circuit protectors shall be adjusted per the motor nameplate and NFPA 70 requirements.

5. Ground Fault Protection System:
 a. Dual source system:
 1) Main-Tie-Main breaker system using the residual sensing method coordinated with individual feeder breakers using the residual sensing method.
 2) The main, tie and feeder breakers shall be coordinated via time delays, so that, feeder breakers will clear downstream ground faults before the Main-Tie-Main system.

3.05 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as indicated by coordination study

END OF SECTION
SECTION 26 2726 - WIRING DEVICES

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Weather-resistant receptacles.
 3. Snap switches and wall-box dimmers.
 4. Solid-state fan speed controls.
 5. Wall-switch and exterior occupancy sensors.
 6. Communications outlets.

1.02 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1.03 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.04 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 1. Cooper Wiring Devices; Division of Cooper Industries, Inc. (Cooper).
 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).

B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.02 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.

2.03 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; 5351 (single), CR5362 (duplex).
 b. Hubbell; HBL5351 (single), HBL5352 (duplex).
 c. Leviton; 5891 (single), 5352 (duplex).
 d. Pass & Seymour; 5361 (single), 5362 (duplex).

2.04 GFCI RECEPTACLES

A. General Description:
 1. Straight blade, non-feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; VGF20.
 b. Hubbell; GFR5352L.
 c. Pass & Seymour; 2095.
 d. Leviton; 7590.

2.05 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Single Pole:
 1) Cooper; AH1221.
 2) Hubbell; HBL1221.
 3) Leviton; 1221-2.
 4) Pass & Seymour; CSB20AC1.
 b. Two Pole:
 1) Cooper; AH1222.
 2) Hubbell; HBL1222.
 3) Leviton; 1222-2.
 4) Pass & Seymour; CSB20AC2.
c. Three Way:

1) Cooper; AH1223.
2) Hubbell; HBL1223.
3) Leviton; 1223-2.
4) Pass & Seymour; CSB20AC3.

D. Four Way:

1) Cooper; AH1224.
2) Hubbell; HBL1224.
3) Leviton; 1224-2.
 Pass & Seymour; CSB20AC4.

C. Pilot-Light Switches, 20 A:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; AH1221PL for 120 and 277 V.
 b. Hubbell; HBL1201PL for 120 and 277 V.
 c. Leviton; 1221-LH1.
 Pass & Seymour; PS20AC1RPL for 120 V, PS20AC1RPL7 for 277 V.
 2. Description: Single pole, with lighted handle, illuminated when switch is "off."

D. Key-Operated Switches, 120/277 V, 20 A:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; AH1221L.
 b. Hubbell; HBL1221L.
 c. Leviton; 1221-2L.
 Pass & Seymour; PS20AC1-L.
 2. Description: Single pole, with factory-supplied key in lieu of switch handle.

2.06 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness. Dimmer shall match ballast low end capability as called out on the drawings.

2.07 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: **0.035-inch-thick, satin-finished, Type 302 stainless steel.**
4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

B. Wet-Location, Weatherproof while in-use Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.08 FINISHES

A. Device Color:
1. Wiring Devices Connected to Normal Power System: Grey or As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.

B. Wall Plate Color: 0.035-inch-thick, satin-finished, Type 302 stainless steel or as selected by Architect.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles down and on horizontally mounted receptacles to the left.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
 1. Install dimmers within terms of their listing.
 2. Verify that dimmers used for fan speed control are listed for that application.
 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

3.02 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles.

3.03 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.

3.04 IDENTIFICATION

A. Receptacles: Identify panelboard and circuit number from which the device is served. Use hot, stamped or engraved machine printing with black-filled 1/8” lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.05 WEATHER STRIPPING

A. Behind exterior wall devices
 1. Install a precut foam insulation pad over the fixture and reinstall the cover.

END OF SECTION
SECTION 26 2813 - FUSES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Cartridge fuses rated 600-V ac and less for use in control circuits enclosed switches panelboards switchboards enclosed controllers and motor-control centers.
 2. Spare-fuse cabinets.

1.03 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
 5. Fuse sizes for elevator feeders and elevator disconnect switches.

1.04 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 1. Ambient temperature adjustment information.
 2. Current-limitation curves for fuses with current-limiting characteristics.
 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
1.05 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.06 QUALITY ASSURANCE
A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Comply with NEMA FU 1 for cartridge fuses.
D. Comply with NFPA 70.

1.07 PROJECT CONDITIONS
A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.08 COORDINATION
A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper Bussmann, Inc.
 2. Edison Fuse, Inc.
 3. Ferraz Shawmut, Inc.
 4. Littelfuse, Inc.

2.02 CARTRIDGE FUSES
A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

2.03 SPARE-FUSE CABINET
A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.
1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
2. Finish: Gray, baked enamel.
3. Identification: "SPARE FUSES" in 1-1/2-inch- high letters on exterior of door.
4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

B. Spares: Provide 10% spares for each fuse type, but not less that 3 of each type of fuse.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 FUSE APPLICATIONS

A. Cartridge Fuses:
 1. Service Entrance: Class L, time delay.
 2. Feeders and Branch Circuits: Class RK5, time delay.
 3. Control Circuits: Class CC, time delay.

3.03 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install spare-fuse cabinet(s). Verify exact location(s) with Owner’s maintenance representative prior to mounting.

3.04 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION
SECTION 262816 – ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Fusible switches.
 2. Non-fusible switches.
 3. Molded-case circuit breakers (MCCBs).
 4. Enclosures.

1.2 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.3 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.4 ACTION SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated.
B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.
1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
4. Lugs: Suitable for number, size, and conductor material.
5. Service-Rated Switches: Labeled for use as service equipment.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Lugs: Suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

E. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for switching fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable
pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.

5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.

6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.

7. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.

2.4 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.2 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION
SECTION 26 2913 – ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes the following enclosed controllers rated 600 V and less:

1.2 DEFINITIONS
A. CPT: Control power transformer.
B. MCCB: Molded-case circuit breaker.
C. MCP: Motor circuit protector.
D. N.C.: Normally closed.
E. N.O.: Normally open.
F. OCPD: Overcurrent protective device.

1.3 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Enclosed controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.4 ACTION SUBMITTALS
A. Product Data: For each type of enclosed controller.
B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
 1. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For enclosed controllers, accessories, and components, from manufacturer.
B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.
1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.

B. Motor-Starting Switches: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Siemens Energy & Automation, Inc.
 e. Square D; a brand of Schneider Electric.

2. Configuration: Non-Reversing

3. Surface mounting.

4. Pilot light.

C. Magnetic Controllers: Full-Voltage, across the line, electrically held.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
d. **Siemens Energy & Automation, Inc.**
e. **Square D; a brand of Schneider Electric.**

2. **Configuration:** Non-Reversing.

3. **Contactor Coils:** Pressure-encapsulated type.
 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.

4. **Power Contacts:** Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

5. **Control Circuits:** 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 a. Control voltage should be coordinated with the Temperature Controls Contractor.

6. **Solid-State Overload Relay:**
 a. Switch or dial selectable for motor running overload protection.
 b. Sensors in each phase.
 c. Class 10 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.

7. **External overload reset push button.**

D. **Combination Magnetic Controller:** Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. **Eaton Electrical Inc.; Cutler-Hammer Business Unit.**
 b. **General Electric Company; GE Consumer & Industrial - Electrical Distribution.**
 c. **Rockwell Automation, Inc.; Allen-Bradley brand.**
 d. **Siemens Energy & Automation, Inc.**
 e. **Square D; a brand of Schneider Electric.**

2. **Fusible Disconnecting Means:**
a. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate indicated fuses.

b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

3. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.

4. Non-fusible Disconnecting Means:
 a. NEMA KS 1, heavy-duty, horsepower-rated, non-fusible switch.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 c. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.

5. MCP Disconnecting Means:
 a. UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 c. Auxiliary contacts "a" and "b" arranged to activate with MCP handle.

6. MCCB Disconnecting Means:
 a. UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
 b. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 c. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 d. Auxiliary contacts "a" and "b" arranged to activate with MCCB handle.

2.2 ENCLOSURES

A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.
 1. Dry and Clean Indoor Locations: Type 1.
 2. Outdoor Locations: Type 3R.
2.3 ACCESSORIES

A. Push Buttons, Pilot Lights, and Selector Switches: NEMA ICS 5; heavy-duty type; factory installed in controller enclosure cover unless otherwise indicated.

B. Control Relays: Auxiliary and adjustable time-delay relays.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height, and with disconnect operating handles not higher than 79 inches (2006 mm) above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.

2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

4. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Floor-Mounted Controllers: Install enclosed controllers on 4-inch (100-mm) nominal-thickness concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."

C. Seismic Bracing: Comply with requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in each fusible-switch enclosed controller.
F. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."

G. Install heaters in thermal overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.

H. Comply with NECA 1.

3.2 IDENTIFICATION

A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

2. Label each enclosure with engraved nameplate.

3. Label each enclosure-mounted control and pilot device.

3.3 CONTROL WIRING INSTALLATION

A. Install wiring between enclosed controllers and remote devices and facility's Building Automation System BAS. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic-control selection devices where applicable.

1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.

2. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.

2. Test continuity of each circuit.

C. Tests and Inspections:
1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.

2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.

3. Test continuity of each circuit.

4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Construction Manager before starting the motor(s).

5. Test each motor for proper phase rotation.

7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Enclosed controllers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Set field-adjustable switches and overload-relay pickup and trip ranges.

B. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust to six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Construction Manager Owner before increasing settings.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

END OF SECTION
SECTION 26 4313 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.01 SUMMARY
A. Section includes field-mounted SPDs for low-voltage (120 to 600 V) power distribution and control equipment.

1.02 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for VPRs, Inominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.

1.03 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Sample Warranty: For manufacturer's special warranty.

1.04 CLOSEOUT SUBMITTALS
A. Maintenance data.

1.05 WARRANTY
A. Manufacturer's Warranty: Manufacturer agrees to replace or replace SPDs that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. ABB France.
 4. Emerson Electric Co.
 5. GE Zenith Controls.
 6. LEA International; Protection Technology Group.
 7. Leviton Manufacturing Co., Inc.
 8. PowerLogics, Inc.
 9. Schneider Electric Industries SAS.
 10. Siemens Industry, Inc.

2.02 GENERAL SPD REQUIREMENTS
A. SPD with Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.
C. Comply with UL 1449.
D. MCOV of the SPD shall be at least 125 percent of the nominal system voltage.

2.03 PANEL SUPPRESSORS

A. SPDs: Comply with UL 1449, Type 1.
 1. Include LED indicator lights for power and protection status.
 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
B. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 200 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
C. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 1. Line to Neutral: 700 V for 208Y/120 V.
 2. Line to Ground: 700 V for 208Y/120 V.
 3. Neutral to Ground: 700 V for 208Y/120 V.
 4. Line to Line: 1200 V for 208Y/120 V.
D. Protection modes and UL 1449 VPR for 240/120-V, single-phase, three-wire circuits shall not exceed the following:
 1. Line to Neutral: 700 V.
 2. Line to Ground: 700 V.
 3. Neutral to Ground: 700 V.
 4. Line to Line: 1200 V.
E. SCCR: Equal or exceed 200 kA.
F. Nominal Rating: 20 kA.

2.04 ENCLOSURES

A. Indoor Enclosures: NEMA 250, Type 1.
B. Outdoor Enclosures: NEMA 250, Type 3R.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Comply with NECA 1.
B. Install an OCPD or disconnect as required to comply with the UL listing of the SPD.
C. Install SPIDs with conductors between suppressor and points of attachment as short and straight as possible, and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
D. Use crimped connectors and splices only. Wire nuts are unacceptable.
E. Complete startup checks according to manufacturer's written instructions. Energize SPDs after power system has been energized, stabilized, and tested.

3.02 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative.
 1. Compare equipment nameplate data for compliance with Drawings and Specifications.
2. Inspect anchorage, alignment, grounding, and clearances.
3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. An SPD will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.03 DEMONSTRATION
A. Train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
 2. Section 260926 "Lighting Control Panelboards" for panelboards used for lighting control.
 3. Section 260933 "Central Dimming Controls" or Section 260936 "Modular Dimming Controls" for architectural dimming systems and for fluorescent dimming controls with dimming ballasts specified in interior lighting Sections.
 4. Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 PRIOR APPROVAL

A. Prior approvals are required as noted on the Luminaire Schedule.
 1. All material supplied to the project must meet or exceed the quality, performance, and have similar features to the product originally specified. It is the contractor’s responsibility to ensure that substituted equipment
matches the exterior dimensions, weight, and configuration of the specified equipment.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 1. Physical description of lighting fixture including dimensions.
 2. Emergency lighting units including battery and charger.
 3. Ballast, or Driver.
 5. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
 a. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Installation instructions.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Plastic Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 3. Ballasts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NFPA 70.

1.8 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

B. Fire rated assemblies: Fixtures installed in fire rated assemblies shall maintain the fire rating of said assembly. Contractor is required to coordinate with Architectural draws to verify assembly ratings.

C. Insulated ceiling space: Fixtures installed in an insulated ceiling be IC rated or manufacturer recommended clearances between fixture and insulation. Contractor is required to coordinate with Architectural draws to verify insulated areas above ceilings.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

D. Recessed Fixtures: Comply with NEMA LE 4.

E. CRI of minimum 80. CCT of 3000 K.

F. Rated lamp life of 50,000 hours.

G. Lamps dimmable from 100 percent to 0 percent of maximum light output.

H. Internal driver.

I. Nominal Operating Voltage: 120v and 277 V ac.

1. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

J. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear or painted finish.

2.3 CYLINDER

A. Minimum 1000 lumens. Minimum allowable efficacy of 80 lumens per watt.

B. With integral mounting provisions.

2.4 RECESSED TROFFER

A. Minimum 1,500 lumens. Minimum allowable efficacy of 85 lumens per watt.

B. Integral junction box with conduit fittings.

2.5 STRIP LIGHT

A. Minimum 750 lumens. Minimum allowable efficacy of 75 lumens per watt.

B. Integral junction box with conduit fittings.

2.6 SURFACE MOUNT, LINEAR

A. Minimum 750 lumens. Minimum allowable efficacy of 75 lumens per watt.

B. Integral junction box with conduit fittings.

2.7 SURFACE MOUNT, NONLINEAR

A. Minimum 750 lumens. Minimum allowable efficacy of 75 lumens per watt.

B. Integral junction box with conduit fittings.
2.8 SUSPENDED, LINEAR
 A. Minimum 1,500 lumens. Minimum allowable efficacy of 85 lumens per watt.

2.9 SUSPENDED, NONLINEAR
 A. Minimum 1,500 lumens. Minimum allowable efficacy of 85 lumens per watt.
 B. Integral junction box with conduit fittings.

2.10 EXIT SIGNS
 A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
 B. Internally Lighted Signs:
 1. Lamps for AC Operation: Fluorescent, two for each fixture, 20,000 hours of rated lamp life.
 2. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.
 3. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 f. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciacted by an integral audible alarm and a flashing red LED.

2.11 MATERIALS
 A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.
 B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
C. Diffusers, and Globes:
 1. Acrylic: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear or painted finish.

2.12 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.13 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).

D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports: Sized and rated for luminaire weight.

E. Flush-Mounted Luminaire Support: Secured to outlet box.
F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls, attached to a minimum 20 gauge backing plate attached to wall structural members, attached using through bolts and backing plates on either side of wall.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 120 inches (6 m) in length.
 2. Ceiling mount with pendant mount with 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to [120 inches (6 m) in length.
 3. Ceiling mount with hook mount.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod wire support for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire using approved fasteners in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

K. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.2 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
3.3 **INSULATED CEILING SPACES**

A. Provide IC rated fixture assemblies or manufacturer recommended clearances between fixture and insulation.

3.4 **FIRE RATED ASSEMBLIES**

A. Provide fire rated fixture assemblies or a third party fire rated cover.
 1. Fire rated covers
 a. Provide manufacturer recommended clearances for all non IC rated fixtures.

3.5 **FIELD QUALITY CONTROL**

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION
SECTION 270528 – PATHWAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal conduits and fittings.
 2. Nonmetallic conduits and fittings.
 3. Optical-fiber-cable pathways and fittings.
 4. Surface pathways.
 5. Boxes, enclosures, and cabinets.

B. Related Requirements:
 1. Section 260533 "Raceways and Boxes for Electrical Systems" for conduits, wireways, surface raceways, boxes, enclosures, cabinets, handholes, and faceplate adapters serving electrical systems.

1.2 ACTION SUBMITTALS

A. Product Data: For surface pathways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings: For custom enclosures and cabinets.

1.3 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For pathway racks, enclosures, cabinets, equipment racks and their mounting provisions, including those for internal components, from manufacturer.
PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. General Requirements for Metal Conduits and Fittings:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. EMT: Comply with ANSI C80.3 and UL 797.

E. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Setscrew.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.

F. Joint Compound for GRC or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. General Requirements for Nonmetallic Conduits and Fittings:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

B. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

C. Continuous HDPE: Comply with UL 651B.

D. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
E. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

A. Description: Comply with UL 2024; flexible-type pathway, approved for general-use installation unless otherwise indicated.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

2.4 SURFACE PATHWAYS

A. General Requirements for Surface Pathways:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

B. Surface Metal Pathways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish.

C. Surface Nonmetallic Pathways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL-94 V-0 requirements for self-extinguishing characteristics.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets:
 1. Comply with TIA-569-B.
 2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, with gasketed cover.

D. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

E. Metal Floor Boxes:
1. Material: Cast metal.
2. Type: Fully adjustable.
3. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
H. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep).
I. Gangable boxes are prohibited.
J. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
K. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Nonmetallic Enclosures: Plastic or fiberglass.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
L. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer’s standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Outdoors: Apply pathway products as specified below unless otherwise indicated:
1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: GRC
3. Underground Conduit: RNC, type EPC-40-PVC.
4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply pathway products as specified below unless otherwise indicated:
1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Damp or Wet Locations: GRC.
6. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type.
7. Pathways for Optical-Fiber or Communications-Cable Risers in Vertical Shafts: EMT.
8. Pathways for Concealed General-Purpose Distribution of Optical-Fiber or Communications Cable: General-use, optical-fiber-cable pathway.
9. Boxes and Enclosures: NEMA 250 Type 1, except use NEMA 250 Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Pathway Size: 1-inch (21-mm) trade size. Minimum size for optical-fiber cables is 1 inch (27 mm).

D. Pathway Fittings: Compatible with pathways and suitable for use and location.
1. Rigid Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. EMT: Use setscrew fittings. Comply with NEMA FB 2.10.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface pathways only where indicated on Drawings.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C).

3.2 INSTALLATION

A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with
NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

B. Keep pathways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

C. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

D. Arrange stub-ups so curved portions of bends are not visible above finished slab.

E. Install no longer than 100’ with no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches (300 mm) of changes in direction. Utilize long radius ells for all optical-fiber cables. Conduit shall not exceed 40% fill ratio.

F. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

G. Pathways Embedded in Slabs:
 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure pathways to reinforcement at maximum 10-foot (3-m) intervals.
 2. Arrange pathways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange pathways to keep a minimum of 1 inch of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.

H. Stub-ups to Above Recessed Ceilings:
 1. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

I. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.

J. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

K. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

L. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
M. Spare Pathways: Install pull wires in empty pathways. Cap underground pathways designated as spare above grade alongside pathways in use.

N. Surface Pathways:
1. Install surface pathway for surface telecommunications outlet boxes only where indicated on Drawings.

O. Pathways for Optical-Fiber and Communications Cable: Install pathways as follows:
1. 1-Inch Trade Size and Larger: Install pathways in maximum lengths of 100 feet.
2. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements.

P. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound.

Q. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service pathway enters a building or structure.
3. Where otherwise required by NFPA 70.

R. Expansion-Joint Fittings:
1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: [125 deg F (70 deg C)] temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: [155 deg F (86 deg C)] temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: [125 deg F (70 deg C)] temperature change.
 d. Attics: [135 deg F (75 deg C)] temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

S. Mount boxes at heights indicated on Drawings in accordance with ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

T. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.

2. Install backfill as specified in Section 312000 "Earth Moving."

3. After installing conduit, backfill and compact. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."

4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.

 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete for a minimum of 12 inches (300 mm) on each side of the coupling.

 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

5. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."
3.4 INSTALLATION OF UNDERGROUND HANOHOLEs AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.

C. Install handholes with bottom below frost line below grade.

D. Field cut openings for conduits according to enclosure manufacturer’s written instructions.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage or deterioration.

END OF SECTION
SECTION 271100 – COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Backboards.
 2. Grounding.

B. Related Requirements:
 1. Section 270528 "Pathways for Communications Systems" for rough-in.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
 3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer qualified layout technician, installation supervisor, and field inspector.

B. Seismic Qualification Certificates: For equipment frames from manufacturer.

C. Contractor Qualification: Division 27 Sub-contractor shall be a certified TE Connectivity Network Design & Installation Contractor and will be required to provide a TE 25-year performance warranty on parts and labor for the copper cabling system. Proof of the Sub-contractor's ability to provide such a warranty shall be submitted to the GC at the time of bidding.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.

3. Field Inspector: Currently registered by BICSI as RCDD to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 48 inches (19 by 1220 by 1220 mm). Comply with requirements for plywood backing panels specified in Section 061000 "Rough Carpentry."

2.2 GROUNDING

A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.

B. Telecommunications Ground Bus Bar:

1. Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2. Ground Bus Bar: Copper, minimum 1/4 inch thick by 4 inches wide (6 mm thick by 100 mm wide) with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart.

3. Stand-Off Insulators: Comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

C. Comply with J-STD-607-A.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Contact MSU IT and coordinate exact requirements prior to bid.

B. Comply with requirements in Section 270528 "Pathways for Communications Systems" for materials and installation requirements for underground pathways.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Comply with BICSI TDMM for layout and installation of communications equipment rooms.

C. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer’s limitations on bending radii. Install lacing bars and distribution spools.
D. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier.

1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.

2. Record agreements reached in meetings and distribute them to other participants.

3. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.

4. Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.

E. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.4 FIRESTOPPING

A. Comply with requirements in Section 078413 "Penetration Firestopping."

B. Comply with TIA-569-B, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with J-STD-607-A.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

1. Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.
3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

B. Comply with requirements in Division 09 Section "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for [Class 2] level of administration.

D. Labels shall be preprinted or computer-printed type.

END OF SECTION 271100
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. Multiuser telecommunications outlet assemblies.
 3. Cable connecting hardware, patch panels, and cross-connects.
 4. Telecommunications outlet/connectors.
 5. Cabling system identification products.

B. Related Requirements:
 1. Section 271300 "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
 2. Section 270528 "Pathways for Communications Systems" for voice and data cabling pathways.

1.2 ADMINISTRATIVE REQUIREMENTS

A. Coordinate layout and installation of telecommunications cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

C. A 24 hour notice to MSU ITC is required prior to accessing existing MSU telecommunications rooms.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:
 1. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 2. Wiring diagrams to show typical wiring schematics, including the following:
 b. Patch panels.
 c. Patch cords.
 3. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
B. Source quality-control reports.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance data.

1.6 QUALITY ASSURANCE
A. Installer Qualifications: Cabling Installer must have personnel certified by TE-ND&I on staff.
 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings by an RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of [Registered Technician], who shall be present at all times when Work of this Section is performed at Project site.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Test cables upon receipt at Project site. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.1 HORIZONTAL CABLING DESCRIPTION
A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.
 1. TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
 3. Bridged taps and splices shall not be installed in the horizontal cabling.

2.2 PERFORMANCE REQUIREMENTS
A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1 when tested according to test procedures of this standard.
B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 48 inches (19 by 1220 by 1220 mm). Comply with requirements in Section 061000 "Rough Carpentry" for plywood backing panels.

2.4 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Tyco Electronics Corporation; AMP Products.
 a. TE Non-plenum Category 6 cable – gray: TE620R-GYRB
 b. TE Plenum Category 6 cable – gray: TE620P-GYRB

B. Description: 100-ohm, four-pair UTP, formed into 25-pair, binder groups covered with a gray thermoplastic jacket.

1. Comply with ICEA S-90-661 for mechanical properties.
2. Comply with TIA/EIA-568-B.1 for performance specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, General Purpose: Type CM or CMG; or MPP, CMP, MPR, CMR, MP, or MPG.
 b. Communications, Plenum Rated: Type CMP or MPP, complying with NFPA 262.
 c. Communications, Riser Rated: Type CMR; or MPP, CMP, or MPR, complying with UL 1666.
 d. Communications, Limited Purpose: Type CMX; or MPP, CMP, MPR, CMR, MP, MPG, CM, or CMG.
 e. Multipurpose: Type MP or MPG; or MPP or MPR.
f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.

g. Multipurpose, Riser Rated: Type MPR or MPP, complying with UL 1666.

2.5 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Tyco Electronics Corporation; AMP Products.

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Connecting Blocks: 110-style IDC for Category 5e Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.

1. Number of Terminals per Field: One for each conductor in assigned cables.

E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.

1. Number of Jacks per Field: One for each four-pair UTP cable indicated
2. Part Number: TE High Density 48 Port Patch Panel Kit: 1375015-2
3. Part Number: TE High Density 24 Port Patch Panel Kit: 1375014-2
4. Telephone Patch Panel: TE 48 Port: 557411-1

F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

1. Part Number: TE Category 6 Modular Insert: 1375055-1
2. Part Number: TE SL Series Blank Insert: 1116412-1

G. Patch Cords: Patch cables should be 14 feet or shorter at the workstation outlet location (the preferred length is 10 feet). A 3' to 14' patch cable shall be used in the telecommunications room from the AMP patch panel to the network switches (the preferred length is one that is just the right length from the network switches to the patch panel port after dressing in wire managers). Part Numbers are as follows:

1. TE Category 6 Patch Cord – Bootless – 1 foot – black: TCPC-6RUVB-BK-01F
2. TE Category 6 Patch Cord – Bootless – 3 feet – black: TCPC-6RUVB-BK-03F
3. TE Category 6 Patch Cord – Bootless – 5 feet – black: TCPC-6RUVB-BK-05F
4. TE Category 6 Patch Cord – Bootless – 7 feet – black: TCPC-6RUVB-BK-07F
5. TE Category 6 Patch Cord – Bootless – 10 feet – black: TCPC-6RUVB-BK-10F
6. TE Category 6 Patch Cord – Bootless – 14 feet – black: TCPC-6RUVB-BK-14F

2.6 CONSOLIDATION POINTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Tyco Electronics Corporation; AMP Products.

B. Description: Consolidation points shall comply with requirements for cable connecting hardware.
 1. Number of Terminals per Field: One for each conductor in assigned cables.
 2. Number of Connectors per Field:
 a. [One] for each four-pair UTP cable indicated.
 b. [One] for each four-pair conductor group of indicated cables, plus [25] percent spare positions.
 3. Mounting: [Recessed in ceiling].
 4. NRTL listed as complying with UL 50 and UL 1863.
 5. When installed in plenums used for environmental air, NRTL listed as complying with UL 2043.

2.7 MULTIUSER TELECOMMUNICATIONS OUTLET ASSEMBLY (MUTOA)

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Tyco Electronics Corporation; AMP Products.

B. Description: MUTOAs shall meet the requirements for cable connecting hardware.
 1. Number of Terminals per Field: [One] for each conductor in assigned cables.
2. Number of Connectors per Field:
 a. [One] for each four-pair UTP cable indicated.
 b. [One] for each four-pair conductor group of indicated cables, plus [25] percent spare positions.

3. Mounting: [Recessed in ceiling].

4. NRTL listed as complying with UL 50 and UL 1863.

5. Label shall include maximum length of work area cords, based on TIA/EIA-568-B.1.

6. When installed in plenums used for environmental air, NRTL listed as complying with UL 2043.

2.8 TELECOMMUNICATIONS OUTLET/CONNECTORS

B. Workstation Outlets: Two-port-connector assemblies mounted in single faceplate.
 1. TE Single Gang 4 port Faceplate: 558088-1
 a. Coordinate color with Section 262726 "Wiring Devices."
 2. TE Double Gang 4 port Faceplate: 83935-1
 a. Coordinate color with Section 262726 "Wiring Devices."
 3. For use with snap-in jacks accommodating any combination of UTP work area cords.
 a. Flush mounting jacks, positioning the cord at a 45-degree angle.
 4. Legend: Machine printed, in the field, using adhesive-tape label.

C. Testing: As-built drawings and test results are required on each link with an OTDR in accordance with ND&I requirements.

2.9 GROUNDING

A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.

B. Comply with J-STD-607-A.

2.10 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
B. Comply with requirements in Section 260553 "Identification for Electrical Systems."

2.11 SOURCE QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to evaluate cables.
B. Factory test UTP cables on reels according to TIA/EIA-568-B.1.
C. Factory test UTP cables according to TIA/EIA-568-B.2.
D. Cable will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES
A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS
A. Install cables in pathways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal pathways and cables except in unfinished spaces.
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements in Section 270528 "Pathways for Communications Systems."
B. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
C. Wiring within Enclosures:
 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
 2. Install lacing bars and distribution spools.
 3. Install conductors parallel with or at right angles to sides and back of enclosure.

3.3 INSTALLATION OF CABLES
A. Comply with NECA 1.
B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
3. Install 110-style IDC termination hardware unless otherwise indicated.

4. MUTOA shall not be used as a cross-connect point.

5. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 b. Locate consolidation points for UTP at least 49 feet (15 m) from communications equipment room.

6. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.

7. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.

8. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.

9. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.

10. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.

12. In the communications equipment room, install a 10-foot long service loop on each end of the main telephone cable and main fiber feed. Install a 24-inch slack loop for all Category 6 cables in the room.

13. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
 3. No run shall be over 250-feet from the patch panel to the jack location.

D. Open-Cable Installation:
1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.

2. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1524 mm) apart.

3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

E. Installation of Cable Routed Exposed under Raised Floors:

1. Install plenum-rated cable only.

2. Install cabling after the flooring system has been installed in raised floor areas.

3. Coil cable 6 feet long not less than 12 inches in diameter below each feed point.

F. Group connecting hardware for cables into separate logical fields.

G. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA-569-B for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.

2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).

3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).

5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).

6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.4 **FIRESTOPPING**

A. Comply with requirements in Section 078413 "Penetration Firestopping."

B. Comply with TIA-569-B, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 **GROUNDING**

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with J-STD-607-A.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.6 **IDENTIFICATION**

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 1. Administration Class: [1].
 2. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.

B. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 1 level of administration, including optional identification requirements of this standard.

D. Each outlet and patch panel pair of ports shall be clearly labeled in both the telecommunications room and the workstation location with the workstation room number. If there are multiple jacks in a room, the numbering shall include a hyphen suffix designation, such as 232-1, 232-2, and will begin at the closest jack to the left of the main doorway (standing in the doorway, looking in), and proceed clockwise around the room. Single jacks in a room shall be labeled with just the room number and will not have a hyphen suffix designation (e.g., 233, 234). If there are jacks located in the center of the room, after going around the exterior of the room, go up the middle from the main doorway. The label at the outlet will be placed on either the top of the faceplate (if difficult to see the front of the faceplate), or on the top label indentation on the front of the faceplate. Four-plex or greater density jack plates will be labeled as two (or more) jacks rather than one, such as 101-1, 101-2. Each jack consists of 2 cables.

E. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

F. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606-A. Furnish electronic record of all drawings, in software and format selected by Owner.

G. Cable and Wire Identification:

1. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.

2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.

3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).

4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

6. Uniquely identify and label work area cables extending from the MUTOA to the work area. These cables may not exceed the length stated on the MUTOA label.

H. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.

1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connector, and patch panels.

3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

5. UTP Performance Tests:

 a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:

 1) Wire map.
 2) Length (physical vs. electrical, and length requirements).
 3) Insertion loss.
4) Near-end crosstalk (NEXT) loss.
5) Power sum near-end crosstalk (PSNEXT) loss.
6) Equal-level far-end crosstalk (ELFEXT).
7) Power sum equal-level far-end crosstalk (PSELFEXT).
8) Return loss.
9) Propagation delay.
10) Delay skew.
11) OTDR test.

6. Final Verification Tests: Perform verification tests for UTP systems after the complete communications cabling and workstation outlet/connectors are installed.
 a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.
 b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.

B. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

C. End-to-end cabling will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.8 DEMONSTRATION
A. Train Owner's maintenance personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and keeping records of cabling assignments and revisions when extending wiring to establish new workstation outlets.

END OF SECTION
SECTION 28 3111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Fire-alarm control unit.
 3. System smoke detectors.
 4. Nonsystem smoke detectors.
 5. Heat detectors.
 7. Firefighters' two-way telephone communication service.
 10. Addressable interface device.
 11. Digital alarm communicator transmitter.

1.03 DEFINITIONS

A. LED: Light-emitting diode.

1.04 SYSTEM DESCRIPTION

A. Noncoded, UL-certified addressable system, with multiplexed signal transmission, dedicated to fire-alarm service only.

B. Noncoded addressable system, with automatic sensitivity control of certain smoke detectors and multiplexed signal transmission, dedicated to fire-alarm service only.

1.05 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.06 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
 2. Include voltage drop calculations for notification appliance circuits.
 3. Include battery-size calculations.
 4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 5. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.
 6. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
 7. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.
 8. Provide transient protection per NFPA 72 4.4.4.3

C. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified fire-alarm technician, Level IV minimum.
 c. Licensed or certified by authorities having jurisdiction.

D. Delegated-Design Submittal: For smoke and heat detectors indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Drawings showing the location of each smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the detector.
 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72.

1.07 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Field quality-control reports.

1.08 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," deliver copies to authorities having jurisdiction and include the following:
1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
3. Record copy of site-specific software.
4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.
5. Manufacturer's required maintenance related to system warranty requirements.
6. Abbreviated operating instructions for mounting at fire-alarm control unit.

B. Software and Firmware Operational Documentation:
1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.09 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
4. Detector Bases: Quantity equal to 2 percent of amount of each type installed, but no fewer than 1 unit of each type.
5. Keys and Tools: One extra set for access to locked and tamperproofed components.
6. Audible and Visual Notification Appliances: One of each type installed.
7. Fuses: Two of each type installed in the system.

1.10 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.

C. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL.

F. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

G. NFPA Certification: Obtain certification according to NFPA 72 in the form of a placard by an FMG-approved alarm company.

H. NFPA Certification: Obtain certification according to NFPA 72 by.

1.11 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with Substantial Completion, provide software support for two years.

C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
1. Provide 30 days’ notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. SimplexGrinnell LP; a Tyco International company.
2. EST Edwards System Technology

2.02 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.
5. Verified automatic alarm operation of smoke detectors.
6. Automatic sprinkler system water flow.
7. Heat detectors in elevator shaft and pit.
8. Fire-extinguishing system operation.
9. Fire standpipe system.

B. Fire-alarm signal shall initiate the following actions:
1. Continuously operate alarm notification appliances.
2. Identify alarm at fire-alarm control unit and remote annunciators.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Release fire and smoke doors held open by magnetic door holders.
5. Activate voice/alarm communication system.
6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
7. Activate stairwell and elevator-shaft pressurization systems.
8. Close smoke dampers in air ducts of designated air-conditioning duct systems.
9. Recall elevators to primary or alternate recall floors.
10. Activate emergency lighting control.
11. Activate emergency shutoffs for gas and fuel supplies.
12. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:
1. Valve supervisory switch.
2. Low-air-pressure switch of a dry-pipe sprinkler system.
3. Elevator shunt-trip supervision.

D. System trouble signal initiation shall be by one or more of the following devices and actions:
1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of primary power at fire-alarm control unit.
4. Ground or a single break in fire-alarm control unit internal circuits.
5. Abnormal ac voltage at fire-alarm control unit.
7. Failure of battery charging.
8. Abnormal position of any switch at fire-alarm control unit or annunciator.
9. Low-air-pressure switch operation on a dry-pipe or preaction sprinkler system.

E. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunci ate at fire-alarm control unit and remote annunciators. Record the event on system printer.

2.03 FIRE-ALARM CONTROL UNIT

A. General Requirements for Fire-Alarm Control Unit:
1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.
a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.
b. Include a real-time clock for time annotation of events on the event recorder and printer.

2. Addressable initiation devices that communicate device identity and status.
 a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.
 b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.

3. Addressable control circuits for operation of mechanical equipment.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 1. Annunciator and Display: Liquid-crystal type, 3 line(s) of 80 characters, minimum.
 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

C. Circuits:
 1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class B.
 a. Initiating Device Circuits: Style B.
 b. Notification Appliance Circuits: Style Y.
 2. Install no more than 50 addressable devices on each signaling line circuit.

D. Elevator Recall:
 1. Smoke detectors at the following locations shall initiate automatic elevator recall.
 a. Elevator lobby detectors except the lobby detector on the designated floor.
 b. Smoke detector in elevator machine room.
 c. Smoke or Heat detectors in elevator hoistway.
 2. Elevator lobby detectors located on the designated recall floors shall be programmed to move the cars to the alternate recall floor.
 3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.

E. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke barrier walls shall be connected to fire-alarm system.

F. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups.
Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.

G. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

H. Voice/Alarm Signaling Service: Central emergency communication system with redundant microphones, preamplifiers, amplifiers, and tone generators provided as a special module that is part of fire-alarm control unit.
 1. Indicated number of alarm channels for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone. Amplifiers shall comply with UL 1711 and be listed by an NRTL.
 a. Allow the application of and evacuation signal to indicated number of zones and, at same time, allow voice paging to the other zones selectively or in any combination.
 b. Programmable tone and message sequence selection.
 c. Standard digitally recorded messages for "Evacuation" and "All Clear."
 d. Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notification appliance circuits of fire-alarm control unit.
 2. Status Annunciator: Indicate the status of various voice/alarm speaker zones and the status of firefighters' two-way telephone communication zones.
 3. Preamplifiers, amplifiers, and tone generators shall automatically transfer to backup units, on primary equipment failure.

I. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals supervisory and digital alarm communicator transmitters and digital alarm radio transmitters shall be powered by 24-V dc source.
 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

J. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

K. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.04 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key- or wrench-operated switch.

2.05 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:
1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be two-wire type.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
5. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.
6. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit for 15 or 20 deg F per minute.
 b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F.
 c. Provide multiple levels of detection sensitivity for each sensor.

B. Photoelectric Smoke Detectors:
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
2.06 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 1. Mounting: Adapter plate for outlet box mounting.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 1. Mounting: Adapter plate for outlet box mounting.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

D. Continuous Linear Heat-Detector System:
 1. Detector Cable: Rated detection temperature 155 deg F. NRTL listed for "regular" service and a standard environment. Cable includes two steel actuator wires twisted together with spring pressure, wrapped with protective tape, and finished with PVC outer sheath. Each actuator wire is insulated with heat-sensitive material that reacts with heat to allow the cable twist pressure to short-circuit wires at the location of elevated temperature.
 2. Control Unit: Two-zone or multizone unit as indicated. Provide same system power supply, supervision, and alarm features as specified for fire-alarm control unit.
 3. Signals to Fire-Alarm Control Unit: Any type of local system trouble shall be reported to fire-alarm control unit as a composite "trouble" signal. Alarms on each detection zone shall be individually reported to central fire-alarm control unit as separately identified zones.
 4. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.07 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling line circuit, equipped for mounting as indicated and with screw terminals for system connections.

B. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.

C. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.

D. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.
E. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

F. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
 1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 2. Mounting: Wall mounted unless otherwise indicated.
 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 4. Flashing shall be in a temporal pattern, synchronized with other units.
 5. Strobe Leads: Factory connected to screw terminals.

G. Voice/Tone Notification Appliances:
 1. Combination voice/evacuation and notification devices are preferred.
 2. Appliances shall comply with UL 1480 and shall be listed and labeled by an NRTL.
 3. High-Range Units: Rated 2 to 15 W.
 4. Low-Range Units: Rated 1 to 2 W.
 6. Matching Transformers: Tap range matched to acoustical environment of speaker location.

2.08 VOICE EVACUATION

A. Voice evacuation shall be included everywhere and shall comply with the guidelines of IEC 60849-1998 to achieve an intelligibility value equivalent to a Common Intelligibility Scale (CIS) of 0.70 or greater. Drawings show general layout and spacing, however it is the contractor's responsibility to provide a layout that meets all applicable codes and requirements listed.

B. All speaker circuits shall be field selectable for 25 or 70 Vrms operation and shall be power limited.

C. The voice evacuation system shall be microprocessor based, and shall contain an integral microphone, 25 Watt audio amplifier, tone generator, digital message repeater, 120 VAC power supply, and battery charger.

D. The voice evacuation message/signal shall be broadcast until the Fire Alarm Control Panel (FACP) is reset, or until fire emergency personnel interrupt the broadcast with a manual page. On reset system shall automatically return to standby (normal operating) condition.

E. A secondary message shall be provided that can be triggered by the closure of a contact from either the FACP or from any normally open contact device.
F. Remote paging microphone(s) will be supported by the system through a supervised circuit. Remote microphone(s) may be mounted up to 5,000 ft. (1,524 m) away from the voice evacuation panel.

2.09 MAGNETIC DOOR HOLDERS

A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
 1. Electromagnet: Requires no more than 3 W to develop 25-lbf holding force.
 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
 3. Rating: 24-V ac or dc.
 4. Rating: 120-V ac.

B. Material and Finish: Match door hardware.

2.10 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.11 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.

B. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall.

2.12 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture one telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.
C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 1. Verification that both telephone lines are available.
 2. Programming device.
 3. LED display.
 5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:
 1. Address of the alarm-initiating device.
 2. Address of the supervisory signal.
 3. Address of the trouble-initiating device.
 4. Loss of ac supply or loss of power.
 5. Low battery.
 6. Abnormal test signal.
 7. Communication bus failure.

E. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

PART 3 - EXECUTION

3.01 EQUIPMENT INSTALLATION

A. Comply with NFPA 72 for installation of fire-alarm equipment.

B. Install wall-mounted equipment, with tops of cabinets not more than 72 inches above the finished floor.
 1. Comply with requirements for seismic-restraint devices specified in Section 26 0548 "Vibration and Seismic Controls for Electrical Systems."

C. Smoke- or Heat-Detector Spacing:
 3. Smooth ceiling spacing shall not exceed 30 feet.
 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Appendix A in NFPA 72.
 5. HVAC: Locate detectors not closer than 3 feet from air-supply diffuser or return-air opening.
 6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture.

D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.

E. Heat Detectors in Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location.
F. Single-Station Smoke Detectors: When more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.

G. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.

H. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.

I. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling.

J. Device Location-Indicating Lights: Locate in public space near the device they monitor.

K. Fire-Alarm Control Unit: Surface mounted, with tops of cabinets not more than 72 inches above the finished floor.

L. Annunciator: Install with top of panel not more than 72 inches above the finished floor.

3.02 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 08 7100 "Door Hardware." Connect hardware and devices to fire-alarm system.
 1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 1. Alarm-initiating connection to smoke-control system (smoke management) at firefighter smoke-control system panel.
 2. Alarm-initiating connection to stairwell and elevator-shaft pressurization systems.
 3. Smoke dampers in air ducts of designated air-conditioning duct systems.
 4. Alarm-initiating connection to elevator recall system and components.
 5. Alarm-initiating connection to activate emergency lighting control.
 6. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
 7. Supervisory connections at valve supervisory switches.
 8. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
 10. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.
 11. Supervisory connections at fire-pump engine control panel.
3.03 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.04 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.05 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction and a MSU representative.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
 b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
E. Reacception Testing: Perform reacception testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.06 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION