Research Paper

The Potential for Lithoautotrophic Life on Mars: Application to Shallow Interfacial Water Environments

STEVEN M. JEPSEN,1 JOHN C. PRISCU,1 ROBERT E. GRIMM,2 and MARK A. BULLOCK2

ABSTRACT

We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe2+/H+ as a primary metabolic electron donor and NO3− or gaseous O2 as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe2+ and metabolically required P, and typically amounted to ~800 pg of dry biomass/ml (~8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere—where oxygen can be accessed by microbes and microbes can be accessed by exploration—lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of ~0.1 mg of dry biomass/g of host material (~10⁹ cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that these organisms would spend long periods in maintenance or survival modes, with instantaneous biomass comparable to or less than that observed in extreme environments on Earth. Key Words: Mars—Life—Thin film—Interfacial water—Iron—Phosphorus—Nitrogen—Free energy. Astrobiology 7(2), 342–354.

1Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, Montana.
2Department of Space Studies, Southwest Research Institute, Boulder, Colorado.
INTRODUCTION

The microbial habitability of Mars is a focal point of astrobiological interest. Central to this issue are questions that address the location and mechanisms for water on Mars and what type of metabolic activity can be supported (e.g., Jakosky, 1998). Below a cryosphere that likely averages several kilometers or more in thickness (Clifford, 1993), aquifers could provide favorable habitats. Hydrothermal activity could thin the cryosphere and provide additional energy for the biosphere. The possibility of chemolithotrophs exploiting deep subsurface niches on Mars was considered by Boston et al. (1992). Yet habitable regions with liquid water at or near the surface are still important because of their accessibility to near-future exploration. Fluvial water is highly transient at best, and its presence has been controversial (e.g., Malin and Edgett, 2000; Christensen, 2003). Water ice, however, is abundant in the residual polar caps (e.g., Jakosky, 1985) and in the regolith poleward of ±50° latitude (Feldman et al., 2002). In subfreezing environments, small quantities of “unfrozen” water still persist as interfacial films that separate ice from silicates or other ice crystals. This interfacial water behaves like a liquid: it flows and acts as a solvent (hereafter, we use the term “water” to refer collectively to a liquid-like phase of H₂O). The intermolecular forces that form interfacial water result in adsorption, capillarity, frost heaving, and even freezer burn (for a review, see Davis, 2001). Water thicknesses are generally measured in monolayers (~0.3 nm each), with a smooth transition between the capillary regime (several monolayers or more near the melting temperature) and the adsorption regime (a few monolayers that persist to very low temperature). Nuclear magnetic resonance has confirmed that water thin films in terrestrial soils are mobile at temperatures well below 0°C (e.g., Anderson and Ice, 1973; Watanabe and Mizoguchi, 2002), with a mobile adsorbed fraction detected even down to liquid nitrogen temperature [−196°C (Pearson and Derbyshire, 1974)].

Earth’s cold deserts, frozen soils, and ice sheets can serve as model environments for possible life on Mars. Microbes in arctic permafrost have been found metabolizing at temperatures as low as −20°C, possibly exploiting thin films of unfrozen water for transport of ions and nutrients (Gilichinsky et al., 1993; Rivkina et al., 2000; Jakosky et al., 2003). Viable microbes have also been discovered in permanent lake- and deep subglacial-ice from below the Antarctic ice sheet (Priscu et al., 1998, 1999; Karl et al., 1999; Christner et al., 2006), possibly residing in the channels of water that separate ice crystals (Price, 2000; Tung et al., 2005, 2006). There is recent evidence that the psychrophile Colwellia 34H can incorporate the amino acid leucine at temperatures well below −80°C (Junge et al., 2006). Literature reviews (Harris, 1981; Beaty et al., 2006) indicate that life is possible in water films as thin as three monolayers.

Jakosky et al. (2003) examined some constraints on the habitability of ice in Mars’ polar regions where water ice is abundant. They contended that −20°C was a lower limit both to the presence of biologically useful interfacial water and to microbial metabolism. Jakosky et al. (2003) calculated that peak summertime polar temperatures can exceed −20°C at obliquities above 40°. Laskar et al. (2004) computed a mean Mars obliquity of ~38° over the last 4 billion years, so favorable high-obliquity states may be common. The habitability range of near-surface ice on Mars in terms of water activity and temperature may be extended beyond the limits imposed by Jakosky et al. (2003), because three or more monolayers of interfacial water may persist to temperatures many tens of degrees below freezing, depending on soil type and solute concentration (e.g., Wettlaufer, 1999) and there may not be a minimum temperature for metabolism (Price and Sowers, 2004).

Small quantities of hydrogen at low latitude (equivalent to ~5% (wt/wt) H₂O (Feldman et al., 2002)) could be due to hydrous minerals or adsorbed water. Möhlmann (2005) developed a concept for habitability based on the latter interpretation. He inferred that adsorbed water would reach its greatest thickness during the night and morning hours, during which time microbes may be able to incorporate water using proteins similar to aquaporins (de Groot and Grubmüller, 2001). Metabolism would be carried out during the warmer (approximately −20°C) midday. The temperature in low-latitude regions of Mars, however, frequently drops below the frost point (~75°C), freezing all but the first few monolayers of adsorbed water. In these regions sufficient relative humidity to exceed the two or three monolayers of water (~60–85% (see Möhlmann, 2005)) necessary to support microbes exists only
within 1–3°C of the frost point, which occurs for an average of ~20 min/sol distributed between the evening and early hours after sunrise. Although this is an order of magnitude shorter time than indicated by Möhlmann (2005), the possibility of microbes exploiting adsorbed water, at the very surface of the planet, is intriguing.

These findings share a common theme with relevance to the near surface of Mars: the ability of life to survive in extremely cold habitats limited to water in thin films. We explored these environments through a twofold investigation. Because there have been no clear signs of labile organics on Mars to support heterotrophic life (e.g., Biemann and Lavoie, 1979; Benner et al., 2000), we first developed a generalized numerical model to predict lithoautotrophic biosynthesis based on the availability of nutrients and energetically favorable primary/terminal electron donors/acceptors in a specified aqueous system. The model is based on general thermodynamic principles and can be applied to numerous potential environments and water chemistries on Mars or elsewhere. We focused the second part of our study on the habitability of near-surface interfacial water on Mars and developed general relationships among source-material (regolith) properties, metabolic rates, biomass, and longevity.

LITHOAUTOTROPHIC MODEL

Energy and nutrient availability

The first step in developing our model for lithoautotrophic metabolism was to assess the host major-element chemistry from which microbes will draw energy and nutrients. The data from Viking and Mars Global Surveyor (Thermal Emission Spectrometer) indicate an outermost martian crust that is dominated by pristine and altered volcanic rocks of andesitic to basaltic composition and enhanced generally in iron-rich clays, ferric oxides and oxyhydroxides, and sulfate crusts (Toulmin et al., 1977; Banin et al., 1992; Christensen et al., 2001; Zuber, 2001). Spectrometer data from the Mars Rover Spirit in the Gusev crater indicate a range in degrees of rock alteration, represented by varying \( \text{Fe}^{2+}/\text{total Fe} \) ratios, with rocks in the Columbia Hills appearing the most weathered and enriched in mobile elements, including P (Gellert et al., 2006; Ming et al., 2006; Morris et al., 2006). In the Meridiani Planum region, the Mars Rover Opportunity has revealed siliciclastic rocks that contain hematitic concretions, jarosite and sulfates, an observation that points to alteration processes in the presence of acidic groundwaters (Clark et al., 2005; Squyres and Knoll, 2005). Periods in martian history when these geochemical processes were active are poorly constrained and, as Clark et al. (2005) pointed out, may not have reached equilibrium yet. A model by Hurowitz et al. (2006) indicates that martian soil chemistries observed by Mars Exploration Rover, Pathfinder, and Viking are consistent with chemical alteration in the presence of low pH and water:rock volume ratios, an environment that could be provided by adsorbed thin films of water. Reflectance spectra indicate that the host mineralogy of martian surface units closely match that of basaltic shergottites (McSween, 1985; Hamilton et al., 1997). Bullock et al. (2004) reported results from laboratory experiments in which a mineral mix derived from the composition of basaltic shergottites was allowed to react with a simulated Mars atmosphere for 7 months. The major-element (Ca, Mg, Al, S, F, Cl) abundance patterns in the resulting sulfate-chloride solutions were similar to martian fines at the Pathfinder, Viking, and Mars Exploration Rover Spirit (Gusev crater) sites (Brückner et al., 2003; Gellert et al., 2006). Mars appears to be scarce in N, but not P, compounds (Toulmin et al., 1977; Clark, 1982; Brückner et al., 2003; Gellert et al., 2006), in contrast to the laboratory findings of Bullock et al. (2004). Despite this apparent discrepancy, which is discussed in more detail below, we believe that this experimentally derived aqueous chemistry is a reasonable Mars analog starting point for assessing sources of lithoautotrophic energy and nutrients. Specifically, the species concentrations for the aqueous chemistry are taken from the experiments of Bullock et al. (2004) performed at 3°C.

To identify potential energy sources, we evaluated the Gibbs free energy change (\( \Delta G \)) values of various redox half reactions known to provide terrestrial microorganisms with primary electron donors or terminal electron acceptors (Table 1). Aqueous concentrations of molecular \( \text{N}_2 \) and \( \text{O}_2 \) were estimated using Henry’s Law and assuming diffusive equilibrium with the martian atmosphere containing 2.7% \( \text{N}_2 \) and 0.13% \( \text{O}_2 \) (Kieffer et al., 1992). This approximation becomes less valid for the higher solution ionic strengths that occur at lower temperatures; nevertheless,
Henry's Law provides a reasonable baseline for the near-freezing conditions of the experiments of Bullock et al. (2004). The seven balanced redox reactions found to be most exergonic (i.e., lowest ΔG values) were used as potential metabolic energy sources for our model (lower portion of Table 1).

In addition to redox energy, biosynthesis on Earth requires macronutrients such as N and P, as well as a host of trace elements (Madigan et al., 2003). The abundance of atmospheric CO2 on Mars provides a readily available carbon source for lithotrophic organisms. A comparison of elements abundant on Mars and in terrestrial bacteria (Todar, 2004) indicates that elements N and P should be considered above others as limiting macronutrients on Mars. The experimental data of Bullock et al. (2004) indicate that NO3− and PO43−, the most common sources for N and P in terrestrial microorganisms, may form from water–rock–atmosphere interaction and become available for metabolism and protein formation. Therefore, we focused on CO2, N (as NO3−), and P (as PO43−) as the primary C and macronutrient supplies for potential martian life. Again, we note that NO3− compounds have not been detected in previous missions to Mars. However, in consideration of known abiotic N2-fixation mechanisms on Earth, which include lightning (Navarro-González et al., 2001), photochemical reactions on dust (Yang et al., 1994), and even ion partitioning due to freezing (Takenaka et al., 1992), the presence of NO3− on Mars seems enigmatic but likely. Therefore, we feel it is reasonable to include NO3− in our model following concentrations in the dataset of Bullock et al. (2004).

**Numerical implementation**

A numerical model, hereafter referred to as BIOFORM 1.1, was developed to quantify the energy and nutrients, at user-specified initial conditions, conducive to microbial biomass formation in a chemically closed system. Therefore, the flux of aqueous species arising from complexities in hydrology, water–rock–atmosphere, and pos-
sible biotic, interaction processes is not captured, but is noted as a general requirement for sustained life.

The cellular C:P and C:N for balanced microbial growth are adjustable model parameters, set in the present study to 100 and 10, respectively, to reflect values found in terrestrial bacteria (e.g., Goldman and Denett, 2000; Vrede et al., 2002; Todar, 2004). Based on these ratios, the composition of biomass is represented by the formula C_{10}H_{19}O_{3}N_{0.1}. The element- (though not charge-) balanced biosynthesis relation for building dry biomass is:

\[
10\text{CO}_2 (\text{aq}) + 9.5\text{H}_2\text{O} (\text{l}) + \text{NO}_3^- (\text{aq}) + 0.1\text{PO}_4^{3-} (\text{aq}) \xrightarrow{\text{Energy}} \text{C}_{10}\text{H}_{19}\text{O}_{3}\text{N}_{0.1} + 14.95\text{O}_2 (\text{aq})
\]

The BIOFORM 1.1 algorithm (Fig. 1) consists of six steps, four repeating, situated around a main loop. In step 1, each of the seven redox reactions listed in Table 1 are activated if exergonic under martian conditions. In step 2, moles of reducing agent, \(n_i\) (where \(i\) corresponds to redox reaction index numbers in Table 1) are calculated using the bisection method to carry each redox reaction forward to an equilibrium state (\(\Delta G = 0\)). The molar increments \(\delta n_i\) (the primary variables) are determined by dividing \(n_i\) by an arbitrarily large integer. The main loop incrementally generates biomass by way of \(\delta n_i\) variables until all energy sources or a nutrient becomes depleted. In step 3, an energy increment, \(\delta G\), is calculated by summing over energy increments \(\delta G_i (\delta n_i)\) from activated redox couples, meanwhile withdrawing species from the aqueous system. An energy increment useful for biosynthesis, \(\delta E\), is calculated by scaling down \(\delta G\) by the “thermodynamic efficiency” parameter, \(v\), where \(\delta E = v \delta G\). The \(v\) values for terrestrial microorganisms generally vary between 0.1 and 0.5, depending on the nature of metabolic electron donors and acceptors (Decker et al., 1970; Thauer et al., 1977; McCollom and Shock, 1997). An intermediate \(v\) value of 0.2 is used in the present study.

The energy increment, \(\delta E\), is converted to a molar increment of ATP, \(\delta ATP\), using the relation \(\delta ATP = \delta E / U_{\text{ATP}}\), where \(U_{\text{ATP}}\) is the energy required to form 1 mole of ATP. The value of \(U_{\text{ATP}}\) generally varies from 41.8 to 50.2 kJ/mol (Thauer et al., 1977). Following the convention in McCollom and Shock (1997), we set the \(U_{\text{ATP}}\) value to 42 kJ/mol. In step 4, an increment in biomass, \(\delta B\), is generated using the relation \(\delta B = \delta ATP \times Y_{\text{ATP}}\), where \(Y_{\text{ATP}}\) is the quantity of dry biomass (in g) generated per mole of ATP consumed. We assume the typical \(Y_{\text{ATP}}\) value of 10 g/mol for terrestrial bacteria (Decker et al., 1970; Thauer et al., 1977). If the quantity of \(\delta G\), C, N, or P in the system becomes equal to zero, the main loop exits in step 5, and the routine finishes. Otherwise, ion activity coefficients are updated in step 6 using the Davies equation (Faure, 1991; Gill, 1996), and the main loop repeats.

**RESULTS**

BIOFORM 1.1 identified two exergonic redox reactions for the selected martian inorganic chemistry: \(\text{Fe}^{2+}\) oxidation–\(\text{O}_2\) reduction (Table 1, reaction 1) and \(\text{Fe}^{2+}\) oxidation–\(\text{NO}_3^-\) reduction (Table 1, reaction 2). The \(\Delta G\) values of these reactions are listed in Table 2 for each experimental time in Bullock et al. (2004). The average values for \(\text{Fe}^{2+}\) reduction of \(\text{O}_2\) and \(\text{NO}_3^-\) are −53 and −47 kJ/mol of electrons, respectively. Note that all times reported in this section are those of the inorganic chemistry reaction progress (i.e., days after adding water to simulated martian en-

---

**FIG. 1.** Flow chart of BIOFORM 1.1 model. The algorithm consists of six main steps situated around the main loop. \(\delta G_i\) = increment in Gibbs energy from \(i^{th}\) redox reaction, \(\delta G\) = increment in Gibbs energy as a sum over the \(i\) redox reactions, \(\delta B\) = increment in biomass, \(\gamma_j\) = activity coefficient of \(j^{th}\) ion.
vironment) and are unrelated to microbial metabolism.

Numerical results from BIOFORM 1.1 for water of intermediate chemistry (Bullock et al., 2004) (84 days of inorganic reaction progress) are shown in Fig. 2. The electron donor \(Fe^{2+}\) became depleted when the total dry biomass reached \(\approx 800\) pg/mL (Fig. 2d). Most of the biomass generation (63%) was fueled by \(Fe^{2+}\) reduction of \(O_2\); the remaining 37% was supported by \(Fe^{2+}\) reduction of \(NO_3^-\) (Fig. 2b). Changes in the electron donor \(Fe^{2+}\) exceeded corresponding changes in C (as \(CO_2\)), the nutrients P and N, and the electron acceptor \(O_2\) (compare Fig. 2c and d). The total dry biomass values generated from the aqueous chemistries at each of the inorganic reaction-progress times from Bullock et al. (2004) are plotted in Fig. 3. For experimental times less than 198 days, \(Fe^{2+}\) was the limiting quantity with \(O_2\) respiration providing the most fuel for metabolism (Fig. 3). No biomass was generated after 198 days of reaction progress in the inorganic chemistry owing to P deficiency in the system.

**Biomass sustainability**

Implementation of BIOFORM 1.1 for a selected Mars-analog inorganic chemistry [\(3^\circ C\) and 84 days reaction progress in Bullock et al. (2004)] yielded a dry biomass of 800 pg/ml of thin film, which amounted to \(\approx 8,500\) cells/ml assuming

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>(O_2) reduction</th>
<th>(NO_3^-) reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-46.6</td>
<td>-41.2</td>
</tr>
<tr>
<td>21</td>
<td>-53.9</td>
<td>-47.8</td>
</tr>
<tr>
<td>42</td>
<td>-55.0</td>
<td>-48.5</td>
</tr>
<tr>
<td>84</td>
<td>-56.0</td>
<td>-49.4</td>
</tr>
<tr>
<td>168</td>
<td>-54.5</td>
<td>-48.0</td>
</tr>
<tr>
<td>198</td>
<td>-52.7</td>
<td>-46.4</td>
</tr>
<tr>
<td>Average</td>
<td>-53.1</td>
<td>-46.9</td>
</tr>
</tbody>
</table>

FIG. 2. BIOFORM 1.1 results per ml of thin-film solution of martian-simulated chemistry in Bullock et al. (2004) at \(3^\circ C\) and 84 days. The electron (\(e^-\)) donor in all redox reactions is \(Fe^{2+}\). (a) Gibbs energy change for \(O_2\) and \(NO_3^-\) reduction (kJ/mol of \(e^-\)). (b) Picograms of dry biomass (\(\rho_b\)) versus moles electrons transferred for \(O_2\) (solid) and \(NO_3^-\) (dashed) reduction. (c) Moles of C (as \(CO_2\)), N (as \(NO_3^-\)) and P (as \(PO_4^{3-}\)) versus dry biomass. (d) Moles of metabolic \(e^-\) donors/acceptors versus dry biomass. For this chemistry, the limiting quantity was \(Fe^{2+}\) after generation of \(\approx 800\) pg of dry biomass. For reference, 1 pg of dry biomass equals \(\approx 10\) microbial cells (Phelps et al., 1994).
0.47 pg of C/g of dry biomass, 0.12 pg of C/m³ of cell, and a cellular volume of 0.37 μm³ (Nagata and Watanabe, 1990). Because this is a closed-system calculation, continued biological sustainability requires one of the following scenarios: (1) dissolution of the host rock is renewed because of replacement of pore fluid or changes in solution chemistry caused by the biochemical reactions; (2) influx of additional energy- and nutrient-providing solutes from elsewhere; or (3) motile or advective transport of microbes to new, fecund locations.

An upper limit to the total potential (time-integrated) biomass can be calculated for Scenario 1 independent of other assumptions, but predictions in biomass at any point in time for Scenarios 1 and 2 require additional hydrogeological parameters and inorganic/organic reaction rates. Scenario 3 could be reciprocal to Scenario 2 if both are controlled by mass-conservative advection in a closed system.

It is also conceivable that electron donors/acceptors could be renewed in interfacial water at the planetary surface by external processes. Ultraviolet radiation can reduce ferric oxide to Fe²⁺ by the “photo-Fenton” process (Möhlmann, 2004). Although photo-Fenton reactions can be a source for redox constituents, nutrients and C must also be replenished to support ongoing metabolic activity. A reservoir of nitrogen exists in the martian atmosphere, 2.7% N₂ by volume (Kieffer et al., 1992), which could support N₂-fixing bacteria if they are present. However, N₂-fixation is energetically expensive and requires large amounts of P (for ATP biosynthesis) to reduce N₂ to intracellular ammonium and, eventually, amino acids (e.g., Lehninger, 1971). Moreover, although it is possible that N₂ may have played a key role in the early evolution of life on Mars when partial pressures were thought to be higher, it has been suggested that present levels are inadequate to support bacterial N₂ fixation unless selective pressures produced high-affinity enzyme systems capable of fixing N₂ at current pressures (Klingler et al., 1989). Shallow ground penetration of UV radiation poses an additional restriction to microbes at the very surface (Schuerger et al., 2003), but should not inhibit metabolic activity beyond a depth of a few millimeters.

In situ nutrient consumption

The total potential, or time-integrated, biomass that can be developed from inorganic host materials is simply given by the unit biomass produced by BIOFORM 1.1 multiplied by the water:host (i.e., water:rock) volume ratio necessary to exhaust the host (Scenario 1). As discussed above, Fe and P were limiting constituents in the model. The shergottite-analog mineral mixture of Bullock et al. (2004) contains 7.1% (wt/wt) Fe and 0.092% (wt/wt) P, and we take 1.6 g/cm³ as the dry bulk density of the regolith (Moore et al., 1978). The partially reacted inorganic reference solution contains 79 ppb Fe and 9 ppb P. Therefore, the water:rock volume ratios to exhaust Fe and P are 1.4 × 10⁸ and 1.6 × 10⁵, respectively (in ml/cm³). With P as the limiting constituent, the upper limit for potential biomass accumulation is 1.4 × 10⁹ cells/cm³ of regolith (~9 × 10⁸ cells/g of regolith).

The maximum density of bacteria in terrestrial soils is ~10⁹/g (Barnes and Nierzwicki-Bauer, 1997), which is an “instantaneous value” at a given point in time. Predictions of instantaneous biomass density and lifetime from the results of our model require specification of an instantaneous water:rock volume and a characteristic time scale. For this application, the former is the interfacial water volume. Detailed characterization of interfacial water for a variety of Mars-analog host materials and fluids, using nuclear mag-
magnetic resonance and electrical properties, is a subject of ongoing investigation (Grimm et al., 2006). Here, we assume simply that microbes can function in water films 1–2 nm thick [three to seven monolayers (Siegel, 1979; Harris, 1981; van der Wielen et al., 2005; Beaty et al., 2006)]. For specific surface areas of 5–20 m²/g estimated for the uppermost regolith of Mars (Ballou et al., 1978), the water:rock volume is 1–7%. Therefore, we take 3% as the representative volume fraction (effective porosity) of unfrozen water under biologically favorable conditions near the surface of Mars. BIOFORM’s 8,500 cells/ml of fluid then translates to 260 cells/cm³, or 160 cells/g, of regolith. Using the previously stated limit to potential biomass of \(1.4 \times 10^9\) cells/cm³ of regolith after P depletion, \(\sim 5 \times 10^8\) pore volumes of fluid would need to be regenerated to exhaust the source material. One possible time scale is the reaction progress of the inorganic reference chemistry; because the experiments of Bullock et al. (2004) did not reach steady state, ongoing precipitation of Fe (energy source) from the solutions led to diminishing potential biomass formation with increasing inorganic reaction progress (Fig. 3). Indeed, precipitation of P (a macronutrient) by 198 days during the inorganic reaction progress (Bullock et al., 2004) would permit no further biomass formation. If solutes must be replaced on time scales of \(\sim 100\) days—before reactions associated with inorganic leaching of host materials reach completion—then phosphorus will be exhausted in \((5 \times 10^6\) pore volumes) \(\times (100\) days/pore volume) \(\times \sim 5 \times 10^8\) days, or \(\sim 1.5\) million years. Because reaction progress in interfacial films may be limited by the small quantities of solvent, this time scale should probably be viewed as a strong lower bound.

Alternatively, metabolic rates can be used to assess the time scales for sustainability of biomass produced by the BIOFORM model. Price and Sowers (2004) found that the temperature dependence of prokaryotic metabolic rates derived from numerous sources can be fit with a single Arrhenius activation energy. We adopt \(-20^\circ\mathrm{C}\) as representative of favorable environments on Mars (Jakosky et al., 2003; Möhlmann, 2005), though Price and Sowers (2004) find no specific evidence for a minimum temperature for metabolism. At \(-20^\circ\mathrm{C}\), time scales, \(t_u\), for turnover of cellular carbon for growth, maintenance, and survival (macromolecular repair only) are \(\sim 1\) year, 1,000 years, and 1 million years, respectively [reciprocals of metabolic rates in Price and Sowers (2004)]. The activation energy of 110 kJ/mol given by Price and Sowers (2004) translates approximately to a factor of 10 decrease in \(t_u\) per decadal increase in temperature. The instantaneous biomass, \(M\), sustainable over a characteristic time \(t_c\), can be easily scaled using the relation \(M = M_T t_u / t_c\), where \(M_T\) is the total potential biomass extrapolated from BIOFORM 1.1, \(\sim 10^9\) cells/g of regolith. Using the above relation for \(M\), a density of \(\sim 10^9\) cells/g of regolith, in growth metabolism mode, could be sustained for \(t_c = 1\) year; a density of 1 cell/g of regolith could be sustained for \(t_c = 10^9\) years (Fig. 4a). At the other extreme, a biomass of \(\sim 10^8\) cells/g could survive solely by macromolecular repair for \(t_c = 10^9\) years.

Because it is unlikely that all, or even a large fraction, of energy and nutrient compounds in the host material can be metabolized, the biomasses in Fig. 4a should be considered upper bounds. Maintenance biomasses for million-year time scales are therefore likely \(<10^6\) cells/g of regolith. Extremely dry environments on Earth support as few as 100 cells/g (e.g., Navarro-Gonzalez et al., 2003).

**SUBSURFACE NUTRIENT TRANSPORT**

Lithoautotrophic microorganisms may receive fresh inorganic solutes from elsewhere (Scenario 2 above), which would eliminate the constraints on biomass due to locally available resources. This of course assumes that such fluids are not depleted by organisms or inorganic reactions in their own source locations. For microbes in the shallow subsurface of Mars, solutes can diffuse between zones of different concentration, or they can be advected by groundwater flow, driven either by elevation head or cryosuction.

Solute diffusion coefficients \(D\) in the Earth are \(10^{-11}–10^{-10}\) m²/s (Ingebritsen and Sanford, 1998) and can be as low as \(10^{-15}\) m²/s in solid ice. The time, \(t_d\), required to diffuse solutes over length scale \(L\) is \(t_d = L^2 / D\). Because solute diffusion is driven by solute gradients, movement can be either horizontal or vertical. The time scale for biomass turnover, \(t_u\) (given above for growth, maintenance, or survival), divided by the diffusion time, \(t_d\), is the number of pore volumes that are replenished. The instantaneous biomass, \(M\), fol-
allows by multiplying the number of pore volumes by the biomass per pore volume (160 cells/g of regolith, calculated above). Allowable biomass decreases with increasing length scale because nutrient transport requires more time for a given metabolic rate of $t_{m}^{-1}$. For $D = 10^{-11} \text{m}^2/\text{s}$, solute diffusion could sustain growing lithoautotrophic microbes only at remarkably low densities, though habitable regions 1–100 m in extent might preserve $>10^5$ cells/g of regolith in long-term maintenance or survival modes (Fig. 4b). Diffusion into broader habitable zones (tens to hundreds of meters or more) is so slow that even microbial densities in survival mode would be very small.

Cryosuction is a powerful force that moves water down a temperature gradient from saturated to unsaturated regions. For a geothermal gradient of $10^\circ\text{C/km}$ (McGovern et al., 2002), the cryosuction pressure $\sim 1.1 \text{MPa}/\text{°C}$ (e.g., Davis, 2001) is equivalent to a hydraulic-head gradient (height/length) of $\sim 3$ at Mars gravity. Cryosuction can act laterally or vertically like diffusion. For comparison, lateral hydraulic-head gradients on Earth are typically $\sim 10^{-2}$. We estimate the advective transport time under cryosuction using Darcy’s Law. A reference permeability of $10^{-13} \text{m}^2$ is appropriate to silty sands (Freeze and Cherry, 1979). This must be reduced for the unsaturated thin-film state, which approximately follows the cube (Ingebritsen and Sanford, 1998) of the ratio of the interfacial water volume ($\sim 3\%$) to saturated volume ($\sim 30\%$), resulting in an effective permeability of $\sim 10^{-16} \text{m}^2$. The conversion to hydraulic conductivity is also an order of magnitude less efficient on Mars than Earth due to lower gravity and temperature-dependent viscosity. Under these assumptions, the groundwater velocity, $v$, is $10^{-8} \text{m/s}$. The characteristic solute advection time over distance $L$ is then $t_{a} = L/v$. Allowable biomass can again be computed as a function of length scale and metabolic rates (Fig. 4b). Greater biomass and/or sizes of habitable regions can be sustained where solutes are replaced by cryosuction advection compared to diffusion because transport times vary as $L$ versus $L^2$, respectively. Although biomass under growth conditions remains very small, sizeable maintenance or survival biomass is sustainable over any practical length scale. This scenario re-
quires, however, that ground-ice movement is ongoing throughout the lifetime of the lithoautotrophic microorganisms. We note that this simple cryosuction model successfully reproduces the overnight growth of needle ice on Earth for a reference permeability of $10^{-15}$ m$^2$. This is a low permeability but within the range of fine-grained soils (e.g., Freeze and Cherry, 1979) that can express needle ice (see Davis, 2001).

Lateral flow of groundwater on Mars can be driven by topography, as it is on Earth. Interfacial water would migrate downhill, with recharge from and discharge to atmospheric vapor occurring at higher and lower elevations, respectively. Matric forces in interfacial water could exceed several meters equivalent pressure head, however, so elevation differences $>>10$ m are required to move interfacial water. Where this is satisfied, we can approximate the hydraulic gradient to be equal to the topographic gradient. Using the same permeability as the cryosuction model, a surface slope of even 10° [regional slopes are typically $\sim$1° (Aharonson et al., 2001)], yields $v = 6 \times 10^{-10}$ m/s. The 17-fold decrease in nutrient-resupply rate compared to cryosuction leads to a similar decrease in sustainable biomass (displacing cryosuction curves 1.2 log units downward in Fig. 4b). At 10° slope, elevation heads greatly exceed matric heads at length scales much greater than tens of meters, where Fig. 4b shows that allowable growth or maintenance biomasses would again be minimal.

**CONCLUDING REMARKS**

Using a published Mars-analog inorganic chemistry for energy and nutrient supplies (Bullock et al., 2004), and the thermodynamic model BIOFORM 1.1, we found that reduced Fe$^{2+}$ is the most favorable electron donor for CO$_2$ fixation during chemoautotrophic respiration of O$_2$ and NO$_3^-$ . These results imply that diffusive exchange of oxygen between the martian atmosphere and near surface thin films could provide exergonic electron acceptors for microbial metabolism and possibly lead to biogenic iron oxide precipitation (Fortin and Langley, 2005) and biosignatures analogous to those sought in recent studies on Earth (Souza-Egipsy et al., 2006). In the reference inorganic solution, the two limiting bioresources calculated by BIOFORM 1.1 were Fe$^{2+}$ and P. Under intermediate initial conditions, the model generated 800 pg/ml of lithoautotrophic dry biomass/ml of thin film, equivalent to $\sim$8,500 cells/ml. If continued leaching allows all useful energy and nutrient sources of the host soil to be consumed, P alone is the limiting constituent, and the total potential (time-integrated) biomass is $\sim$10$^9$ cells/g of regolith. Using estimated biomass turnover times, $t_w$ at $-20^\circ$C (Price and Sowers, 2004), biomass exceeding the minimum for the Atacama Desert [100 cells/g (Navarro-Gonzalez et al., 2003)] can reproduce only for several million years (Fig. 4a). Over the same time scale $\sim$10$^8$ cells/g survive at reduced metabolic levels sufficient only to repair macromolecular damage. If lithoautotrophic microorganisms cannot completely utilize the full volume of soil minerals, solute transport could sustain metabolism. The sustainable biomass then depends on the size of the habitable region and its feeding region. Diffusion or gravity-driven advection of solutes can support only a small biomass (<100 cells/g) in survival mode. Cryosuction can move somewhat greater nutrient quantities but applies only to areas that are actively undergoing ground-ice segregation. All told, no solute-transport mechanism appears to be reliable for near-surface interfacial water, so in situ consumption of host materials is favored for energy and nutrients.

This exercise depends on many assumptions of processes and parameter values. The reference inorganic chemistry of Bullock et al. (2004) is just one of many that can be investigated, but represents a reasonable baseline for shallow martian environments. In future work, alternative redox couples will be identified for different inorganic chemistries. These fluid and host compositions may dictate alternative paths to maximum biomass that were unapparent using the simplifications of the present study. The amount of interfacial water and its ability to leach solutes from host materials requires additional laboratory and theoretical study. The nutrient–transport curves scale directly with diffusion coefficient and permeability, and more formal advection–diffusion calculations are necessary. Nonetheless, results of the baseline model reported here suggest that lithoautotrophic microbial growth, maintenance, or survival in the shallow subsurface of Mars would be most efficient through continued reaction of local Fe- and P-bearing host materials rather than transporting energy and nutrients through interfacial water. Due to the predicted
difficulty in sustaining metabolic rates that would yield actual growth, organisms would likely spend much time in maintenance or survival modes, even at “favorable” temperatures near −20°C, with biomasses comparable to or less than dry environments on Earth.

ACKNOWLEDGMENTS

We thank Stephen Clifford, Steve Grant, Thomas Kieft, Ron Sletten, and Aaron Zent for helpful discussions. The comments of Christopher McKay greatly improved the final manuscript. Funding for this study was provided by the NASA Exobiology Program grant NNG05GN60G (R.E.G./J.C.P.) and NSF grants MCB-0237335, OPP-432595, and OPP-440943 (J.C.P.).

ABBREVIATION

ΔG, Gibbs free energy change.

REFERENCES


Address reprint requests to:
John C. Priscu
Department of Land Resources & Environmental Sciences
Montana State University
Bozeman, MT 59717
E-mail: jpriscu@montana.edu