Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes in Neuroimaging

Authors

Kiryl D. Piatkevich, Ho-Jun Suk, Suhasa B. Kodandaramaiah, Fumiaki Yoshida, Ellen M. DeGennaro, Mikhail Drobizhev, Thomas E. Hughes, Robert Desimone, Edward S. Boyden, Vladislav V. Verkhusha

Publication

Biophysical Journal

Abstract

Several series of near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial phytochromes but were not systematically compared in neurons. To fluoresce, NIR FPs utilize an enzymatic derivative of heme, the linear tetrapyrrole biliverdin, as a chromophore whose level in neurons is poorly studied. Here, we evaluated NIR FPs of the iRFP protein family, which were reported to be the brightest in non-neuronal mammalian cells, in primary neuronal culture, in brain slices of mouse and monkey, and in mouse brain in vivo. We applied several fluorescence imaging modes, such as wide-field and confocal one-photon and two-photon microscopy, to compare photochemical and biophysical properties of various iRFPs. The iRFP682 and iRFP670 proteins exhibited the highest brightness and photostability under one-photon and two-photon excitation modes, respectively. All studied iRFPs exhibited efficient binding of the endogenous biliverdin chromophore in cultured neurons and in the mammalian brain and can be readily applied to neuroimaging.

Links

 

How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.