Organic Enrichment at Aqueous Interfaces: Cooperative Adsorption of Glucuronic Acid to DPPC Monolayers Studied with Vibrational Sum Frequency Generation

Authors

Katie A. Link, Gabrielle N. Spurzem, Aashish Tuladhar, Zizwe Chase, Zheming Wang, Hingfei Wang, Robert A. Walker

Publication

The journal of physical chemistry A

Abstract

Surface tension, surface-specific vibrational spectroscopy and differential scanning calorimetry measurements were all used to test cooperative adsorption of glucuronic acid (GU) to DPPC monolayers adsorbed to the aqueous/vapor interface. Experiments were performed using GU solutions prepared in Millipore water and in carbonate/bicarbonate solutions buffered to a pH of 9.0. The effects of GU on DPPC monolayer structure and organization were carried out with tightly packed monolayers (40 Å2/DPPC) and monolayers in their liquid condensed phase (55 Å2/molecule). Surface tension data show that GU concentrations of 50 mM lead to expanded DPPC monolayers with diminished surface tensions (or higher surface pressures) at a given DPPC coverage relative to monolayers on pure water. With unbuffered solutions, GU induces significant ordering within liquid condensed monolayers although the effects of GU on tightly packed DPPC monolayers are less pronounced. GU also induces a second, higher melting temperature in DPPC vesicles implying that GU (at sufficiently high concentrations) strengthens lipid–lipid cohesion, possibly by replacing water solvating the DPPC headgroups. Together, these observations all support a cooperative adsorption mechanism. In buffer solutions, the effects of dissolved GU on DPPC structure and organization are muted. Only at sufficiently high GU concentrations (when the solution’s buffering capacity has been exceeded) do the data again show evidence of cooperative adsorption. These findings place limits on cooperative adsorption’s ability to enrich interfacial organic content in alkaline environmental systems such as oceans.

Links

 

How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.